Rainfall-Induced Landslide Assessment under Different Precipitation Thresholds Using Remote Sensing Data: A Central Andes Case

Primer Autor
Fustos Toribio, Ivo J.
Co-autores
Maragano-Carmona, Gonzalo
Descote, Pierre-Yves
Robledo, Luis F.
Villalobos, Diego
Gatica, Gustavo
Título
Rainfall-Induced Landslide Assessment under Different Precipitation Thresholds Using Remote Sensing Data: A Central Andes Case
Editorial
MDPI
Revista
WATER
Lenguaje
en
Resumen
The determination of susceptibility to rainfall-induced landslides is crucial in developing a robust Landslide Early Warning System (LEWS). With the potential uncertainty of susceptibility changes in mountain environments due to different precipitation thresholds related to climate change, it becomes important to evaluate these changes. In this study, we employed a machine learning approach (logistic models) to assess susceptibility changes to landslides in the Central Andes. We integrated geomorphological features such as slope and slope curvature, and precipitation data on different days before the landslide. We then split the data into a calibration and validation database in a 50/50% ratio, respectively. The results showed an area under the curve (AUC) performance of over 0.790, indicating the model's capacity to represent prone-landslide changes based on geomorphological and precipitation antecedents. We further evaluated susceptibility changes using different precipitation scenarios by integrating Intensity/Duration/Frequency (IDF) products based on CHIRPS data. We concluded that this methodology could be implemented as a Rainfall-Induced Landslides Early Warning System (RILEWS) to forecast RIL occurrence zones and constrain precipitation thresholds. Our study estimates that half of the basin area in the study zone showed a 59% landslide probability for a return of two years at four hours. Given the extent and high population in the area, authorities must increase monitoring over unstable slopes or generate landslide early warning at an operational scale to improve risk management. We encourage decision-makers to focus on better understanding and analysing short-duration extreme events, and future urbanization and public infrastructure designs must consider RIL impact.
Fecha Publicación
2023
Tipo de Recurso
artículo original
doi
10.3390/w15142514
Formato Recurso
PDF
Palabras Claves
logistic models
landslide susceptibility
Central Andes
rainfall-induced landslide
susceptibility temporal variations
Ubicación del archivo
Categoría OCDE
Ciencias ambientales y ecología
Recursos hídricos
Materias
modelos logísticos
susceptibilidad a deslizamientos de tierra
Andes Centrales
deslizamientos de tierra inducidos por lluvias
variaciones temporales de susceptibilidad
Identificador del recurso (Mandatado-único)
artículo original
Versión del recurso (Recomendado-único)
versión publicada
License
CC BY 4.0
Condición de la licencia (Recomendado-repetible)
CC BY 4.0
Derechos de acceso
acceso abierto
Access Rights
acceso abierto
Id de Web of Science
WOS:001071068700001
Tipo de ruta
verde# dorado
Categoría WOS
Ciencias ambientales y ecología
Recursos hídricos
Revisa las metricas alternativas de Almetrics
Revisa las citaciones de Dimensions