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Abstract

Circular RNAs (circRNAs) are single-stranded and covalently closed non-coding RNA molecules originated from RNA splicing. Their
functions include regulatory potential over other RNA species, such as microRNAs, messenger RNAs and RNA binding proteins. For
circRNA identification, several algorithms are available and can be classified in two major types: pseudo-reference-based and split-
alignment-based approaches. In general, the data generated from circRNA transcriptome initiatives is deposited on public specific
databases, which provide a large amount of information on different species and functional annotations. In this review, we describe
the main computational resources for the identification and characterization of circRNAs, covering the algorithms and predictive tools
to evaluate its potential role in a particular transcriptomics project, including the public repositories containing relevant data and
information for circRNAs, recapitulating their characteristics, reliability and amount of data reported.
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INTRODUCTION
The past decade has seen growing interest in the role of circu-
lar RNAs (circRNAs) in various diseases [1–5], highlighting their
regulatory potential compared with other RNA species [6–8]. cir-
cRNAs are single-stranded non-coding RNA molecules that are
covalently connected by their 3′ and 5′ ends, generating circRNA
molecules rather than the linear structure found in typical RNAs.
They can be composed of single or multiple exons, derived from
intronic sequences and generated from both long non-coding
RNAs (lncRNAs) or messenger RNAs (mRNAs) [1]. These molecules
are resistant to exonucleases, leading to a long lifespan of more
than 48 hours, which is almost twice the lifespan of mRNAs [9, 10].
Studies have shown that circRNAs are also important endogenous
RNA competitors, acting as microRNA (miRNA) sponges, regulat-
ing gene expression [11].

circRNAs are present in different subcellular locations [12,
13] and their expression levels change in several tissues during
development and cell differentiation [14, 15]. Although circRNAs
are poorly conserved across species, apparently arising through
convergent evolution, they seem to be more species-specific com-
pared with other RNAs [14]. Literature suggests that transposable
elements inserted during evolution have stabilized them and
enabled their production [16].

Research has also pointed circRNAs as promising biomark-
ers for several diseases, including cardiovascular infirmities and

cancers. For example, circANRIL has been linked to atherosclerosis
[17], and circMICRA was described as a predictive molecule poten-
tially associated to left ventricular dysfunction [18]. In cancer,
circSMARCA5 has been correlated with tumor differentiation and
cancer diameter [19], whereas circCDYL has been shown to act as
a predictive and prognostic marker of breast cancer [20].

There are a multitude of algorithms for identifying back splic-
ing junctions (BSJ) and circRNA formation. These algorithms are
implemented in computational tools with high capacity for pre-
dicting these molecules, usually by extracting information from
RNA sequencing (RNA-seq) data [21]. Predicted circRNAs are often
deposited in databases and repositories that annotate the identi-
fied molecules based on various features, such as their genomic
coordinates, strand of origin, mature nucleotide sequence, among
other characteristics [22]; such as their interactions with other
molecules like small RNAs and RNA-binding proteins (RBP). Nor-
mally, these circRNA-small RNA or circRNA-RBP relationships
are also obtained through computational approaches, which are
useful to obtain novel layers of information in their in silico char-
acterization and, consequently, obtain further insights related to
their functional roles in the cells [23, 24].

In this review, we will first provide an overview of what circR-
NAs are and how they are originated at the cellular level. This
information is crucial for the development of predictive tools
for its identification by exploring RNA-seq data or even using
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the transcript nucleotide sequences features. We will explore
the different tools available for circRNA prediction, discussing
the positive and negative aspects of them. We will then review
the approaches to identify splicing variants and to perform a
quantification, normalization and differential expression analysis
of these RNAs, as well as the various algorithms for predicting
their interactions with other molecules and to obtain insights
of their functional roles in the cells. Finally, we provide a brief
overview of the databases and repositories containing relevant
data and information for circRNAs.

The biogenesis of circRNAs and key features to
be considered in its computational prediction
The formation of mature mRNAs or lncRNAs is preceded by
splicing and rearrangement processes which take place on pri-
mary RNAs (Figure 1A). Two different forms of mature RNAs can
arise depending mainly on splicing: linear RNAs or circRNAs.
The linear mature RNA is generated by the canonical splicing
event, in which introns are removed from pre-mRNA and exons
are joined together to form a mature mRNA. The spliceosome, a
complex of proteins and RNA molecules, recognizes the intron-
exon boundaries and removes the introns through a series of
enzymatic reactions. Canonical splicing results in a single lin-
ear mRNA molecule from each pre-mRNA transcript. Alternative
splicing events can also happen in this process, by which different
combinations of exons can be included in the mature mRNA,
resulting in multiple mature mRNA transcripts from a single pre-
mRNA transcript. Alternative splicing is regulated by a combi-
nation of cis-acting elements in the pre-mRNA and trans-acting
splicing factors (Figure 1B).

The circRNAs are formed when the cell spliceosome machinery
joins the 3′ and 5′ ends of the canonical spliced RNA through
a back splicing reaction, which results in the circularization
of the RNA molecule (Figure 1C). Aufiero et al. (2019) [25]
wrote an extensive review describing the mechanisms of
circularization, pointing out three main processes: intron pairing-
driven circularization, RNA-binding-protein-driven circulariza-
tion and lariat-driven circularization. (i) The intron pairing-
driven circularization is based on the complementarity of cis
elements present in flanking introns, which normally are short
non-coding regulatory sequences or short interspersed nuclear
elements, like Alu sequences and GU-rich sequences, possessing
sequence complementarities that guides the covalently bonded
structure conformation that facilitates the circularization and
production of the mature circRNAs. (ii) RNA-binding protein-
driven circularization depends on trans elements guided by RBPs
that interact with cis elements to conform the circularization.
These proteins recognize and bind to specific motifs in the
intronic flanking regions. In this way, these proteins can dimerize
and achieve structures that allow the back-splicing conformation
and, consequently, the RNA circularization. Liu et al. (2019)
[26] used a neural network model to classify cis elements in
flanking regions of back-splicing sites of 21,472 human circRNAs,
identifying RNA binding and protein binding sites as a main factor
for circRNA biogenesis. Huang et al. (2020) [27] summarized the
functions of RNA-binding proteins, such as ADAR, QKI and FUS,
and nuclear factors like NF90/NF110 as facilitators of this back-
splicing process. (iii) In lariat-driven circularization, the intronic
or exonic sequences containing a looped structure called ‘lariats’
are removed from the primary RNA during linear splicing, and the
lasso-like structure is confirmed by sequence complementarity,
giving rise to a circRNA that can be of exonic or intronic
origin.

