Nonlocal in-time telegraph equation and telegraph processes with random time
Primer Autor |
Alegria, Francisco
|
Co-autores |
Poblete, Veronica
Pozo, Juan C.
|
Título |
Nonlocal in-time telegraph equation and telegraph processes with random time
|
Editorial |
ACADEMIC PRESS INC ELSEVIER SCIENCE
|
Revista |
JOURNAL OF DIFFERENTIAL EQUATIONS
|
Lenguaje |
en
|
Resumen |
In this paper we study the properties of a non-markovian version of the telegraph process, whose nonmarkovian character comes from a nonlocal in-time evolution equation that is satisfied by its probability density function. In the first part of the paper, using the theory of Volterra integral equations, we obtain an explicit formula for its moments, and we prove that the Carleman condition is satisfied. This shows that the distribution of the process is uniquely determined by its moments. We also obtain an explicit formula for the moment generating function. In the second part of the paper, we prove that the distribution of this process coincides with the distribution of a process of the form T (W(t)) where T (t) is the classical telegraph process, and W(t) is a random time whose distribution is related to a nonlocal in-time version of the wave equation. To this end, we construct the probability density function via subordination from the distribution of the classic telegraph process. Our results exhibit a strong interplay between this type of processes and subdiffusion theory. (c) 2022 Elsevier Inc. All rights reserved.
|
Fecha Publicación |
2023
|
Tipo de Recurso |
artículo original
|
doi |
10.1016/j.jde.2022.12.001
|
Formato Recurso |
PDF
|
Palabras Claves |
Nonlocal telegraph equation
Volterra integral equations
Telegraph processes with random time
Anomalous diffusion
Iterated Brownian motion
|
Ubicación del archivo | |
Categoría OCDE |
Matemáticas
|
Materias |
Ecuación del telégrafo no local
Ecuaciones integrales de Volterra
Procesos telegráficos con tiempo aleatorio
Difusión anómala
Movimiento browniano itinerante
|
Página de inicio (Recomendado-único) |
310.0
|
Página final (Recomendado-único) |
347
|
Identificador del recurso (Mandatado-único) |
artículo original
|
Versión del recurso (Recomendado-único) |
versión publicada
|
Derechos de acceso |
metadata
|
Access Rights |
metadata
|
Id de Web of Science |
WOS:000905143200009
|
ISSN |
0022-0396
|
Categoría WOS |
Matemáticas
|