Spectro-temporal features applied to the automatic classification of volcanic seismic events

Primer Autor
Huenupan, Fernando
Co-autores
Soto, Ricardo#Meza, Pablo#Curilem, Millaray#Franco, Luis
Título
Spectro-temporal features applied to the automatic classification of volcanic seismic events
Editorial
ELSEVIER
Revista
JOURNAL OF VOLCANOLOGY AND GEOTHERMAL RESEARCH
Lenguaje
en
Resumen
Feature extraction and selection are very relevant processes in the design of automatic classifiers. In the context of volcanic seismic signal classification, most of the features presented in the literature have been extracted separately from a single domain, such as time or frequency. However, spectrograms, which combine time and frequency information, are widely used by experts during the classification of manual seismic events. This paper proposes to evaluate the performance of classifiers trained with features extracted from the spectro-temporal domain, individually or combined with other conventional features. The parameters were extracted from the spectrogram, based on a curve which combines the high energy components and the frequency bandwidth information through the duration of the event. The tests were performed at the Llaima volcano and seismic events were classified into four classes: long-period, tremor, volcano-tectonic and tectonic, using a database of signals recorded between the years 2009 and 2017. The main achievements of this study were the reduction of more than 70% of the error and false positive rates and also a reduction of approximately 30% of the number of features, compared with a baseline established in previous studies. Thus, the inclusion of spectra-temporal information was considered relevant to complement the conventional features and to support classification. (C) 2018 Elsevier B.V. All rights reserved.
Tipo de Recurso
Artículo original
Description
The authors would like to thank the project FONDEF IDeA IT15I10027 for financing this study. Also, the authors would like to thank OVDAS, which provided the data and geological knowledge that supported the analysis of the results.
Los autores agradecen al proyecto FONDEF IDeA IT15I10027 por la financiación de este estudio. Asimismo, agradecen a OVDAS, que proporcionó los datos y el conocimiento geológico que respaldaron el análisis de los resultados.
doi
10.1016/j.jvolgeores.2018.04.025
Formato Recurso
pdf
Palabras Claves
Volcano monitoring# Signal processing# Pattern recognition# Spectrogram# Spectro-temporal curves
Ubicación del archivo
http://dx.doi.org/10.1016/j.jvolgeores.2018.04.025
Categoría OCDE
Geosciences, Multidisciplinary
Materias
Monitoreo de volcanes# Procesamiento de señales# Reconocimiento de patrones# Espectrograma# Curvas espectro-temporales
Disciplinas de la OCDE
Vulcanología
Ciencias de la Computación
Geociencias
Id de Web of Science
WOS:000439678100015
Título de la cita (Recomendado-único)
Spectro-temporal features applied to the automatic classification of volcanic seismic events
Identificador del recurso (Mandatado-único)
Artículo original
Versión del recurso (Recomendado-único)
version publicada
Editorial
ELSEVIER
Revista/Libro
JOURNAL OF VOLCANOLOGY AND GEOTHERMAL RESEARCH
Categoría WOS
Geociencias, Multidisciplinar
ISSN
0377-0273
Idioma
en
Referencia del Financiador (Mandatado si es aplicable-repetible)
ANID FONDEF IDeA IT15I10027
Descripción
The authors would like to thank the project FONDEF IDeA IT15I10027 for financing this study. Also, the authors would like to thank OVDAS, which provided the data and geological knowledge that supported the analysis of the results.
Formato
pdf
Tipo de ruta
hibrida#verde
Access Rights
metadata
Derechos de acceso
metadata
Página de inicio (Recomendado-único)
7
Página final (Recomendado-único)
27
Revisa las metricas alternativas de Almetrics
Revisa las citaciones de Dimensions