Distinct categories of circRNAs are recognized based on
the origin of the genomic region that conforms the final
circRNA sequence. Normally, intron pairing-driven and RNA-
binding-protein-driven circularizations can generate three main
categories, which can include the combination of multiple exons
or intronic regions in the final circRNAs (Figure 1C). (i) The
exonic circular RNAs (EcircRNAs) includes all exons part of
the circularization event; (ii) the alternative EcircRNAs, which
includes the exons processed after an alternative splicing event;
and (iii) the exonic–intronic circular RNAs (EIcircRNAs), in which
an intronic region is retained in the final circRNA together with
the exons part of its sequence. Lariat-driven circularization
normally generates single EcircRNAs or intronic circular RNAs
(IcircRNAs), which involves the base-pairing of splicing sites motif
sequences of exonic and intronic sequences, respectively.

These characteristics are important features to be considered
in the prediction of circRNAs, and different approaches are being
developed based on evaluation of the mapping structure of RNA
sequencing reads against a reference genome or even through
machine learning approaches considering characteristics present
in the sequence of a protein-coding or non-coding transcript.

Algorithms and computational tools for circRNA
prediction
RNA-seq and bioinformatic analysis provide a comprehensive
understanding of the eukaryotic transcriptome and a deep explo-
ration of the various types of RNA molecules available in the cell.
For circRNA analysis, RNA-seq of total RNA with ribosomal RNA
depletion is widely used, often followed by an RNase R step - which
efficiently removes linear RNAs - to increase the necessary depth
of sequencing. Despite the effectiveness of this approach, results
can vary depending on circRNA expression levels, sample quality
and sequencing quality [21, 22].

The software normally developed to explore RNA-seq data
can be classified into two main categories, associated with the
mapping of sequencing reads against a reference genome and/or
gene annotation file: split-alignment-based (segmented-based)
and pseudo-reference-based (candidate-based) [28]. Segmented-
based tools identify BSJ by aligning reads to the reference genome
and are considered de novo tools, whereas pseudo-reference tools
rely on gene annotation files to identify junction reads (Figure 2).
To give more details on how these algorithms are implemented
in predictive tools, we chose to briefly describe three of them:
CIRCexplorer3 [29], CIRIquant [30] and find_circ [31].

CIRCexplorer3 [30] requires trimmed paired-end FASTQ files
from RNA-seq samples, a genome reference and annotation files
as input. It first uses HISAT2 [32], a versatile aligner, to map reads
to the genome reference, with a focus on finding reads spanning
splice junctions in coding transcripts. Unmapped reads are then
remapped to the same reference genome. The use of STAR [33], a
fast and user-friendly aligner, with an annotation of the reference
genome allows the identification of candidate circRNA reads. The
precise start and end positions (donor and acceptor sites) of each
BSJ event are then determined, and the BSJ is remapped to the
annotation file. The final output file contains circRNA annotation
information such as the circRNA ID, chromosome, start and end
coordinates, strand, read number part of the circRNA, flanking
introns and other features interesting for downstream analyses.

CIRIquant [30], the latest version of CIRI2, aligns reads using
HISAT2 [32] as the first step. It then makes a de novo identifi-
cation of circRNAs from unmapped reads, which are mapped to
the reference genome using BWA [34]. Then, the SAM files are
scanned twice. During the first scanning, paired chiastic clipping
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Figure 1. General back-splicing mechanism of circRNAs. (A) Transcription mediated by RNA polymerase II gives rise to a pre-mRNA that is subjected to
canonical or alternative splicing, becoming mature mRNA accessible to protein translation and detectable as Forward splice junction reads (FSJ reads).
(B) Intron-free mature mRNA have special well-defined characteristics, including defined 5′ - and 3′ sites, capping and poly(A) tail. (C) In circRNAs,
alternative splicing is replaced by back-splicing reaction generating a diversity of circRNAs through different mechanisms of circularization such as:
Intron pairing-driven circularization facilitated by proximity of donor (5′) and acceptor (3′) sites by inverse complementary sequences near to BSJ
splice site, RNA-binding-protein-driven circularization, mediated by proteins that forms dimers allowing to circularize RNA sequence, and lariat-driven
circularization facilitated by specific motifs (GU-AG; GC rich zone and others) on flanking sequences. In this manner, different factors bring about a
diversity of circRNAs.

(PCC) signals are used to detect BSJ and candidate circRNAs;
which are then filtered using paired-end mapping (PEM) and
splicing junction signals (GT-AG). After grouping BSJ reads and
register circRNA candidates, the SAM file is scanned again to
detect additional circRNA candidates, and an additional filter is
applied to eliminate false positives that are incorrectly mapped to
homologous genes and repetitive sequences. The final output file
also contains circRNA annotation information such as circRNA
ID, chromosome, start and end cordinates, strand, read number,
flanking introns and others.

