Spectro-temporal features applied to the automatic classification of volcanic seismic events
| Primer Autor |
Huenupan, Fernando
|
| Co-autores |
Soto, Ricardo#Meza, Pablo#Curilem, Millaray#Franco, Luis
|
| Título |
Spectro-temporal features applied to the automatic classification of volcanic seismic events
|
| Editorial |
ELSEVIER
|
| Revista |
JOURNAL OF VOLCANOLOGY AND GEOTHERMAL RESEARCH
|
| Lenguaje |
en
|
| Resumen |
Feature extraction and selection are very relevant processes in the design of automatic classifiers. In the context of volcanic seismic signal classification, most of the features presented in the literature have been extracted separately from a single domain, such as time or frequency. However, spectrograms, which combine time and frequency information, are widely used by experts during the classification of manual seismic events. This paper proposes to evaluate the performance of classifiers trained with features extracted from the spectro-temporal domain, individually or combined with other conventional features. The parameters were extracted from the spectrogram, based on a curve which combines the high energy components and the frequency bandwidth information through the duration of the event. The tests were performed at the Llaima volcano and seismic events were classified into four classes: long-period, tremor, volcano-tectonic and tectonic, using a database of signals recorded between the years 2009 and 2017. The main achievements of this study were the reduction of more than 70% of the error and false positive rates and also a reduction of approximately 30% of the number of features, compared with a baseline established in previous studies. Thus, the inclusion of spectra-temporal information was considered relevant to complement the conventional features and to support classification. (C) 2018 Elsevier B.V. All rights reserved.
|
| Tipo de Recurso |
Artículo original
|
| Description |
The authors would like to thank the project FONDEF IDeA IT15I10027 for financing this study. Also, the authors would like to thank OVDAS, which provided the data and geological knowledge that supported the analysis of the results.
Los autores agradecen al proyecto FONDEF IDeA IT15I10027 por la financiación de este estudio. Asimismo, agradecen a OVDAS, que proporcionó los datos y el conocimiento geológico que respaldaron el análisis de los resultados.
|
| doi |
10.1016/j.jvolgeores.2018.04.025
|
| Formato Recurso |
pdf
|
| Palabras Claves |
Volcano monitoring# Signal processing# Pattern recognition# Spectrogram# Spectro-temporal curves
|
| Ubicación del archivo |
http://dx.doi.org/10.1016/j.jvolgeores.2018.04.025
|
| Categoría OCDE |
Geosciences, Multidisciplinary
|
| Materias |
Monitoreo de volcanes# Procesamiento de señales# Reconocimiento de patrones# Espectrograma# Curvas espectro-temporales
|
| Disciplinas de la OCDE |
Vulcanología
Ciencias de la Computación
Geociencias
|
| Id de Web of Science |
WOS:000439678100015
|
| Título de la cita (Recomendado-único) |
Spectro-temporal features applied to the automatic classification of volcanic seismic events
|
| Identificador del recurso (Mandatado-único) |
Artículo original
|
| Versión del recurso (Recomendado-único) |
version publicada
|
| Editorial |
ELSEVIER
|
| Revista/Libro |
JOURNAL OF VOLCANOLOGY AND GEOTHERMAL RESEARCH
|
| Categoría WOS |
Geociencias, Multidisciplinar
|
| ISSN |
0377-0273
|
| Idioma |
en
|
| Referencia del Financiador (Mandatado si es aplicable-repetible) |
ANID FONDEF IDeA IT15I10027
|
| Descripción |
The authors would like to thank the project FONDEF IDeA IT15I10027 for financing this study. Also, the authors would like to thank OVDAS, which provided the data and geological knowledge that supported the analysis of the results.
|
| Formato |
pdf
|
| Tipo de ruta |
hibrida#verde
|
| Access Rights |
metadata
|
| Derechos de acceso |
metadata
|
| Página de inicio (Recomendado-único) |
7
|
| Página final (Recomendado-único) |
27
|
- Colecciones
- Colección Publicaciones Científicas