Arduino Soft Sensor for Monitoring Schizochytrium sp. Fermentation, a Proof of Concept for the Industrial Application of Genome-Scale Metabolic Models in the Context of Pharma 4.0

Primer Autor
Alarcon, Claudio
Co-autores
Shene, Carolina
Título
Arduino Soft Sensor for Monitoring Schizochytrium sp. Fermentation, a Proof of Concept for the Industrial Application of Genome-Scale Metabolic Models in the Context of Pharma 4.0
Editorial
MDPI
Revista
PROCESSES
Lenguaje
en
Resumen
Schizochytrium sp. is a microorganism cultured for producing docosahexaenoic acid (DHA). Genome-scale metabolic modeling (GEM) is a promising technique for describing genprotein-reactions in cells, but with still limited industrial application due to its complexity and high computation requirements. In this work, we simplified GEM results regarding the relationship between the specific oxygen uptake rate (-r(O2)), the specific growth rate (mu), and the rate of lipid synthesis (r(L)) using an evolutionary algorithm for developing a model that can be used by a soft sensor for fermentation monitoring. The soft sensor estimated the concentration of active biomass (X), glutamate (N), lipids (L), and DHA in a Schizochytrium sp. fermentation using the dissolved oxygen tension (DO) and the oxygen mass transfer coefficient (k(L)a) as online input variables. The soft sensor model described the biomass concentration response of four reported experiments characterized by different k(L)a values. The average range normalized root-mean-square error for X, N, L, and DHA were equal to 1.1, 1.3, 1.1, and 3.2%, respectively, suggesting an acceptable generalization capacity. The feasibility of implementing the soft sensor over a low-cost electronic board was successfully tested using an Arduino UNO, showing a novel path for applying GEM-based soft sensors in the context of Pharma 4.0.
Tipo de Recurso
artículo original
Description
This research was funded by the ANID/CONICYT PFCHA/Doctorado Nacional/201821180806 and ANID/CONICYT project: Basal Centre for Biotechnology and Bioengineering (CeBiB) FB-0001.
Esta investigación fue financiada por el proyecto ANID/CONICYT PFCHA/Doctorado Nacional/201821180806 y ANID/CONICYT: Centro Basal de Biotecnología y Bioingeniería (CeBiB) FB-0001.
doi
10.3390/pr10112226
Formato Recurso
PDF
Palabras Claves
genome-scale metabolic model
soft sensor
Schizochytrium
industry 4.0
Pharma 4.0
Arduino
DOCOSAHEXAENOIC ACID PRODUCTION
FED-BATCH FERMENTATION
BALANCE
ACCUMULATION
BIOMASS
GROWTH
RICH
Ubicación del archivo
Categoría OCDE
Ingeniería
Química
Materias
modelo metabólico a escala genómica
sensor blando
Schizochytrium
industria 4.0
Pharma 4.0
Arduino
PRODUCCIÓN DE ÁCIDO DOCOSAHEXAENOICO
FERMENTACIÓN FED-BATCH
EQUILIBRIO
ACUMULACIÓN
BIOMASA
CRECIMIENTO
RICO
Título de la cita (Recomendado-único)
Arduino Soft Sensor for Monitoring Schizochytrium sp. Fermentation, a Proof of Concept for the Industrial Application of Genome-Scale Metabolic Models in the Context of Pharma 4.0
Identificador del recurso (Mandatado-único)
artículo original
Versión del recurso (Recomendado-único)
version publicada
License
CC BY 4.0
Condición de la licencia (Recomendado-repetible)
CC BY 4.0
Derechos de acceso
acceso abierto
Access Rights
acceso abierto
Referencia del Financiador (Mandatado si es aplicable-repetible)
ANID-BASAL FB-0001
ANID BASAL FB-0001
Id de Web of Science
WOS:000881552300001
Revisa las metricas alternativas de Almetrics
Revisa las citaciones de Dimensions