A Stochastic Analysis of the Effect of Trading Parameters on the Stability of the Financial Markets Using a Bayesian Approach
Primer Autor |
Rubilar-Torrealba, Rolando
|
Co-autores |
Chahuan-Jimenez, Karime
de la Fuente-Mella, Hanns
|
Título |
A Stochastic Analysis of the Effect of Trading Parameters on the Stability of the Financial Markets Using a Bayesian Approach
|
Editorial |
MDPI
|
Revista |
MATHEMATICS
|
Lenguaje |
en
|
Resumen |
The purpose of this study was to identify and measure the impact of the different effects of entropy states over the high-frequency trade of the cryptocurrency market, especially in Bitcoin, using and selecting optimal parameters of the Bayesian approach, specifically through approximate Bayesian computation (ABC). ABC corresponds to a class of computational methods rooted in Bayesian statistics that could be used to estimate the posterior distributions of model parameters. For this research, ABC was applied to estimate the daily prices of the Bitcoin cryptocurrency from May 2013 to December 2021. The findings suggest that the behaviour of the parameters for our tested trading algorithms, in which sudden jumps are observed, can be interpreted as changes in states of the generated time series. Additionally, it is possible to identify and model the effects of the COVID-19 pandemic on the series analysed in the research. Finally, the main contribution of this research is that we have characterised the relationship between entropy and the evolution of parameters defining the optimal selection of trading algorithms in the financial industry.
|
Fecha Publicación |
2023
|
Tipo de Recurso |
artículo original
|
doi |
10.3390/math11112527
|
Formato Recurso |
PDF
|
Palabras Claves |
cryptocurrencies
econometric models
stochastic processes
Bayesian analysis
market efficiency
entropy
|
Ubicación del archivo | |
Categoría OCDE |
Matemáticas
|
Materias |
CRIPTOMONEDAS
modelos econométricos
procesos estocásticos
análisis bayesiano
la eficiencia del mercado
entropía
|
Identificador del recurso (Mandatado-único) |
artículo original
|
Versión del recurso (Recomendado-único) |
versión publicada
|
License |
CC BY 4.0
|
Condición de la licencia (Recomendado-repetible) |
CC BY 4.0
|
Derechos de acceso |
acceso abierto
|
Access Rights |
acceso abierto
|
Id de Web of Science |
WOS:001005049500001
|
Tipo de ruta |
verde# dorado
|
Categoría WOS |
Matemáticas
|
Referencia del Financiador (Mandatado si es aplicable-repetible) |
PUCV VRIEA PUCV 039.432/2020
|