Unique genomic sequences in a novel Mycobacterium avium subsp. hominissuis lineage enable fine scale transmission route tracing during pig movement
| Primer Autor |
Maruyama, Fumito
|
| Co-autores |
Komatsu, Tetsuya
Ohya, Kenji
Ota, Atsushi
Nishiuchi, Yukiko
Yano, Hirokazu
Matsuo, Kayoko
Odoi, Justice Opare
Suganuma, Shota
Sawai, Kotaro
Hasebe, Akemi
Asai, Tetsuo
Yanai, Tokuma
Fukushi, Hideto
Wada, Takayuki
Yoshida, Shiomi
Ito, Toshihiro
Arikawa, Kentaro
Kawai, Mikihiko
Ato, Manabu
Baughn, Anthony D.
Iwamoto, Tomotada
|
| Título |
Unique genomic sequences in a novel Mycobacterium avium subsp. hominissuis lineage enable fine scale transmission route tracing during pig movement
|
| Editorial |
ELSEVIER
|
| Revista |
ONE HEALTH
|
| Lenguaje |
en
|
| Resumen |
Mycobacterium avium subsp. hominissuis (MAH) is one of the most prevalent mycobacteria causing nontuberculous mycobacterial disease in humans and animals. Of note, MAH is a major cause of mycobacterial granulomatous mesenteric lymphadenitis outbreaks in pig populations. To determine the precise source of infection of MAH in a pig farm and to clarify the epidemiological relationship among pig, human and environmental MAH lineages, we collected 50 MAH isolates from pigs reared in Japan and determined draft genome sequences of 30 isolates. A variable number of tandem repeat analysis revealed that most pig MAH isolates in Japan were closely related to North American, European and Russian human isolates but not to those from East Asian human and their residential environments. Historical recombination analysis revealed that most pig isolates could be classified into SC2/4 and SC3, which contain MAH isolated from pig, European human and environmental isolates. Half of the isolates in SC2/4 had many recombination events with MAH lineages isolated from humans in East Asia. To our surprise, four isolates belonged to a new lineage (SC5) in the global MAH population. Members of SC5 had few footprints of inter-lineage recombination in the genome, and carried 80 unique genes, most of which were located on lineage specific-genomic islands. Using unique genetic features, we were able to trace the putative transmission route via their host pigs. Together, we clarify the possibility of species-specificity of MAH in addition to local adaptation. Our results highlight two transmission routes of MAH, one exposure on pig farms from the environment and the other via pig movement. Moreover, our study also warns that the evolution of MAH in pigs is influenced by MAH from patients and their residential environments, even if the MAH are genetically distinct.
|
| Fecha Publicación |
2023
|
| Tipo de Recurso |
artículo original
|
| doi |
10.1016/j.onehlt.2023.100559
|
| Formato Recurso |
PDF
|
| Palabras Claves |
MAH
VNTR
Draft genome sequences
Pig
Transmission route
|
| Ubicación del archivo | |
| Categoría OCDE |
Salud pública, ambiental y ocupacional
Enfermedades infecciosas
|
| Materias |
MAH
VNTR
Proyectos de secuencias del genoma
Cerdo
Ruta de transmisión
|
| Identificador del recurso (Mandatado-único) |
artículo original
|
| Versión del recurso (Recomendado-único) |
versión publicada
|
| License |
CC BY-NC-ND 4.0
|
| Condición de la licencia (Recomendado-repetible) |
CC BY-NC-ND 4.0
|
| Derechos de acceso |
acceso abierto
|
| Access Rights |
acceso abierto
|
| Id de Web of Science |
WOS:001045473200001
|
| Tipo de ruta |
Verde# dorado
|
| Categoría WOS |
Salud pública, ambiental y ocupacional
Enfermedades infecciosas
|
| Referencia del Financiador (Mandatado si es aplicable-repetible) |
AMED 20wm0225012h0001, 23fk0108673h0401
JRA H28-29_239, H29-30_7
JRA H28-130, H30-60
JSPS JP26304039
JSPS 18KK0436
JSPS 20H00562
JSPS 20H00451
|