CRISPR-Cas-Based Biomonitoring for Marine Environments: Toward CRISPR RNA Design Optimization Via Deep Learning

Primer Autor
Gemmell, Neil J.
Co-autores
Duran-Vinet, Benjamin
Araya-Castro, Karla
Zaiko, Anastasija
Pochon, Xavier
Wood, Susanna A.
Stanton, Jo-Ann L.
Jeunen, Gert-Jan
Scriver, Michelle
Kardailsky, Anya
Chao, Tzu-Chiao
Ban, Deependra K.
Moarefian, Maryam
Aran, Kiana
Título
CRISPR-Cas-Based Biomonitoring for Marine Environments: Toward CRISPR RNA Design Optimization Via Deep Learning
Editorial
MARY ANN LIEBERT, INC
Revista
CRISPR JOURNAL
Lenguaje
en
Resumen
Almost all of Earth's oceans are now impacted by multiple anthropogenic stressors, including the spread of nonindigenous species, harmful algal blooms, and pathogens. Early detection is critical to manage these stressors effectively and to protect marine systems and the ecosystem services they provide. Molecular tools have emerged as a promising solution for marine biomonitoring. One of the latest advancements involves utilizing CRISPR-Cas technology to build programmable, rapid, ultrasensitive, and specific diagnostics. CRISPR-based diagnostics (CRISPR-Dx) has the potential to allow robust, reliable, and cost-effective biomonitoring in near real time. However, several challenges must be overcome before CRISPR-Dx can be established as a mainstream tool for marine biomonitoring. A critical unmet challenge is the need to design, optimize, and experimentally validate CRISPR-Dx assays. Artificial intelligence has recently been presented as a potential approach to tackle this challenge. This perspective synthesizes recent advances in CRISPR-Dx and machine learning modeling approaches, showcasing CRISPR-Dx potential to progress as a rising molecular tool candidate for marine biomonitoring applications.
Fecha Publicación
2023
Tipo de Recurso
artículo original
doi
10.1089/crispr.2023.0019
Formato Recurso
PDF
Palabras Claves
Marine Environments
CRISPR-Cas-Based Biomonitoring
Deep learning
Ubicación del archivo
Categoría OCDE
Genética y herencia
Materias
Ambientes Marinos
Biomonitoreo basado en CRISPR-Cas
Deep learning
Página de inicio (Recomendado-único)
316.0
Página final (Recomendado-único)
324
Identificador del recurso (Mandatado-único)
artículo original
Versión del recurso (Recomendado-único)
versión publicada
Derechos de acceso
metadata
Access Rights
metadata
Id de Web of Science
WOS:001027934400001
ISSN
2573-1599
Tipo de ruta
verde
Categoría WOS
Genética y herencia
Referencia del Financiador (Mandatado si es aplicable-repetible)
ANID-FONDECYT 3220346
MBIE CO5X1707
NIH 1R01HL161361-01
NSF 2048283.
Revisa las metricas alternativas de Almetrics
Revisa las citaciones de Dimensions