On group actions on Riemann-Roch spaces of curves
| Primer Autor |
Carocca, Angel
|
| Co-autores |
Latorre, Daniela Vasquez
|
| Título |
On group actions on Riemann-Roch spaces of curves
|
| Editorial |
ELSEVIER
|
| Revista |
JOURNAL OF PURE AND APPLIED ALGEBRA
|
| Lenguaje |
en
|
| Resumen |
Let G be a group acting on a compact Riemann surface X and D be a G-invariant divisor on X. The action of G on X induces a linear representation LG(D) of G on the Riemann-Roch space associated to D. In this paper we give some results on the decomposition of LG(D) as sum of complex irreducible representations of G, for D an effective non-special G-invariant divisor. In particular, we give explicit formulae for the multiplicity of each complex irreducible factor in LG(D). We work out some examples on well known families of curves. & COPY, 2023 Elsevier B.V. All rights reserved.
|
| Fecha Publicación |
2024
|
| Tipo de Recurso |
artículo original
|
| doi |
10.1016/j.jpaa.2023.107451
|
| Formato Recurso |
PDF
|
| Palabras Claves |
Riemann surfaces
Divisors
Riemann -Roch space
|
| Ubicación del archivo | |
| Categoría OCDE |
Matemáticas
|
| Materias |
superficies de Riemann
Divisores
Espacio Riemann-Roch
|
| Identificador del recurso (Mandatado-único) |
artículo original
|
| Versión del recurso (Recomendado-único) |
versión publicada
|
| Derechos de acceso |
metadata
|
| Access Rights |
metadata
|
| Id de Web of Science |
WOS:001034127100001
|
| ISSN |
0022-4049
|
| Categoría WOS |
Matemáticas
|
| Referencia del Financiador (Mandatado si es aplicable-repetible) |
ANID-FONDECYT 1200608.
ANID FONDECYT 1200608
|