Find_circ [31] is a de novo detection algorithm for circRNAs
prediction. The input files need to be trimmed to the best possible
Phred Quality Score. The first step involves alignment to the refer-
ence genome using Bowtie2 [35], with SAM format files resulting
from the unmapped reads stored. The second step involves the
detection of splicing by extracting 20-mers from both ends of the
unmapped reads and aligning them to the reference genome to
find unique anchor positions. The output file contains all detected
splice junctions in BED format, along with additional columns
of information and statistics. In 2018, Hansen [36] published a
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Figure 2. General strategies for circRNA detection. In the split-alignment-based approach, circRNA sequencing reads are split and then reverse aligned
to reference genome. In the pseudo reference-based approach, pseudo-sequences are constructed from annotated exons and sequence reads are aligned
against the pseudo-sequences.

slight improvement to the find_circ pipeline, which increased the
default mapping quality threshold, resulting in a decrease in false
discovery rate (FDR).

Over the last decade, the interest of the scientific community
on circRNAs has grown, and it is reflecting in an increase in
more than 90% in the number of publications related to this
molecule in literature (Figure 3A). This interest is also reflected
in the numerous tools for circRNAs identification, which together
with other bioinformatic tools and databases is helping on the
further characterization of this new trend in RNA biology research
(Figure 3B). Despite the various algorithms and tools developed
by bioinformaticians for circRNA analysis, few systematic eval-
uations of its performance have been carried out [21, 36, 37].
A study by Hansen et al. (2016) [17] showed that five differ-
ent tools (circRNA_finder [38], MapSplice [39], CIRCexplorer [40],
CIRI [41], find_circ [31]) had only a modest overlap of 16.8% in
their predictions, highlighting that the circRNA landscape can
differ dramatically depending on the algorithm used. It is worth
mentioning that 40% of the predicted circRNAs were obtained
by only one tool. To evaluate the true positive candidates on
this tool-specific group, they treated samples with RNase R and
evaluated their performance, concluding that apart from CIRC-
explorer [40] and MapSplice [39], more than half of the potential
circRNAs were RNAse R sensitive candidates. Thus, revealing to
be false positives, suggesting that in most of the cases, the RNAs
predicted by several algorithms were likely to be artifacts. To
avoid missing potential circRNAs, as well as the identification of
false positive artifacts, it is recommended to use more than one
algorithm.

Sensitivity and precision are important parameters to evalu-
ate bioinformatic tools performance. In these software, sensitiv-
ity refers to the number of reads assigned to each circRNA by
the algorithm and is reflected in the total number of circRNAs
predicted. On the other hand, precision refers to the accuracy
of the algorithm and can be increased by filtering for circRNA
candidates by implementing thresholds for read counts. In 2017,
Chen and colleagues [37] performed a benchmarking of 11 cir-
cRNA detection tools, identifying that NCLScan [42], MapSplice
[39], CIRCexplorer [40], DCC [43] and PTESFinder [44] tended to
have a low false-positive rates, whereas Segemehl [45], find_circ
[31] and UROBORUS [46] yielded the worst performances. In gen-
eral, NCLScan [42] and CIRCexplorer [40] dominated other tools
regarding the precision measuring, whereas KNIFE [47], CIRI [41],
Segemehl [45], PTESFinder [44] and CIRCexplorer [40] tended to
be more sensitive than other tools. Considering the sensitivity
analysis for paired-end data, when both reads span the same

BSJ—which can be the case for small circRNAs, different tools
undertake distinct results, evidencing an enormous variation of
distances between splicing sites engaged in back splicing regions,
ranging typically from a few 100 nucleotides to dozens or even
hundreds of kilobases.

Later, in 2018, Hansen [36] evaluated the impact of pre-
processed reads on algorithm performance, including low-quality
read removal and adaptor trimming. In his benchmarking, some
algorithms benefited more than others from read trimming,
and the sensitivity measured by read count increased modestly,
although most algorithms showed unchanged median expression.
Most approaches presented a median expression of 14–20 reads,
with DCC [43], circRNA_finder [38] and UROBORUS [46] showing
the lowest sensitivity with 11, 9 and 5 median reads per circRNA,
respectively. It always depends on the initial quality of the RNA
sequencing dataset. Recently, Circall [48] has been developed as a
tool to specifically identify EcircRNAs from paired-end RNA-Seq
data. It boasts improved true positive detection in comparison
to CIRI2 [49], CIRCexplorer [40], MapSplice [39] and find_circ [31].
Furthermore, it is faster in analysis, thanks to its implementation
of the RapMap aligner [50], which employs a quasi-mapping
strategy.

In addition to the two primary methods for identifying circR-
NAs, Chen et al. (2021) [51] published a review describing machine
learning approaches for circRNA prediction. PredcircRNA [52] and
WebCircRNA [53] extract features from transcript sequences
to predict the formation of circRNAs, whereas DeepCircCode
employs a deep learning model to predict back-splicing for the
formation of human circRNAs. This tool also incorporates a
visualization method to represent circRNA formation features
as sequence motifs. CirRNAPL [54] predicts circRNAs based
on structural features and composition of sequences, and
the recently released StackCirRNAPred [55] classifies circRNAs
from other lncRNAs using a stacking strategy. These tools can
complement established split-bases and pseudo reference-based
identification methods available in the literature. A complete list
of circRNA predictive tools was made available in Table 1.

Before start using and testing these tools, it is also impor-
tant to consider those that are easy and less time-consuming to
install and configure. To facilitate the configuration of the proper
environment to run a circRNA predictive analysis we recom-
mend to use tools available in Conda environment (https://conda.
io/), which is an open-source package management system to
facilitate the installation and configuration of software packages
written in any language that runs in multi operation systems such
as Windows, macOS and Linux.
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Figure 3. Main circRNA tools in the circRNA research along the last decade. (A) Representation of the number of publications on circRNA investigation
containing the term ‘circRNA’ in the title or abstract searched in PubMed by year. (B) Summary of circRNA identification tools, multi-tools software and
sequence reconstruction tools; (C) circRNA publicly available databases; and (D) other useful tools for characterization, visualization and functional
exploration of circRNAs developed in the last decade.

