Supervised machine learning-based multi-class phase prediction in high-entropy alloys using robust databases
Primer Autor |
Onate, Angelo
|
Co-autores |
Sanhueza, Juan Pablo
Zegpi, Diabb
Tuninetti, Victor
Ramirez, Jesus
Medina, Carlos
Melendrez, Manuel
Rojas, David
|
Título |
Supervised machine learning-based multi-class phase prediction in high-entropy alloys using robust databases
|
Editorial |
ELSEVIER SCIENCE SA
|
Revista |
JOURNAL OF ALLOYS AND COMPOUNDS
|
Lenguaje |
en
|
Resumen |
This work evaluated the phase prediction capability of high entropy alloys using four supervised machine learning models K-Nearest Neighbors (KNN), Multinomial Regression, Extreme Gradient Boosting (XGBoost), and Random Forest. The study addresses the challenge of predicting multicomponent alloys by considering the overlapping of multicategorical stability parameters. Eight prediction classes (FCC, BCC, FCC+BCC, FCC+Im, BCC+Im, FCC+BCC+Im, Im and AM) were used. Finally, the predicted results were compared with those of two new alloys fabricated by induction melting in a controlled atmosphere using X-ray diffraction (XRD). The results indicate that with a robust database, appropriate data treatment, and training, satisfactory and competitive prediction indicators can be obtained with traditional machine learning predictions based on four prediction classes: Solid Solution (SS), Solid Solution with Intermetallic (SS+Im), intermetallic (Im), and amorphous (AM). The best predictive model obtained from the four evaluated models was Random Forest, with an accuracy of 72.8% and ROC AUC of 93.1%.
|
Fecha Publicación |
2023
|
Tipo de Recurso |
artículo original
|
doi |
10.1016/j.jallcom.2023.171224
|
Formato Recurso |
PDF
|
Palabras Claves |
Phase prediction
High entropy alloys
Machine Learning
Intermetallics prediction
|
Ubicación del archivo | |
Categoría OCDE |
Química
Ciencia de Materiales
Metalurgia e Ingeniería Metalúrgica
|
Materias |
Predicción de fase
Aleaciones de alta entropía
Aprendizaje automático
Predicción de intermetálicos
|
Identificador del recurso (Mandatado-único) |
artículo original
|
Versión del recurso (Recomendado-único) |
versión publicada
|
Derechos de acceso |
metadata
|
Access Rights |
metadata
|
Id de Web of Science |
WOS:001036419600001
|
ISSN |
0925-8388
|
Tipo de ruta |
hibrida
|
Categoría WOS |
Química
Ciencia de Materiales
Metalurgia e Ingeniería Metalúrgica
|
Referencia del Financiador (Mandatado si es aplicable-repetible) |
ANID-FONDECYT 1221600
UdeC 220.098.005-INV
WBI/AGCID RI02 (DIE23-0001)
UFRO DI22-0067
ANID FONDECYT 1221600
|