Smooth quotients of generalized Fermat curves
Primer Autor |
Hidalgo, Ruben A.
|
Título |
Smooth quotients of generalized Fermat curves
|
Editorial |
SPRINGER-VERLAG ITALIA SRL
|
Revista |
REVISTA MATEMATICA COMPLUTENSE
|
Lenguaje |
en
|
Resumen |
A closed Riemann surface S is called a generalized Fermat curve of type (p, n), where n, p >= 2 are integers such that (p - 1)(n - 1) > 2, if it admits a group H congruent to Z(p)(n) of conformal automorphisms with quotient orbifold S/H of genus zero with exactly n + 1 cone points, each one of order p, in this case H is called a generalized Fermat group of type (p, n). In this case, it is known that S is non-hyperelliptic and that H is its unique generalized Fermat group of type (p, n). Also, explicit equations for them, as a fiber product of classical Fermat curves of degree p, are known. For p a prime integer, we describe those subgroups K of H acting freely on S, together with algebraic equations for S/K, and determine those K such that S/K is hyperelliptic.
|
Fecha Publicación |
2023
|
Tipo de Recurso |
artículo original
|
Derecho de Acceso |
acceso abierto
|
doi |
10.1007/s13163-022-00422-5
|
Formato Recurso |
PDF
|
Palabras Claves |
Riemann surfaces
Algebraic curves
Automorphisms
Moduli spaces
|
Ubicación del archivo | |
Categoría OCDE |
Matemáticas
Matemáticas Puras
|
Materias |
superficies de Riemann
Curvas algebraicas
Automorfismos
espacios de módulos
|
Página de inicio (Recomendado-único) |
27.0
|
Página final (Recomendado-único) |
55
|
Identificador del recurso (Mandatado-único) |
artículo original
|
Versión del recurso (Recomendado-único) |
versión publicada
|
Derechos de acceso |
metadata
|
Access Rights |
metadata
|
Id de Web of Science |
WOS:000761274100001
|
ISSN |
1139-1138
|
Tipo de ruta |
verde
|
Categoría WOS |
Matemáticas
|
Referencia del Financiador (Mandatado si es aplicable-repetible) |
ANID FONDECYT 1190017
ANID FONDECYT 1220261
|