HOMOLOGY GROUP AUTOMORPHISMS OF RIEMANN SURFACES
| Primer Autor |
Hidalgo, Ruben A.
|
| Título |
HOMOLOGY GROUP AUTOMORPHISMS OF RIEMANN SURFACES
|
| Editorial |
INDEPENDENT UNIV MOSCOW-IUM
|
| Revista |
MOSCOW MATHEMATICAL JOURNAL
|
| Lenguaje |
en
|
| Resumen |
If & UGamma, is a finitely generated Fuchsian group such that its derived subgroup & UGamma,' is co-compact and torsion free, then S =H2/& UGamma,' is a closed Riemann surface of genus g ?, 2 admitting the abelian group A = & UGamma,/& UGamma,' as a group of conformal automorphisms. We say that A is a homology group of S. A natural question is if S admits unique homology groups or not, in other words, if there are different Fuchsian groups & UGamma,1 and & UGamma,2 with & UGamma,'1 = & UGamma,'2? It is known that if & UGamma,1 and & UGamma,2 are both of the same signature (0, k, ... , k), for some k ?, 2, then the equality & UGamma,'1 = & UGamma,'2 ensures that & UGamma,1 = & UGamma,2. Generalizing this, we observe that if & UGamma,j has signature (0, kj, ..., kj) and & UGamma,'1 = & UGamma,'2, then & UGamma,1 = & UGamma,2. We also provide examples of surfaces S with different homology groups. A description of the normalizer in Aut(S) of each homology group A is also obtained.
|
| Fecha Publicación |
2023
|
| Tipo de Recurso |
artículo original
|
| doi |
10.17323/1609-4514-2023-23-1-113-120
|
| Formato Recurso |
PDF
|
| Palabras Claves |
Riemann surface
automorphism
Fuchsian group
|
| Ubicación del archivo | |
| Categoría OCDE |
Matemáticas
|
| Materias |
superficie de Riemann
automorfismo
grupo fucsia
|
| Página de inicio (Recomendado-único) |
113.0
|
| Página final (Recomendado-único) |
120
|
| Identificador del recurso (Mandatado-único) |
artículo original
|
| Versión del recurso (Recomendado-único) |
versión publicada
|
| Derechos de acceso |
metadata
|
| Identificador relacionado |
https://arxiv.org/abs/2007.01778
|
| Access Rights |
metadata
|
| Id de Web of Science |
WOS:001052659800006
|
| ISSN |
1609-3321
|
| Tipo de ruta |
verde
|
| Categoría WOS |
Matemáticas
|
| Referencia del Financiador (Mandatado si es aplicable-repetible) |
ANID FONDECYT 1190001
ANID FONDECYT 1220261
|