Hecke algebras acting on Abelian varieties

Primer Autor
Carocca, Angel
Co-autores
Rodriguez, Rubi E.
Título
Hecke algebras acting on Abelian varieties
Editorial
ELSEVIER SCIENCE BV
Revista
JOURNAL OF PURE AND APPLIED ALGEBRA
Lenguaje
en
Resumen
The action of a finite group G on an abelian variety A induces a decomposition of A into factors related to the rational irreducible representations of G, the so called isotypical decomposition of A, when A = JZ is the Jacobian variety of a curve Z with G-action, for every subgroup H of G there is an induced canonical action of the corresponding Hecke algebra Q[H/G/H] on the Jacobian of the quotient curve Z(H) = Z/H, and a corresponding isotypical decomposition of JZ(H). These results have provided geometric and analytic information on the factors appearing in the isotypical decomposition of JZ and JZ(H). In this paper we show that similar results hold for any abelian variety A with G-action: for every subgroup H of G there is a natural abelian subvariety A(H) of A fixed by H, such that the Hecke algebra Q[H\G/H] acts on A(H). We find the associated isotypical decomposition of A(H), and the decomposition of the analytic and the rational representations of the action on A(H). We also show that the notion of Prym variety for covers of curves may be extended to abelian varieties, and describe its isotypical decomposition with respect to the action of a natural induced subalgebra of its endomorphism ring. We apply the results to the decomposition of the Jacobian and Prym varieties of the intermediate cover given by H, in the case of smooth projective curves with G-action. We work out several examples that give rise to families of principally polarized abelian varieties, of Jacobian and Prym varieties, with large endomorphism rings. (C) 2017 Elsevier B.V. All rights reserved.
Tipo de Recurso
Artículo original
Description
The authors were partially supported by FONDECYT grants 1130445, 1141099 and PIA CONICYT ACT1415.
Los autores fueron financiados parcialmente por las subvenciones FONDECYT 1130445, 1141099 y PIA CONICYT ACT1415.
doi
10.1016/j.jpaa.2017.10.011
Formato Recurso
pdf
Ubicación del archivo
http://dx.doi.org/10.1016/j.jpaa.2017.10.011
Categoría OCDE
Mathematics, Applied# Mathematics
Disciplinas de la OCDE
Matemáticas Puras
Matemáticas Aplicadas
Id de Web of Science
WOS:000430886000015
Título de la cita (Recomendado-único)
Hecke algebras acting on Abelian varieties
Identificador del recurso (Mandatado-único)
Artículo original
Versión del recurso (Recomendado-único)
version publicada
Editorial
ELSEVIER SCIENCE BV
Revista/Libro
JOURNAL OF PURE AND APPLIED ALGEBRA
Categoría WOS
Matemáticas Aplicadas# Matemáticas
ISSN
0022-4049
Idioma
en
Referencia del Financiador (Mandatado si es aplicable-repetible)
ANID FONDECYT 1130445#ANID FONDECYT 1141099#ANID PIA CONICYT ACT1415
ANID FONDECYT 1130445
ANID FONDECYT 1141099]
ANID PIA CONICYT ACT1415
Descripción
The authors were partially supported by FONDECYT grants 1130445, 1141099 and PIA CONICYT ACT1415.
Formato
pdf
Tipo de ruta
hibrida#verde
Access Rights
metadata
Derechos de acceso
metadata
Página de inicio (Recomendado-único)
1614
Página final (Recomendado-único)
1622
Revisa las metricas alternativas de Almetrics
Revisa las citaciones de Dimensions