Challenges to Use Machine Learning in Agricultural Big Data: A Systematic Literature Review

Primer Autor
Cravero, Ania
Co-autores
Pardo, Sebastian
Sepulveda, Samuel
Munoz, Lilia
Título
Challenges to Use Machine Learning in Agricultural Big Data: A Systematic Literature Review
Editorial
MDPI
Revista
AGRONOMY-BASEL
Lenguaje
en
Resumen
Agricultural Big Data is a set of technologies that allows responding to the challenges of the new data era. In conjunction with machine learning, farmers can use data to address problems such as farmers' decision making, water management, soil management, crop management, and livestock management. Crop management includes yield prediction, disease detection, weed detection, crop quality, and species recognition. On the other hand, livestock management considers animal welfare and livestock production. The purpose of this paper is to synthesize the evidence regarding the challenges involved in implementing machine learning in agricultural Big Data. We conducted a systematic literature review applying the PRISMA protocol. This review includes 30 papers published from 2015 to 2020. We develop a framework that summarizes the main challenges encountered, machine learning techniques, and the leading technologies used. A significant challenge is the design of agricultural Big Data architectures due to the need to modify the set of technologies adapting the machine learning techniques as the volume of data increases.
Tipo de Recurso
artículo de revisión
doi
10.3390/agronomy12030748
Formato Recurso
PDF
Palabras Claves
Big Data
machine learning
agriculture
challenges
systematic literature review
PRECISION AGRICULTURE
OPPORTUNITIES
Ubicación del archivo
Categoría OCDE
Agronomía
Ciencias de las plantas
Materias
Big Data
aprendizaje automático
agricultura
desafíos
revisión sistemática de la literatura
AGRICULTURA DE PRECISIÓN
OPORTUNIDADES
Título de la cita (Recomendado-único)
Challenges to Use Machine Learning in Agricultural Big Data: A Systematic Literature Review
Identificador del recurso (Mandatado-único)
artículo de revisión
Versión del recurso (Recomendado-único)
version publicada
License
CC BY 4.0
Condición de la licencia (Recomendado-repetible)
CC BY 4.0
Derechos de acceso
acceso abierto
Access Rights
acceso abierto
Id de Web of Science
WOS:000775411000001
Revisa las metricas alternativas de Almetrics
Revisa las citaciones de Dimensions