Transfer of Quantum States and Stationary Quantum Correlations in a Hybrid Optomechanical Network

Primer Autor
He, Bing
Co-autores
Molinares, Hugo
Eremeev, Vitalie
Título
Transfer of Quantum States and Stationary Quantum Correlations in a Hybrid Optomechanical Network
Editorial
MDPI
Revista
MATHEMATICS
Lenguaje
en
Resumen
We present a systematic study on the effects of dynamical transfer and steady-state synchronization of quantum states in a hybrid optomechanical network consisting of two cavities, which carry atoms inside and interact via a common moving mirror such as the mechanical oscillator. It is found that a high fidelity transfer of Schrodinger's cat and squeezed states between two cavities modes is possible. On the other hand, we demonstrate the synchronization effect of the cavity modes in a steady squeezed state with its high fidelity realized by the mechanical oscillator that intermediates the generation, transfer and stabilization of the squeezing. In this framework, we also study the generation and evolution of bipartite and tripartite entanglement and find its connection to the effects of quantum state transfer and synchronization. Particularly, when the transfer occurs at the maximal fidelity, any entanglement is almost zero, so the different cavity modes are disentangled. However, these modes become entangled when the two bosonic modes are synchronized in a stationary squeezed state. The results provided by the current study may find applications in quantum information technologies, in addition to the setups for metrology, where squeezed states are essential.
Fecha Publicación
2023
Tipo de Recurso
artículo original
doi
10.3390/math11132790
Formato Recurso
PDF
Palabras Claves
optomechanical network
mechanical oscillator
squeezing
entanglement
transfer and synchronization of quantum state
Ubicación del archivo
Categoría OCDE
Matemáticas
Materias
red optomecánica
oscilador mecánico
apretando
enredo
transferencia y sincronización del estado cuántico
Identificador del recurso (Mandatado-único)
artículo original
Versión del recurso (Recomendado-único)
versión publicada
License
CC BY 4.0
Condición de la licencia (Recomendado-repetible)
CC BY 4.0
Derechos de acceso
acceso abierto
Access Rights
acceso abierto
Id de Web of Science
WOS:001031041400001
Tipo de ruta
verde# dorado
Categoría WOS
Matemáticas
Referencia del Financiador (Mandatado si es aplicable-repetible)
ANID-FONDECYT 1221250
ANID FONDECYT 1221250
Revisa las metricas alternativas de Almetrics
Revisa las citaciones de Dimensions