Computational approaches for circRNAs prediction and in silico characterization

Primer Autor
Saavedra, Nicolas
Co-autores
Rebolledo, Camilo
Silva, Juan Pablo
Maracaja-Coutinho, Vinicius
Título
Computational approaches for circRNAs prediction and in silico characterization
Editorial
OXFORD UNIV PRESS
Revista
BRIEFINGS IN BIOINFORMATICS
Lenguaje
en
Resumen
Circular RNAs (circRNAs) are single-stranded and covalently closed non-coding RNA molecules originated from RNA splicing. Their functions include regulatory potential over other RNA species, such as microRNAs, messenger RNAs and RNA binding proteins. For circRNA identification, several algorithms are available and can be classified in two major types: pseudo-reference-based and split-alignment-based approaches. In general, the data generated from circRNA transcriptome initiatives is deposited on public specific databases, which provide a large amount of information on different species and functional annotations. In this review, we describe the main computational resources for the identification and characterization of circRNAs, covering the algorithms and predictive tools to evaluate its potential role in a particular transcriptomics project, including the public repositories containing relevant data and information for circRNAs, recapitulating their characteristics, reliability and amount of data reported.
Fecha Publicación
2023
Tipo de Recurso
artículo de revisión
doi
10.1093/bib/bbad154
Formato Recurso
PDF
Palabras Claves
circRNA
circRNA regulation
circRNA-miRNA prediction
bioinformatics
Ubicación del archivo
Categoría OCDE
Bioquímica y biología molecular
Biología matemática y computacional
Materias
ARNcircular
regulación del ARNcirc
predicción de circRNA-miRNA
bioinformática
Identificador del recurso (Mandatado-único)
artículo de revisión
Versión del recurso (Recomendado-único)
versión publicada
License
CC BY 4.0
Condición de la licencia (Recomendado-repetible)
CC BY 4.0
Derechos de acceso
acceso abierto
Access Rights
acceso abierto
Id de Web of Science
WOS:000980883200001
ISSN
1467-5463
Tipo de ruta
verde# dorada
Categoría WOS
Bioquímica y biología molecular
Biología matemática y computacional
Referencia del Financiador (Mandatado si es aplicable-repetible)
ANID 21191016
ANID 21220964
ANID-FONDECYT 1211731
ANID-FONDAP 15120011
ANID-STIC/AmSud STIC2020008
ANID-Anillo ACT210004
ANID-Anillo ATE220016
Revisa las metricas alternativas de Almetrics
Revisa las citaciones de Dimensions