nAChR-PEP-PRED: A Robust Tool for Predicting Peptide Inhibitors of Acetylcholine Receptors Using the Random Forest Classifier

Primer Autor
Beltran, Jorge F.
Co-autores
Herrera-Bravo, Jesus
Farias, Jorge G.
Sandoval, Cristian
Herrera-Belen, Lisandra
Quinones, John
Diaz, Rommy
Título
nAChR-PEP-PRED: A Robust Tool for Predicting Peptide Inhibitors of Acetylcholine Receptors Using the Random Forest Classifier
Editorial
SPRINGER
Revista
INTERNATIONAL JOURNAL OF PEPTIDE RESEARCH AND THERAPEUTICS
Lenguaje
en
Resumen
Nicotinic acetylcholine receptors (nAChR) are interesting therapeutic targets due to their involvement in the development of different types of diseases. nAChR inhibitory peptides are considered promising drugs due to their high selectivity and activity on these receptors. However, the identification of nAChR inhibitory peptides using conventional in vitro and in vivo assays is time-consuming and expensive. In this sense, machine learning techniques could offer an advantage to deal with these problems. Among machine learning algorithms, the random forest classifier is one of the best performers in classifying peptides with different types of biological activities. Taking into account the aforementioned aspects, in this work we develop a robust bioinformatic tool for the specific prediction of nAChR inhibitory peptides. In this study, three predictive models with good performance measures were generated from the combination of different features selected using the Gini decrease method and the random forest classifier. The best predictive model presented the following performance measures during the fivefold cross-validation on the training data with Accuracy = 0.85, F1-score = 0.87, Precision = 0.85, Specificity = 0.81, Sensitivity = 0.90, Matthew's correlation coefficient = 0.71, and Accuracy = 0.98, F1-score = 0.98, Precision = 0.95, Specificity = 0.95, Sensitivity = 1.0, Matthew's correlation coefficient = 0.95 in the testing phase. From the selection of the best predictive model, a bioinformatics tool with a friendly user interface was built, called nAChR-PEP-PRED, which allows the analysis of thousands of amino acid sequences. We believe that this tool can accelerate the discovery of new nAChR inhibitory peptides to reduce the time and costs of conventional experimental assays. Our web tool, nAChR-PEP-PRE, is available at https://nachr-pep-pred.herokuapp.com/.
Tipo de Recurso
artículo original
doi
10.1007/s10989-022-10460-8
Formato Recurso
PDF
Palabras Claves
Acetylcholine receptor
Random forest
Prediction
Peptide
NEURONAL NICOTINIC RECEPTORS
Ubicación del archivo
Categoría OCDE
Bioquímica y biología molecular
Materias
Receptor de acetilcolina
Bosque aleatorio
Predicción
Péptido
RECEPTORES NICOTÍNICOS NEURONALES
Disciplinas de la OCDE
Ciencias de la Información y Bioinformática
Biología Molecular
Farmacología y Farmacia
Título de la cita (Recomendado-único)
nAChR-PEP-PRED: A Robust Tool for Predicting Peptide Inhibitors of Acetylcholine Receptors Using the Random Forest Classifier
Identificador del recurso (Mandatado-único)
artículo original
Versión del recurso (Recomendado-único)
version publicada
Condición de la licencia (Recomendado-repetible)
0
Derechos de acceso
restringido
Access Rights
restringido
Id de Web of Science
WOS:000853333100001
Revisa las metricas alternativas de Almetrics
Revisa las citaciones de Dimensions