Hecke algebras acting on Abelian varieties
| Primer Autor |
Carocca, Angel
|
| Co-autores |
Rodriguez, Rubi E.
|
| Título |
Hecke algebras acting on Abelian varieties
|
| Editorial |
ELSEVIER SCIENCE BV
|
| Revista |
JOURNAL OF PURE AND APPLIED ALGEBRA
|
| Lenguaje |
en
|
| Resumen |
The action of a finite group G on an abelian variety A induces a decomposition of A into factors related to the rational irreducible representations of G, the so called isotypical decomposition of A, when A = JZ is the Jacobian variety of a curve Z with G-action, for every subgroup H of G there is an induced canonical action of the corresponding Hecke algebra Q[H/G/H] on the Jacobian of the quotient curve Z(H) = Z/H, and a corresponding isotypical decomposition of JZ(H). These results have provided geometric and analytic information on the factors appearing in the isotypical decomposition of JZ and JZ(H). In this paper we show that similar results hold for any abelian variety A with G-action: for every subgroup H of G there is a natural abelian subvariety A(H) of A fixed by H, such that the Hecke algebra Q[H\G/H] acts on A(H). We find the associated isotypical decomposition of A(H), and the decomposition of the analytic and the rational representations of the action on A(H). We also show that the notion of Prym variety for covers of curves may be extended to abelian varieties, and describe its isotypical decomposition with respect to the action of a natural induced subalgebra of its endomorphism ring. We apply the results to the decomposition of the Jacobian and Prym varieties of the intermediate cover given by H, in the case of smooth projective curves with G-action. We work out several examples that give rise to families of principally polarized abelian varieties, of Jacobian and Prym varieties, with large endomorphism rings. (C) 2017 Elsevier B.V. All rights reserved.
|
| Tipo de Recurso |
Artículo original
|
| Description |
The authors were partially supported by FONDECYT grants 1130445, 1141099 and PIA CONICYT ACT1415.
Los autores fueron financiados parcialmente por las subvenciones FONDECYT 1130445, 1141099 y PIA CONICYT ACT1415.
|
| doi |
10.1016/j.jpaa.2017.10.011
|
| Formato Recurso |
pdf
|
| Ubicación del archivo |
http://dx.doi.org/10.1016/j.jpaa.2017.10.011
|
| Categoría OCDE |
Mathematics, Applied# Mathematics
|
| Disciplinas de la OCDE |
Matemáticas Puras
Matemáticas Aplicadas
|
| Id de Web of Science |
WOS:000430886000015
|
| Título de la cita (Recomendado-único) |
Hecke algebras acting on Abelian varieties
|
| Identificador del recurso (Mandatado-único) |
Artículo original
|
| Versión del recurso (Recomendado-único) |
version publicada
|
| Editorial |
ELSEVIER SCIENCE BV
|
| Revista/Libro |
JOURNAL OF PURE AND APPLIED ALGEBRA
|
| Categoría WOS |
Matemáticas Aplicadas# Matemáticas
|
| ISSN |
0022-4049
|
| Idioma |
en
|
| Referencia del Financiador (Mandatado si es aplicable-repetible) |
ANID FONDECYT 1130445#ANID FONDECYT 1141099#ANID PIA CONICYT ACT1415
ANID FONDECYT 1130445
ANID FONDECYT 1141099]
ANID PIA CONICYT ACT1415
|
| Descripción |
The authors were partially supported by FONDECYT grants 1130445, 1141099 and PIA CONICYT ACT1415.
|
| Formato |
pdf
|
| Tipo de ruta |
hibrida#verde
|
| Access Rights |
metadata
|
| Derechos de acceso |
metadata
|
| Página de inicio (Recomendado-único) |
1614
|
| Página final (Recomendado-único) |
1622
|
- Colecciones
- Colección Publicaciones Científicas