Multi-tool approaches for circRNA prediction
Multi-tool approaches for circRNA prediction can address the
issue of differences in predicted circRNA numbers and high false
positives caused by the difference in algorithm methodologies
used by different tools. CircComPara [64] integrates CIRCexplorer
[40], CIRI [41] and find_circ [31] to improve the accuracy of
circRNA prediction, and its recent version, CircComPara2 [57],
integrates CIRI [41], find_circ [31], CIRCexplorer2 [56] (using
multiple aligners such as STAR [33], BWA [34], Segemehl [45]
or TopHat [65]), further enhancing the identification of true
circRNAs. CircRNAwrap [58] is another multi-tool approach that
integrates eight circRNA detection tools (KNIFE [47], find_circ
[31], CIRCexplorer2 [56], CIRCexplorer [40], MapSplice [39], Acfs
[66], circRNA_finder [38] and DCC [43]), three sequence recon-
struction approaches (RAISE [67], CIRI-AS [68] and CIRCexplorer2

[56]), and several downstream tools (e.g. Sailfish-cir [69]) for
expression abundance estimation and other types of computa-
tional characterization.

Exploring alternative splicing events in the
reconstruction of circRNAs
Several computational tools are used to predict circRNAs by look-
ing for BSJ events. However, the internal composition of circR-
NAs splicing can be diverse and different from the host linear
transcripts. The variety of alternative splicing variants requires
the comprehensive analysis of circular transcripts. Therefore, to
identify circRNA isoforms, the whole coverage of RNA sequencing
reads throughout the circular transcripts is necessary. Two major
strategies for identifying inner spliced isoforms of circRNAs are
CIRCexplorer3 [29] and CIRI-AS [68], part of CIRI package [41, 49].
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CIRCexplorer3 [29] uses information on splice-site coverage
and depth based on polyA+ and polyA-/RNase R+ reads, whereas
CIRI-AS utilizes paired mate reads of back-spliced reads (BSR) to
predict forward splice junctions. This last tool categorizes alterna-
tive splice sites into: alternative 5′ splice site (A5SS), alternative
3′ splice site (A3SS), exon skipping (ES) or intron retention (IR).
However, to run CIRI-AS [68], the paired-end reads must have the
same length. It is worth mentioning that CIRI2 [49] can process
sequencing reads of different lengths, but CIRI-AS [68] cannot. It
is recommended to use raw reads directly or trim all reads to the
same length before running BWA [34], CIRI2 [49] and CIRI-AS [68].

Other useful computational methods for the full-length recon-
struction and alternative spliced circRNA abundance determi-
nation from RNA-seq data include circAST [60], psirc [61] and
CYCLeR [62]. circAST [60] is a downstream analysis tool that
employs a multiple splice graph method on RNA-seq data and
uses upstream circRNA identification tools such as UROBORUS
[46], CIRI2 [49] or CIRCexplorer2 [56] to detect back-spliced events.
On the other hand, psirc [61] can identify full-length circRNA
isoforms and quantify their expression levels from RNA sequenc-
ing with results comparable to CIRCexplorer2 [56] and CIRI2 [49].
Recently, the software CYCLER [62] has been developed to identify
and reconstruct the predominant isoform of a circRNA with better
performance than CIRCexplorer2 [56] and CIRI-full [70].

Long-read sequencing technologies for the
estimation of full-length circRNAs and splicing
variants
Ruan et al. (2022) [71] presented a comprehensive overview of dif-
ferent experimental strategies for full-length sequencing splicing
variants detection of circRNAs. The authors summarize various
library preparation techniques that enrich the sample for circR-
NAs and pipeline analysis using Oxford Nanopore Technology
(ONT) sequencing. These techniques include circNick-LRS [72],
circ-Panel-LRS [72], CIRI-long [73], isoCirc [74] and circFL-seq [75];
and their strategies differ in terms of sample preparation and
amplification approaches, length of circRNAs obtained and detec-
tion of specific features.

The circNick-LRS and circ-Panel-LRS [72] approaches sequence
full-length circRNAs through sample enrichment and specific
amplification of circRNA transcripts, respectively, followed by
ONT sequencing [72]. The circFL-seq [75] and CIRI-long [73] meth-
ods use the rolling circle reverse transcription (RCRT) strategy to
produce cDNA and detect circRNAs. The circFL-seq assay uses
an anchor primer for second-strand synthesis, whereas CIRI-
long employs template switching. The isoCirc method [74] uti-
lizes rolling circle amplification (RCA) to enrich BSJ reads, result-
ing in the detection of circRNAs with sizes ranging from 300–
460 nucleotides. circRNA detection using these methods differs
in terms of the length of circRNAs obtained. For example, the
circNick-LRS [72] approach detects full-length circRNAs with an
average size of 795 nt, whereas CIRI-long detects circRNAs less
than 500 nt. The circFL-seq approach enables the identification
and reconstruction of longer circRNAs up to 2334 nt, and the
detection of fusion circRNAs, allowing for isoform-level studies.
These approaches also allow for the detection of other specific
circRNA sequence features such as microexons inclusion, which
are important regulators of the transcriptome [72].

An alternative to explore circRNA splicing variants is to
use their identifiers in public databases and look for the
mature sequence of circRNA isoforms in repositories like the
circAtlas [76], which were reconstructed using the CIRI-full/CIRI-
vis pipeline. Unlike linear RNAs, circRNAs have complex and

diverse splicing patterns, with many isoforms from a single
circRNA. CircView is a useful tool for visualizing circRNA isoforms
obtained from various identification tools [77]. High-throughput
techniques such as Illumina-based RNA-seq, microarray [40] and
NanoString [78] have been used to profile circRNA expression by
detecting and counting unique BSJ sequences, but none can detect
the full structure of circRNAs >300 nucleotides or determine
their exon composition. Alternatively, ONT platform provides
comprehensive characterization of alternative splicing events
in circRNAs on a genome-wide scale and has the capacity to
study sequence modifications in the RNAs, such as the N6-
Methyladenosine (m6A), the most abundant internal modification
associated with eukaryotic mRNAs [14]. These epitranscriptomic
modifications are detected through the direct sequencing of RNA
molecules without the necessity of generating a cDNA.

