Nonlocal in-time telegraph equation and telegraph processes with random time

Primer Autor
Alegria, Francisco
Co-autores
Poblete, Veronica
Pozo, Juan C.
Título
Nonlocal in-time telegraph equation and telegraph processes with random time
Editorial
ACADEMIC PRESS INC ELSEVIER SCIENCE
Revista
JOURNAL OF DIFFERENTIAL EQUATIONS
Lenguaje
en
Resumen
In this paper we study the properties of a non-markovian version of the telegraph process, whose nonmarkovian character comes from a nonlocal in-time evolution equation that is satisfied by its probability density function. In the first part of the paper, using the theory of Volterra integral equations, we obtain an explicit formula for its moments, and we prove that the Carleman condition is satisfied. This shows that the distribution of the process is uniquely determined by its moments. We also obtain an explicit formula for the moment generating function. In the second part of the paper, we prove that the distribution of this process coincides with the distribution of a process of the form T (W(t)) where T (t) is the classical telegraph process, and W(t) is a random time whose distribution is related to a nonlocal in-time version of the wave equation. To this end, we construct the probability density function via subordination from the distribution of the classic telegraph process. Our results exhibit a strong interplay between this type of processes and subdiffusion theory. (c) 2022 Elsevier Inc. All rights reserved.
Fecha Publicación
2023
Tipo de Recurso
artículo original
doi
10.1016/j.jde.2022.12.001
Formato Recurso
PDF
Palabras Claves
Nonlocal telegraph equation
Volterra integral equations
Telegraph processes with random time
Anomalous diffusion
Iterated Brownian motion
Ubicación del archivo
Categoría OCDE
Matemáticas
Materias
Ecuación del telégrafo no local
Ecuaciones integrales de Volterra
Procesos telegráficos con tiempo aleatorio
Difusión anómala
Movimiento browniano itinerante
Página de inicio (Recomendado-único)
310.0
Página final (Recomendado-único)
347
Identificador del recurso (Mandatado-único)
artículo original
Versión del recurso (Recomendado-único)
versión publicada
Derechos de acceso
metadata
Access Rights
metadata
Id de Web of Science
WOS:000905143200009
ISSN
0022-0396
Categoría WOS
Matemáticas
Revisa las metricas alternativas de Almetrics
Revisa las citaciones de Dimensions