A machine learning-based model for a dose point kernel calculation
Primer Autor |
Valente, Mauro
|
Co-autores |
Scarinci, Ignacio
Perez, Pedro
|
Título |
A machine learning-based model for a dose point kernel calculation
|
Editorial |
SPRINGER
|
Revista |
EJNMMI PHYSICS
|
Lenguaje |
en
|
Resumen |
Purpose: Absorbed dose calculation by kernel convolution requires the prior determination of dose point kernels (DPK). This study reports on the design, implementation, and test of a multi-target regressor approach to generate the DPKs for monoenergetic sources and a model to obtain DPKs for beta emitters. Methods: DPK for monoenergetic electron sources were calculated using the FLUKA Monte Carlo (MC) code for many materials of clinical interest and initial energies ranging from 10 to 3000 keV. Regressor Chains (RC) with three different coefficients regularization/shrinkage models were used as base regressors. Electron monoenergetic scaled DPKs (sDPKs) were used to assess the corresponding sDPKs for beta emitters typically used in nuclear medicine, which were compared against reference published data. Finally, the beta emitters sDPK were applied to a patient-specific case calculating the Voxel Dose Kernel (VDK) for a hepatic radioembolization treatment with Y-90.Results: The three trained machine learning models demonstrated a promising capacity to predict the sDPK for both monoenergetic emissions and beta emitters of clinical interest attaining differences lower than 10% in the mean average percentage error (MAPE) as compared with previous studies. Furthermore, differences lower than 7% were obtained for the absorbed dose in patient-specific dosimetry comparing against full stochastic MC calculations.Conclusion: An ML model was developed to assess dosimetry calculations in nuclear medicine. The implemented approach has shown the capacity to accurately predict the sDPK for monoenergetic beta sources in a wide range of energy in different materials. The ML model to calculate the sDPK for beta-emitting radionuclides allowed to obtain VDK useful to achieve reliable patient-specific absorbed dose distributions required short computation times.
|
Fecha Publicación |
2023
|
Tipo de Recurso |
artículo original
|
doi |
10.1186/s40658-023-00560-9
|
Formato Recurso |
PDF
|
Palabras Claves |
Beta emitters
Dose point kernel
Internal dosimetry
Machine learning
|
Ubicación del archivo | |
Categoría OCDE |
Radiología, Medicina Nuclear e Imágenes Médicas
|
Materias |
Emisores beta
Núcleo de punto de dosis
Dosimetría interna
Machine learning
|
Identificador del recurso (Mandatado-único) |
artículo original
|
Versión del recurso (Recomendado-único) |
versión publicada
|
License |
CC BY 4.0
|
Condición de la licencia (Recomendado-repetible) |
CC BY 4.0
|
Derechos de acceso |
acceso abierto
|
Access Rights |
acceso abierto
|
Id de Web of Science |
WOS:001020596300001
|
ISSN |
2197-7364
|
Tipo de ruta |
verde# dorada
|
Categoría WOS |
Radiología, Medicina Nuclear e Imágenes Médicas
|
Referencia del Financiador (Mandatado si es aplicable-repetible) |
SeCyT 38111-425102001-2451
UFRO DI 21-0068
UFRO DI 21-1005
|