The structural confirmation is also relevant when studying
the impact of full-length circRNA isoforms. Secondary struc-
ture and thermodynamic parameters can be obtained using the
ViennaRNA Package 2.0 [79], considering a particular parameter
devoted specifically for circRNAs (‘RNAfold -p -d2 –circ’). Other
key tools have been proposed to analyze the superior structures
of circRNAs. These include RNAcomposer [80], which can pre-
dict the three-dimensional structure of RNA and can be applied
to circRNA sequences (http://rnacomposer.cs.put.poznan.pl/), as
well as RNAfold from the Vienna package [79] and 3dRNA [81].
These tools can provide new insights into circRNA structures
and interactions, offering a deeper understanding of this complex
molecule. The use of these tools may reveal new information
about circRNA interactions at previously uncharacterized levels.

In summary, transitioning from next-generation sequencing
(NGS) to third-generation sequencing (TGS) is a viable and effec-
tive option to move forward circRNA characterization, as TGS
can sequence full-length reads that provide more information in
downstream analyses on the complete circRNA sequence, includ-
ing the splicing variants, characterization of interaction sites,
modifications and superior structures. However, TGS is currently
more expensive and has a higher error rate than NGS, but novel
improved tools are starting to be released to overcome these
limitations.

Quantification, normalization and differential
expression of circRNAs
Once the repertoire of circRNAs available in a transcriptome assay
is defined, the next step is to obtain their expression patterns.
Quantifying, normalizing and differentiating the expression of cir-
cRNAs remains a challenge in transcriptome analysis. CircRNAs,
being rare in nature and often displaying low read counts, pose
difficulties in obtaining their expression patterns. This is because
a small fraction of the total reads from RNA-seq samples support
the detection of BSJ, leading to difficulties in differentiating reads
from the inner circRNA sequence and the linear form of the
transcript. As a result, the number of total sequenced reads can
impact the number of identified circRNAs. To mitigate this chal-
lenge, researchers have used the previously mentioned RNase R
treatment during library preparation, which enriches the sample
with circRNAs and focuses the sequencing procedure on circRNA
sequences.

Before conducting differential expression analysis, many
authors apply a filter to reduce false positives and increase pre-
cision of circRNAs identification. For instance, when generating
an expression matrix containing each circRNA expression values
to be used in a downstream differential expression comparison,
studies normally consider only those circRNAs containing read
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counts greater than 2; or to normalize this expression matrix
prior its filtering considering mapped back-splice junction reads
per million (RPM) or counts per million (CPM) normalized values
greater than 0.1 [49].

Different challenges, such as the number of total read
sequences, low read counts for each circRNA, high variability
between samples and a lack of coverage modeling, can affect
differential expression analysis. Some commonly used software
for mRNA differential expression, such as DESeq2 [82] and edgeR
[83] can be applied to perform differentially expression analysis
for circRNAs. CircTest [43] is another approach that can also be
employed. It models the data using the beta binomial distribution
and performs an ANOVA to identify circRNAs that differ in
their relative expression between groups. Other authors use
log2(CPM) representation and perform a Mann–Whitney U test to
differentiate the expression values of circRNAs within different
groups of samples.

Functional prediction of the biological context of
circRNAs
CircRNAs have been described to exert their effects through sev-
eral mechanisms [84]. One of the main mechanisms is their ability
to modulate gene expression by acting as a miRNA and protein
regulator [2, 85]. They act as a sponge for miRNAs, ‘capturing’
them through microRNA responsive element (MRE) sites, thereby
reducing miRNA availability and influencing mRNA expression
levels. Additionally, circRNAs have the potential to modulate alter-
native splicing or transcription by controlling protein expression
and avoiding mRNA transcription. Another mechanism involves
circRNAs regulating the parent genes by interacting with RNA pol
II, altering its affinity for adjuvants and influencing gene tran-
scription [1]. Finally, some circRNAs have been found to contain
open reading frames (ORF) or internal ribosome entry sites (IRES),
which have the potential to encode proteins [86, 87]. This is a
relatively unexplored area that could have a significant impact
at the cellular level.

Computational approaches can be used to predict the inter-
action between circRNAs and miRNAs or RNA-binding proteins.
These predictions can be used to generate interaction networks,
by visualizing the results using tools such as Cytoscape [86] or
R packages like VizNetwork (https://datastorm-open.github.io/
visNetwork/) or networkD3 (http://christophergandrud.github.io/
networkD3/), and integrating data from public protein–protein
interaction databases such as STRING [88], IntAct [89] or BIND
[90]. Enrichment analysis can also be performed through tools
such as enrichR [91], PANTHER [92] or DAVID [93], to identify
overrepresented biological pathways and processes according to
the coding genes present in the generated network.

CircRNA-miRNA interaction tools
Multiple tools are used to analyze circRNA-miRNA interactions,
contributing in the prediction of gene expression patterns on
which this interaction could have some kind of effect, favor-
ing its degradation, or changing expression patterns of miRNA
and mRNAs through competing endogenous mechanisms. Among
them, we can highlight RNAhybrid [94], GSTAr [95], miRTarget [96],
TargetScan [97], miRanda [98], PicTar [99], PITA [100], IntaRNA
[101], RNA22 [102] and others. These tools have the potential to
identify possible MRE sites within circRNAs. In this way, Riffo-
Campos et al. 2016 [103] evaluated the possibility of interac-
tion through numerous parameters depending on the tool used.
RNAhybrid [94], GSTAr [95], miRTarget [96] perform this analysis
by calculating the minimum free energy hybridization between

sequences, looking for the most favorable interaction. TargetScan
[97] is the tool with better performance, but with a high false
negative rate, whereas miRanda [98] has a better sensitivity but
with a higher false positive rate. It runs an algorithm based on
complementarity, binding energy and taxonomic conservation of
the predicted interaction; PicTar aligns seed regions given their
high conservation, allowing predicted interactions, and classifies
it taxonomically. Finally, PITA [100] calculates the differences
between free energies in pairing and unpairing the target binding
site to predict the structural accessibility of the seed matching.

