Mixed site-bond percolation in Archimedean (3,12(2)) lattices
Primer Autor |
Ramirez-Pastor, Antonio Jose
|
Co-autores |
Torres, A. A.
Gonzalez-Flores, M. I.
Lebrecht, W.
|
Título |
Mixed site-bond percolation in Archimedean (3,12(2)) lattices
|
Editorial |
ELSEVIER
|
Revista |
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS
|
Lenguaje |
en
|
Resumen |
The site-bond percolation problem in two-dimensional (3,12(2)) lattices has been studied by means of numerical simulation and analytical calculations. Motivated by considerations of cluster connectivity, two distinct schemes (denoted as S & cap, B and S boolean OR B) were considered. In S & cap, B (S boolean OR B), two points are connected if a sequence of occupied sites AND (OR) bonds joins them. The analytical method is based on the approximation introduced by Tsallis (2004), which allows to calculate the S & cap, B and S boolean OR B percolation functions from the percolation functions corresponding to pure site and pure bond percolation problems. Theoretical and numerical data (supplemented by analysis using finite-size scaling theory) were used to determine, for the first time, the complete phase diagram of the system (phase boundary between the percolating and nonpercolating regions). Comparisons between results obtained using the Tsallis's scheme and simulation data were performed in order to test the reaches and limitations of the approach developed here. (C) 2022 Elsevier B.V. All rights reserved.
|
Tipo de Recurso |
artículo original
|
Description |
This work was supported in part by CONICET (Argentina) under project number PIP 112-201701-00673CO and Universidad Nacional de San Luis (Argentina) under project No. 03-0816. WL thanks support from Direccion de Investigacion Universidad de La Frontera (Chile) under project DIUFRO No DI20-0007. MIGF was funded by FONDECYT Postdoctoral N? 3220650, ANID Chile and was partially supported by the supercomputing infrastructure of Soroban (SATREPS MACH Project JPMJSA1705 by JST/JICA Japan).
Este trabajo fue apoyado en parte por CONICET (Argentina) bajo el proyecto número PIP 112-201701-00673CO y la Universidad Nacional de San Luis (Argentina) bajo el proyecto No. 03-0816. WL agradece el apoyo de la Dirección de Investigación de la Universidad de La Frontera (Chile) bajo el proyecto DIUFRO No DI20-0007. MIGF fue financiado por FONDECYT Postdoctoral N? 3220650, ANID Chile y fue parcialmente apoyado por la infraestructura de supercomputación de Soroban (Proyecto SATREPS MACH JPMJSA1705 de JST/JICA Japón).
|
doi |
10.1016/j.physa.2022.127897
|
Formato Recurso |
PDF
|
Palabras Claves |
Percolation
Archimedean lattices
Statistical mechanics of model systems
Phase transitions and critical phenomena
Monte Carlo methods
INCIPIENT SPANNING CLUSTERS
2-DIMENSIONAL LATTICES
THRESHOLDS
PROBABILITY
NUMBER
|
Ubicación del archivo | |
Categoría OCDE |
Física
Multidisciplinar
|
Materias |
Percolación
Celosías de Arquímedes
Mecánica estadística de sistemas modelo
Transiciones de fase y fenómenos críticos
Métodos de Montecarlo
GRUPOS DE ESPACIO INCIPIENTE
Celosías bidimensionales
UMBRALES
PROBABILIDAD
NÚMERO
|
Título de la cita (Recomendado-único) |
Mixed site-bond percolation in Archimedean (3,12(2)) lattices
|
Identificador del recurso (Mandatado-único) |
artículo original
|
Versión del recurso (Recomendado-único) |
version publicada
|
Condición de la licencia (Recomendado-repetible) |
0
|
Derechos de acceso |
metadata
|
Access Rights |
metadata
|
Identificador relacionado |
http://hdl.handle.net/11336/21159
|
Referencia del Financiador (Mandatado si es aplicable-repetible) |
CONICET PIP 112-201701-00673CO
UNSL 03-0816
ANID-FONDECYT 3220650
SATREPS JPMJSA1705
UFRO DI20-0007
ANID FONDECYT 3220650
|
Id de Web of Science |
WOS:000861591200011
|