HOMOLOGY GROUP AUTOMORPHISMS OF RIEMANN SURFACES
Primer Autor |
Hidalgo, Ruben A.
|
Título |
HOMOLOGY GROUP AUTOMORPHISMS OF RIEMANN SURFACES
|
Editorial |
INDEPENDENT UNIV MOSCOW-IUM
|
Revista |
MOSCOW MATHEMATICAL JOURNAL
|
Lenguaje |
en
|
Resumen |
If & UGamma, is a finitely generated Fuchsian group such that its derived subgroup & UGamma,' is co-compact and torsion free, then S =H2/& UGamma,' is a closed Riemann surface of genus g ?, 2 admitting the abelian group A = & UGamma,/& UGamma,' as a group of conformal automorphisms. We say that A is a homology group of S. A natural question is if S admits unique homology groups or not, in other words, if there are different Fuchsian groups & UGamma,1 and & UGamma,2 with & UGamma,'1 = & UGamma,'2? It is known that if & UGamma,1 and & UGamma,2 are both of the same signature (0, k, ... , k), for some k ?, 2, then the equality & UGamma,'1 = & UGamma,'2 ensures that & UGamma,1 = & UGamma,2. Generalizing this, we observe that if & UGamma,j has signature (0, kj, ..., kj) and & UGamma,'1 = & UGamma,'2, then & UGamma,1 = & UGamma,2. We also provide examples of surfaces S with different homology groups. A description of the normalizer in Aut(S) of each homology group A is also obtained.
|
Fecha Publicación |
2023
|
Tipo de Recurso |
artículo original
|
doi |
10.17323/1609-4514-2023-23-1-113-120
|
Formato Recurso |
PDF
|
Palabras Claves |
Riemann surface
automorphism
Fuchsian group
|
Ubicación del archivo | |
Categoría OCDE |
Matemáticas
|
Materias |
superficie de Riemann
automorfismo
grupo fucsia
|
Página de inicio (Recomendado-único) |
113.0
|
Página final (Recomendado-único) |
120
|
Identificador del recurso (Mandatado-único) |
artículo original
|
Versión del recurso (Recomendado-único) |
versión publicada
|
Derechos de acceso |
metadata
|
Identificador relacionado |
https://arxiv.org/abs/2007.01778
|
Access Rights |
metadata
|
Id de Web of Science |
WOS:001052659800006
|
ISSN |
1609-3321
|
Tipo de ruta |
verde
|
Categoría WOS |
Matemáticas
|
Referencia del Financiador (Mandatado si es aplicable-repetible) |
ANID FONDECYT 1190001
ANID FONDECYT 1220261
|