CircRNA-protein interaction tools
Main circRNAs and RBP (RNA-binding protein) interactions are
involved in the regulation of gene transcription and translation of
peptides. Although RBPs can bind both linear RNAs and circRNAs,
evidence suggests a preference for RBP–circRNA binding due to
the tertiary structures of circRNAs [104]. RBPs play a role in the
modulation and control of circRNA biogenesis [105], whereas, at
the same time, circRNAs can serve as ‘sponges’ for RBPs, altering
the translation of other proteins [106, 107].

Protein-circRNA interactions are primarily studied through
experimental techniques, and specific circRNA tools are limited.
Most bioinformatics tools also do not consider the tertiary
structure of circRNAs when determining protein-circRNA inter-
actions [27]. A notable online tool is catRAPIDv2.0 (http://service.
tartaglialab.com/page/catrapid_omics2_group) [108], which eval-
uates the propensity for circRNA-RBP interactions by analyzing
the circRNA sequence with a fragmentation approach against
precompiled RBP libraries from several organisms. Advances in
this field mainly focus on either predicting the circRNA-binding
sites on the protein, or conversely, the protein-binding sites along
the circRNA sequence. In the first case, CircInteractome [109]
provides some tools, but it does not consider the full-length
sequence of circRNAs. Conversely, there are approaches based on
neural networking [110, 111], in which the interaction matrices of
known protein-circRNA pairs are used to train a neural network
to generate improved prediction models. CRIP [110, 111] is a
recent deep learning method that uses known sequences and
is based on codon splitting to predict interactions. Another
novel method, iCircRBP-DHN [112], uses deep hierarchical
networks for circRNA-RBP binding site discrimination. circRIP
[113], another recently developed algorithm, is an efficient tool
for identifying genome-wide circRNA-RBP interactions from
RNA immunoprecipitation sequencing (RIP-Seq) and enhanced
cross-linking immunoprecipitation (eCLIP) data, optimizing the
quantification process.

Experimental procedures for validation
The validation of circRNA presence and functionality is crucial
in the study of these non-coding RNAs. RT-qPCR is a sensitive
method for detecting the expression levels of circRNAs and com-
paring them to those of linear RNAs. It can be used to quantify
the expression levels in different samples, such as normal and
diseased tissues, and to monitor changes in response to various
stimuli. RT-qPCR of RNase R-treated samples can also be used
to validate the detection of circRNAs. The technique requires
divergent primers that target the BSJ, a unique sequence within
the human genome [114]. RNase R is a 3′-to-5′ exoribonuclease
that degrades linear RNAs, but most circRNAs are resistant to
degradation due to their closed circular configuration. To confirm
the circular configuration, Northern blot analysis, an RNase R-
independent technique, is considered a gold standard. Probes are
designed to either span the BSJ or hybridize to the total transcript,
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Table 1. Different tools for identifying circRNAs and associated methodology.

Identification Tools Method Aligner Aligner strategy Link Reference

CIRCexplorer3 (CLEAR) S.A.B HISAT2;STAR Splice-aware https://github.com/YangLab/CLEAR [29]
CIRCexplorer2 S.A.B STAR Splice-aware https://github.com/YangLab/CIRCexplorer2 [56]
CIRIquant S.A.B HISAT2;BWA Versatile https://github.com/bioinfo-biols/CIRIquant [30]
CIRI2 S.A.B BWA Versatile https://sourceforge.net/projects/ciri/files/CIRI2/

https://ciri-cookbook.readthedocs.io/en/latest/CIRI-
full.html#installation

[49]

Find_circ S.A.B Bowtie2 Versatile https://github.com/marvin-jens/find_circ [31]
KNIFE P.R.B Bowtie2 Versatile https://github.com/lindaszabo/KNIFE [47]
DCC S.A.B STAR Splice-aware https://github.com/dieterich-lab/DCC [43]
UROBOROS S.A.B Bowtie Versatile https://github.com/WGLab/UROBORUS http://

uroborus.openbioinformatics.org
[46]

NCLScan P.R.B BWA Versatile https://github.com/TreesLab/NCLscan [42]
MapSplice S.A.B Bowtie Versatile https://github.com/ahcarpenter/mapsplice http://

www.netlab.uky.edu/p/bioinfo/MapSplice2
[39]

PTESFinder P.R.B Bowtie Versatile https://github.com/osagiei/pfv2 [44]
Segemehl S.A.B Internal Covariance Models https://www.bioinf.uni-leipzig.de/Software/segemehl/ [45]

CircCall P.R.B RapMap Quasi-mapping https://github.com/datngu/Circall. [48]
CircComPara2 S.A.B and R.R.B Multi-tool Multi-tool https://github.com/egaffo/CirComPara2 [57]
circRNAwrap S.A.B and R.R.B Multi-tool Multi-tool https://github.com/liaoscience/circRNAwrap [58]
PredcircRNA M.L NA NA https://github.com/xypan1232/PredcircRNA [52]
WebCircRNA ML NA NA https://rth.dk/resources/webcircrna/download [53]
DeepCirCode M.L NA NA https://github.com/BioDataLearning/DeepCirCode [59]
CirRNAPL M.L NA NA http://server.malab.cn/CirRNAPL/ [54]
StackCirRNAPred M.L NA NA https://github.com/xwang1427/StackCirRNAPred [55]
circAST S.R - - https://github.com/xiaofengsong/CircAST [60]
psirc S.R - - https://github.com/Christina-hshi/psirc [61]
CYCLeR S.R - - https://github.com/stiv1n/CYCLeR [62]
CIRI-AS S.R - - https://sourceforge.net/projects/ciri/files/CIRI-AS/ [63]

