Uniformizations of stable (γ,n)-gonal Riemann surfaces
| Primer Autor |
Hidalgo, Ruben A.
|
| Título |
Uniformizations of stable (γ,n)-gonal Riemann surfaces
|
| Editorial |
SPRINGER BASEL AG
|
| Revista |
ANALYSIS AND MATHEMATICAL PHYSICS
|
| Lenguaje |
en
|
| Resumen |
A (., n)-gonal pair is a pair (S, f), where S is a closed Riemann surface and f : S. R is a degree n holomorphic map onto a closed Riemann surface R of genus.. If the signature of (S, f) is of hyperbolic type, then it admits a uniformizing pair (G, G), where G is a Fuchsian group acting on the unit disc D containing G as an index n subgroup, such that f is induced by the inclusion G = G. The uniformizing pair is uniquely determined by (S, f), up to conjugation by holomorphic automorphisms of D, and it permits to provide a natural complex orbifold structure on the Hurwitz space parametrizing (twisted) isomorphic classes of pairs topologically equivalent to (S, f). In order to produce certain compactifications of these Hurwitz spaces, one needs to consider the so called stable (., n)-gonal pairs, which are natural geometrical deformations of (., n)-gonal pairs. Due to the above, it seems interesting to search for uniformizations of stable (., n)-gonal pairs, in terms of certain class of Kleinian groups. In this paper we review such uniformizations by using noded Fuchsian groups, obtained from the noded Beltrami differentials of Fuchsian groups that were previously studied by Alexander Vasil'ev and the author, and which provide uniformizations of stable Riemann orbifolds. These uniformizations permit to obtain a compactification of the Hurwitz spaces together a complex orbifold structure, these being quotients of the augmented Teichmuller space of G by a suitable finite index subgroup of its modular group.
|
| Tipo de Recurso |
Artículo original
|
| Description |
Supported by Project Fondecyt 1150003 and Project Anillo ACT1415 PIA CONICYT.
Con apoyo del Proyecto Fondecyt 1150003 y Proyecto Anillo ACT1415 PIA CONICYT.
|
| doi |
10.1007/s13324-018-0253-5
|
| Formato Recurso |
pdf
|
| Palabras Claves |
Riemann surfaces# Fuchsian groups# Teichmuller space# Quasiconformal maps
|
| Ubicación del archivo |
http://dx.doi.org/10.1007/s13324-018-0253-5
|
| Categoría OCDE |
Mathematics, Applied# Mathematics
|
| Materias |
superficies de Riemann# grupos fucsianos# espacio de Teichmüller# Mapas cuasiconformes
|
| Disciplinas de la OCDE |
Matemáticas Puras
Matemáticas Aplicadas
Otras Especialidades de Matemáticas
|
| Id de Web of Science |
WOS:000451394300011
|
| Título de la cita (Recomendado-único) |
Uniformizations of stable (γ,n)-gonal Riemann surfaces
|
| Identificador del recurso (Mandatado-único) |
Artículo original
|
| Versión del recurso (Recomendado-único) |
version publicada
|
| Editorial |
SPRINGER BASEL AG
|
| Revista/Libro |
ANALYSIS AND MATHEMATICAL PHYSICS
|
| Categoría WOS |
Matemáticas Aplicadas# Matemáticas
|
| ISSN |
1664-2368
|
| Idioma |
en
|
| Referencia del Financiador (Mandatado si es aplicable-repetible) |
ANID FONDECYT 1150003#ANID ACT1415
ANID FONDECYT 1150003
ANID ACT1415 PIA CONICYT
|
| Descripción |
Supported by Project Fondecyt 1150003 and Project Anillo ACT1415 PIA CONICYT.
|
| Formato |
pdf
|
| Tipo de ruta |
hibrida#verde
|
| Access Rights |
acceso abierto
|
| Derechos de acceso |
acceso abierto
|
| Página de inicio (Recomendado-único) |
823
|
| Página final (Recomendado-único) |
832
|
- Colecciones
- Colección Publicaciones Científicas