CRISPR-Cas-Based Biomonitoring for Marine Environments: Toward CRISPR RNA Design Optimization Via Deep Learning
Primer Autor |
Gemmell, Neil J.
|
Co-autores |
Duran-Vinet, Benjamin
Araya-Castro, Karla
Zaiko, Anastasija
Pochon, Xavier
Wood, Susanna A.
Stanton, Jo-Ann L.
Jeunen, Gert-Jan
Scriver, Michelle
Kardailsky, Anya
Chao, Tzu-Chiao
Ban, Deependra K.
Moarefian, Maryam
Aran, Kiana
|
Título |
CRISPR-Cas-Based Biomonitoring for Marine Environments: Toward CRISPR RNA Design Optimization Via Deep Learning
|
Editorial |
MARY ANN LIEBERT, INC
|
Revista |
CRISPR JOURNAL
|
Lenguaje |
en
|
Resumen |
Almost all of Earth's oceans are now impacted by multiple anthropogenic stressors, including the spread of nonindigenous species, harmful algal blooms, and pathogens. Early detection is critical to manage these stressors effectively and to protect marine systems and the ecosystem services they provide. Molecular tools have emerged as a promising solution for marine biomonitoring. One of the latest advancements involves utilizing CRISPR-Cas technology to build programmable, rapid, ultrasensitive, and specific diagnostics. CRISPR-based diagnostics (CRISPR-Dx) has the potential to allow robust, reliable, and cost-effective biomonitoring in near real time. However, several challenges must be overcome before CRISPR-Dx can be established as a mainstream tool for marine biomonitoring. A critical unmet challenge is the need to design, optimize, and experimentally validate CRISPR-Dx assays. Artificial intelligence has recently been presented as a potential approach to tackle this challenge. This perspective synthesizes recent advances in CRISPR-Dx and machine learning modeling approaches, showcasing CRISPR-Dx potential to progress as a rising molecular tool candidate for marine biomonitoring applications.
|
Fecha Publicación |
2023
|
Tipo de Recurso |
artículo original
|
doi |
10.1089/crispr.2023.0019
|
Formato Recurso |
PDF
|
Palabras Claves |
Marine Environments
CRISPR-Cas-Based Biomonitoring
Deep learning
|
Ubicación del archivo | |
Categoría OCDE |
Genética y herencia
|
Materias |
Ambientes Marinos
Biomonitoreo basado en CRISPR-Cas
Deep learning
|
Página de inicio (Recomendado-único) |
316.0
|
Página final (Recomendado-único) |
324
|
Identificador del recurso (Mandatado-único) |
artículo original
|
Versión del recurso (Recomendado-único) |
versión publicada
|
Derechos de acceso |
metadata
|
Access Rights |
metadata
|
Id de Web of Science |
WOS:001027934400001
|
ISSN |
2573-1599
|
Tipo de ruta |
verde
|
Categoría WOS |
Genética y herencia
|
Referencia del Financiador (Mandatado si es aplicable-repetible) |
ANID-FONDECYT 3220346
MBIE CO5X1707
NIH 1R01HL161361-01
NSF 2048283.
|