Extension of the ENO-ET Reconstruction Scheme to Two Space Dimensions on Cartesian Meshes in Conjunction with the ADER Approach

Primer Autor
Montecinos, Gino I.
Co-autores
Toro, Eleuterio F.
Título
Extension of the ENO-ET Reconstruction Scheme to Two Space Dimensions on Cartesian Meshes in Conjunction with the ADER Approach
Editorial
GLOBAL SCIENCE PRESS
Revista
EAST ASIAN JOURNAL ON APPLIED MATHEMATICS
Lenguaje
en
Resumen
Godunov's Theorem [S.K. Godunov, Mat. Sb. 47 (1959)], stated more than six decades ago, set the framework for understanding the limitations of linear numer-ical schemes for approximating hyperbolic equations numerically. This theoretical re-sult sets one of the basic requirements for constructing high-order numerical schemes, namely non-linearity. In the present article we are concerned with modifications to essentially-non-oscillatory (ENO) non-linear reconstruction approach, along with fully discrete ADER schemes to derive methods of arbitrary order of accuracy in space and time. Here we extend a recently proposed ENO-ET scheme for one-dimensional prob-lems to two space dimensions with Cartesian meshes. The methods are implemented up to fifth order of accuracy and assessed via three scalar 2D problems, namely the lin-ear advection equation, Burgers equation and a kinematic frontogenesis model used in meteorology. Empirical convergence rates are studied for the classical ENO, classical WENO and the newly proposed ENO-ET. For smooth solutions results from the newly proposed ENO-ET reconstruction scheme are superior to those of conventional ENO in terms of theoretically expected convergence rates and size of errors. Compared to the results obtained with WENO reconstruction, the performance of ENO-ET for second and third orders is superior. For discontinuous solutions, again ENO-ET is superior, in that it captures wave amplitudes more accurately than ENO as accurate as WENO and, unlike ENO, exhibits no spurious oscillations near discontinuities.
Fecha Publicación
2023
Tipo de Recurso
artículo original
doi
10.4208/eajam.2022-352.280423
Formato Recurso
PDF
Palabras Claves
ENO reconstruction
WENO reconstruction
ADER schemes
Ubicación del archivo
Categoría OCDE
Matemáticas
Materias
reconstrucción ENO
reconstrucción WENO
Esquemas ADER
Página de inicio (Recomendado-único)
759.0
Página final (Recomendado-único)
790
Identificador del recurso (Mandatado-único)
artículo original
Versión del recurso (Recomendado-único)
versión publicada
Derechos de acceso
metadata
Access Rights
metadata
Id de Web of Science
WOS:001016455600013
ISSN
2079-7362
Categoría WOS
Matemáticas
Revisa las metricas alternativas de Almetrics
Revisa las citaciones de Dimensions