PEP-PREDNa+: A web server for prediction of highly specific peptides targeting voltage-gated Na+ channels using machine learning techniques
| Primer Autor |
Beltran, Jorge F.
|
| Co-autores |
Herrera-Bravo, Jesus
Farias, Jorge G.
Contreras, Fernanda Parraguez
Herrera-Belen, Lisandra
|
| Título |
PEP-PREDNa+: A web server for prediction of highly specific peptides targeting voltage-gated Na+ channels using machine learning techniques
|
| Editorial |
PERGAMON-ELSEVIER SCIENCE LTD
|
| Revista |
COMPUTERS IN BIOLOGY AND MEDICINE
|
| Lenguaje |
en
|
| Resumen |
Voltage-gated sodium channel activity has long been associated with several diseases including epilepsy, chronic pain, cardiovascular diseases, cancers, immune system, neuromuscular and respiratory disorders. The strong participation of these channels in the development of diseases makes them excellent promising therapeutic targets. Voltage-gated Na+ channel blocking peptides come from a wide source of organisms such as venoms. However, the in vitro and in vivo identification and validation of these peptides are time-consuming and resource intensive. In this work, we developed a bioinformatics tool called PEP-PREDNa+ for the highly specific prediction of voltage-gated Na+ channel blocking peptides. PEP-PREDNa+ is based on the random forest algorithm, which presented excellent performance measures during the cross-validation (sensitivity = 0.81, accuracy = 0.83, precision = 0.85, F-score = 0.83, specificity = 0.86, and Matthew's correlation coefficient = 0.67) and testing (sensitivity = 0.88, accuracy = 0.92, precision = 0.96, F-score = 0.91, specificity = 0.96, and Matthew's correlation coefficient = 0.84) phases. The PEP-PREDNa+ tool could be very useful in accelerating and reducing the costs of the of new Na+ channel with therapeutic potential.
|
| Tipo de Recurso |
artículo original
|
| doi |
10.1016/j.compbiomed.2022.105414
|
| Formato Recurso |
PDF
|
| Palabras Claves |
Machine learning
Peptide
Toxin
Channel
Sodium
Server
SODIUM-CHANNELS
TOOLS
|
| Ubicación del archivo | |
| Categoría OCDE |
Biología
Ciencias de la Computación
Aplicaciones Interdisciplinarias
Ingeniería Biomédica
Biología Matemática y Computacional
|
| Materias |
Aprendizaje automático
Péptido
Toxina
Canal
Sodio
Servidor
CANALES DE SODIO
HERRAMIENTAS
|
| Disciplinas de la OCDE |
Ciencias de la Información y Bioinformática
Biotecnología Relacionada con la Salud
Farmacología y Farmacia
|
| Título de la cita (Recomendado-único) |
PEP-PREDNa+: A web server for prediction of highly specific peptides targeting voltage-gated Na+ channels using machine learning techniques
|
| Identificador del recurso (Mandatado-único) |
artículo original
|
| Versión del recurso (Recomendado-único) |
version publicada
|
| Condición de la licencia (Recomendado-repetible) |
0
|
| Derechos de acceso |
metadata
|
| Access Rights |
metadata
|
| Id de Web of Science |
WOS:000821011100001
|
- Colecciones
- Colección Publicaciones Científicas