Method column abbreviations: S.A.B: split-alignment-based; P.R.B: pseudo reference-based; M.L: machine Learning. S.R.: sequence reconstruction.

and by choosing a suitable gel electrophoresis system (agarose
and/or polyacrylamide) the two possible configurations (circular
or linear) can be clearly distinguished. Northern blotting can also
be combined with RNase R or RNase H ribonuclease digestion.
The RNase H cleavage assay has emerged as an elegant method
for circRNA validation. Antisense oligonucleotides are designed
to target a specific circRNA, and RNAse H recognizes DNA–RNA
hybrids and cuts the RNA within the duplex. The characteris-
tic shift in mobility during denaturing polyacrylamide gel elec-
trophoresis from the aberrantly slow migration of the circRNA
to the expected linear behavior, as well as the cleavage patterns
of RNase H digestion, can then be analyzed by Northern blotting
[115].

Publicly available repositories for circRNA
research
circRNAs are attracting increasing attention from the scientific
community and, as a result, a plethora of databases have
been established to store extensive information on these RNA
molecules (Figure 3C). These repositories provide information
such as circRNA sequences, functional predictions, the circRNA–
miRNA–mRNA axis and links to diseases [2, 116]. Vromman and
colleagues (2020) [18] reviewed these databases and categorized
them as curated and non-curated.

In our review, we will address some considerations one
should consider when using a repository as a reference. For
instance, not all databases use the same genomic coordinates
(chr:start-end), which can result from differences in the input
file formats used by the databases. BED format-based databases

are 0-based, whereas SAM format-based databases are 1-based,
thus requiring adjustments when comparing data between
databases. Additionally, some repositories may not provide
complete information on their data, such as RNA-seq library
type (e.g. single-end, paired-end, stranded, RNase R enriched),
primary nucleotide sequence of the mature circRNA, strand of
origin (e.g. positive, negative), validation methods (e.g. qPCR,
long-read sequencing, Northern blot, etc.). This information
is crucial because the presence of an exon junction does not
necessarily indicate RNA circularization. For example, RNA-seq
poly (A) + decreases sensitivity to detect circRNAs as in general
these molecules are not polyadenylated, increasing the quantity
of linear RNAs. Nevertheless, studies have shown that even RNA-
seq polyadenylated libraries can detect quantifiable amounts
of exon junctions, suggesting that their presence alone is not
enough to ensure circularization [12, 117]. Another example
is related to the presence of Alu sequences in the 3′- and 5′-
regions of intronic segments [9, 118], or sequence motifs in the
flanking regions of the splicing candidates [117]. All of them are
also important features to be considered in the determination
of the RNA circularization, and the lack of information makes
it difficult to validate and curate the candidates available in
these repositories. It is worth mentioning that this kind of
mechanism remains poorly understood and it is fundamental
to have as many details as possible in the metadata indexed in
databases.

Circ2Traits [119] was the first database to provide informa-
tion on circRNAs, specifically manually curated circRNA-miRNA-
disease associations in human datasets. CircBase [120] followed
as the second repository published, providing information on
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Table 2. Publicly available databases devoted to circRNAs

Database Type of Daya Organism Link Reference

circAtlas Tissue-specific circRNAs
Evolutionary conservation
Regulatory network
Full-length sequence of
circRNAs

Gallus gallus Homo sapiens, Macaca
mulatta, Mus musculus, Rattus
norvegicus, Sus scrofa,

http://159.226.67.237:8080/new/index.php [76]

circBase circRNA expression level
Sequence

C. elegans, Drosophila
melanogaster, H. sapiens, Latimeria
chalumnae, M. musculus

http://www.circbase.org [120]

CIRCpedia v2 circRNAs expression in cell types
and tissues from different
species

Caenorhabditis elegans, Danio rerio,
D. melanogaster, H. sapiens, M.
musculus, R. norvegicus,

http://yang-laboratory.com/circpedia/ [127]

MiOncoCirc circRNA associated to cancer H. sapiens https://mioncocirc.github.io [121]
CIRCinteractome Identification of MRE sites

Divergent primers and siRNA
design

H. sapiens https://circinteractome.nia.nih.gov [109]

StarBase v2.0/ENCORI RNA–RNA interactions 23 species https://starbase.sysu.edu.cn [128]
CircRic circRNAs associated to cancer H. sapiens https://hanlab.uth.edu/cRic/ [122]
Circ2Disease circRNA associated to diseases H. sapiens http://bioinformatics.zju.edu.cn/Circ2

Disease/index.html
[125]

CircR2Disease circRNA associated to diseases M. musculus, R. norvegicus, H.
sapiens

https://bio.tools/circR2Disease [129]

circBank circRNA interactions H. sapiens http://www.circbank.cn [130]
Circ2Traits circRNA-miRNA-disease

associations
H. sapiens http://gyanxet-beta.com/circdb/ [119]

CircNet Tissue-specific circRNA
expression patterns
circRNA–miRNA–mRNA axis

H. sapiens https://awi.cuhk.edu.cn/&#x007E;CircNet/
php/index.php

[131, 132]

circRNADb Exonic circRNAs
Protein coding-circRNAs
annotation

H. sapiens http://reprod.njmu.edu.cn/cgi-bin/circrnadb/
circRNADb.php

[133]

CSCD2 circRNAs in cancer
miRNA–circRNA interaction
RBP-circRNA interaction
ORF in circRNAs

H. sapiens http://geneyun.net/CSCD2/ [134]

TSCD Tissue-specific circRNA
expression
circRNAs in organogenesis

M. musculus, H. sapiens http://gb.whu.edu.cn/TSCD [135]

circad circRNAs associated with
diseases

M. musculus, H. sapiens, R.
norvegicus, S. scrofa

Rophina et al., 2020
https://clingen.igib.res.in/circad/

[123]

