HOMOLOGY GROUP AUTOMORPHISMS OF RIEMANN SURFACES

Primer Autor
Hidalgo, Ruben A.
Título
HOMOLOGY GROUP AUTOMORPHISMS OF RIEMANN SURFACES
Editorial
INDEPENDENT UNIV MOSCOW-IUM
Revista
MOSCOW MATHEMATICAL JOURNAL
Lenguaje
en
Resumen
If & UGamma, is a finitely generated Fuchsian group such that its derived subgroup & UGamma,' is co-compact and torsion free, then S =H2/& UGamma,' is a closed Riemann surface of genus g ?, 2 admitting the abelian group A = & UGamma,/& UGamma,' as a group of conformal automorphisms. We say that A is a homology group of S. A natural question is if S admits unique homology groups or not, in other words, if there are different Fuchsian groups & UGamma,1 and & UGamma,2 with & UGamma,'1 = & UGamma,'2? It is known that if & UGamma,1 and & UGamma,2 are both of the same signature (0, k, ... , k), for some k ?, 2, then the equality & UGamma,'1 = & UGamma,'2 ensures that & UGamma,1 = & UGamma,2. Generalizing this, we observe that if & UGamma,j has signature (0, kj, ..., kj) and & UGamma,'1 = & UGamma,'2, then & UGamma,1 = & UGamma,2. We also provide examples of surfaces S with different homology groups. A description of the normalizer in Aut(S) of each homology group A is also obtained.
Fecha Publicación
2023
Tipo de Recurso
artículo original
doi
10.17323/1609-4514-2023-23-1-113-120
Formato Recurso
PDF
Palabras Claves
Riemann surface
automorphism
Fuchsian group
Ubicación del archivo
Categoría OCDE
Matemáticas
Materias
superficie de Riemann
automorfismo
grupo fucsia
Página de inicio (Recomendado-único)
113.0
Página final (Recomendado-único)
120
Identificador del recurso (Mandatado-único)
artículo original
Versión del recurso (Recomendado-único)
versión publicada
Derechos de acceso
metadata
Identificador relacionado
https://arxiv.org/abs/2007.01778
Access Rights
metadata
Id de Web of Science
WOS:001052659800006
ISSN
1609-3321
Tipo de ruta
verde
Categoría WOS
Matemáticas
Referencia del Financiador (Mandatado si es aplicable-repetible)
ANID FONDECYT 1190001
ANID FONDECYT 1220261
Revisa las metricas alternativas de Almetrics
Revisa las citaciones de Dimensions