Structural description of dihedral extended Schottky groups and application in study of symmetries of handlebodies
Primer Autor |
Gromadzki, Grzegorz
|
Co-autores |
Hidalgo, Ruben A.
|
Título |
Structural description of dihedral extended Schottky groups and application in study of symmetries of handlebodies
|
Editorial |
ELSEVIER
|
Revista |
TOPOLOGY AND ITS APPLICATIONS
|
Lenguaje |
en
|
Resumen |
Given a symmetry tau of a closed Riemann surface S, there exists an extended Kleinian group K, whose orientation-preserving half is a Schottky group Gamma uniformizing S, such that K/Gamma induces (tau), the group K is called an extended Schottky group. A geometrical structural description, in terms of the Klein-Maskit combination theorems, of both Schottky and extended Schottky groups is well known. A dihedral extended Schottky group is a group generated by the elements of two different extended Schottky groups, both with the same orientation-preserving half. Such configuration of groups corresponds to closed Riemann surfaces together with two different symmetries and the aim of this paper is to provide a geometrical structure of them. This result can be used in study of three dimensional manifolds and as an illustration we give the sharp upper bounds for the total number of connected components of the locus of fixed points of two and three different symmetries of a handlebody with a Schottky structure.(c) 2023 Elsevier B.V. All rights reserved.
|
Fecha Publicación |
2023
|
Tipo de Recurso |
artículo original
|
doi |
10.1016/j.topol.2023.108568
|
Formato Recurso |
PDF
|
Palabras Claves |
Riemann surfaces
Schottky groups
Symmetries
|
Ubicación del archivo | |
Categoría OCDE |
Matemáticas
|
Materias |
superficies de Riemann
grupos Schottky
Simetrías
|
Identificador del recurso (Mandatado-único) |
artículo original
|
Versión del recurso (Recomendado-único) |
versión publicada
|
Derechos de acceso |
metadata
|
Identificador relacionado |
https://arxiv.org/pdf/1710.07518.pdf
|
Access Rights |
metadata
|
Id de Web of Science |
WOS:001083132500001
|
ISSN |
0166-8641
|
Tipo de ruta |
verde / hibrida
|
Categoría WOS |
Matemáticas
|
Referencia del Financiador (Mandatado si es aplicable-repetible) |
ANID-FONDECYT 1230001
ANID-FONDECYT 1220261
ANID-FONDECYT 1190001
NCN 2015/17/B/ST1/03235
ANID FONDECYT 1230001
ANID FONDECYT 1220261
ANID FONDECYT 1190001
Polish NCN 2015/17/B/ST1/03235
|