TRcirc Transcriptional regulation of
circRNAs

H. sapiens http://www.licpathway.net/TRCirc/view/
index

[136]

circRNADisease circRNA associated to diseases H. sapiens http://cgga.org.cn:9091/circRNADisease/ [124]
exoRBase 2.0 Extravesicular long RNAs H. sapiens http://www.exorbase.org [137]
NeuroCirc circRNAs in human brain H. sapiens https://voineagulab.github.io/NeuroCirc/ [138]

expression levels and sequence information of circRNAs from
human, fly, mouse, coelacanth and Caenorhabditis elegans. It has
been widely used as a reference in annotation pipelines. CircAtlas
[76], another widely used database, relies on the integration of
four tools (CIRI2 [49], CIRCexplorer2 [56], DCC [43] and find_circ
[31]) to annotate data from human, macaque, mouse, rat, pig
and chicken and provides information on tissue-specificity, evo-
lutionary conservation, regulatory networks, disease associations
and full-length circRNA sequences. CircAtlas [76] MiOncoCirc
[121] and CircRic [122] are repositories focused on cancer-related
circRNAs, analyzing biogenesis, transcriptional landscape, inte-
grative analysis and drug response (exclusive to CircRic). Other
disease-related databases contain data on various pathologies,
such as cardiovascular infirmities, diabetes, immune disorders,
etc. Main resources in this category are those with manual cura-
tion, such as circad [123], circRNADisease [124], Circ2Traits [119]
and Circ2Disease [125].

Each of the publicly available databases (Table 2) has unique
features that support circRNA research [2]. However, one of the
key challenges within these resources is the lack of a universal
naming convention. For instance, some databases use ‘circ_+
host gene + variant’ or ‘circ_ + ID’ when naming the RNAs, which
makes it difficult to compare data between databases for a
specific circRNA. To address this issue, Chen et al. (2023) [126]
proposed a nomenclature for reporting circRNAs to repositories.
This involves naming every circRNA with a ‘circ’ prefix, followed
by the parental gene name and the number of the exons, e.g.
‘circGENEY(1,3,5)’ for a host gene of name GENEY in which
the exons 1, 3 and 5 conformed the circRNA. If an intronic
region is retained, the suggested nomenclature includes an ‘RI’
indicating it, such as ‘ciercGENEY(1,RI,3,5)’. This will help to
standardize identification and annotation, as well as enable the
sharing and cross-reference of information between databases.
It is important for researchers to adopt this nomenclature
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and publish their data in a format that is consistent with this
standard.

In summary, the various circRNA databases have unique char-
acteristics that aid in the study of these RNA molecules. However,
there are also challenges that need to be addressed, such as the
lack of a universal naming convention, the incompleteness of
data in some databases, and differences in genomic coordinates
used by different databases. Efforts should be directed toward
standardizing these databases to enable more comprehensive and
accurate analysis of circRNAs.

CONCLUDING REMARKS
CircRNAs are a growing class of non-coding RNAs that are
increasingly being recognized for their role in cellular processes.
Despite the availability of various bioinformatic tools to iden-
tify and quantify circRNA expression, the lack of a uniform
nomenclature system and the diverse expression patterns across
different species, genes, tissues and developmental stages still
present challenges in circRNA research. The mechanisms of
circRNA action, including sponge effect, interaction and peptide
coding, are the focus of ongoing studies. However, the limitations
of current bioinformatic approaches hinder a comprehensive
analysis of circRNAs, such as the inability to accurately quantify
expression levels based on the full circRNA sequence and to
consider the mature isoform sequences derived from the same
BSJ. Direct RNA sequencing or TGS techniques can address these
issues and improve the prediction of miRNA and RBP interactions.
Most algorithms for predicting circRNA-protein interactions are
based on general properties of non-coding RNAs and overlook the
tertiary structures of circRNAs, which can greatly influence these
interactions. Although some neural network-based algorithms
consider these structures, they require a large amount of training
data that is currently limited. To advance circRNA research, the
development of specific algorithms and better integration of
data is necessary. Additionally, a common nomenclature system
is crucial for comparing circRNA expression across different
conditions, diseases or tissues in standardized ways within
different publicly available databases.

It is worth noting that other publications in the literature have
reviewed different aspects of the computational tools for circRNA
identification and its in silico functional characterization (see [51,
71, 139]). However, unlike other reviews, our work offers a more
accessible description of the most popular tools for circRNA iden-
tification, including technical aspects, as well as a compilation of
the most popular tools for its in silico characterization in order
to obtain functional insights of their biological roles. We aimed
to cover various aspects of the entire pipeline for circRNA char-
acterization, starting from the reconstruction of the nucleotide
sequence to the prediction of interactions with miRNAs and RBPs,
and the obtention of potential ORFs generated by that transcript.
Additionally, we covered other aspects related to the study of
secondary and tertiary structures associated with the predicted
circRNAs, and also emphasized the importance of using new
sequencing technologies and the preparation of different types of
sequencing libraries to obtain the complete sequence and other
characteristics of circRNAs, followed by their validation through
molecular biology and biochemical experiments, which allow us
to characterize their subcellular location, the integrity of their
sequence and their interaction with predicted cellular elements.
Our aim is to provide an integrative and multidisciplinary vision
to new researchers interested in delving into the biology and
bioinformatics of circRNAs.

Key Points

• Bioinformatic tools for circRNA prediction and
databases should be implemented in an integrative
way, to facilitate experimental circRNA-related data
interpretation.

• circRNA identification experiments from RNAseq
expression data can be evaluated by several detection
methods and is case dependent on the implementation
of more than one.

• circRNAs have a great potential to regulate other RNA
species, and circRNA functions can be explored by inter-
action prediction pipelines with both miRNAs and RBPs,
and should be corroborated by experimental procedures.
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