Particle Swarm Optimization for the Fusion of Thermal and Visible Descriptors in Face Recognition Systems

Primer Autor
Hermosilla, Gabriel
Co-autores
Rojas, Mauricio#Mendoza, Jorge#Farias, Gonzalo#Pizarro T, Francisco#San Martin, Cesar#Vera, Esteban
Título
Particle Swarm Optimization for the Fusion of Thermal and Visible Descriptors in Face Recognition Systems
Editorial
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Revista
IEEE ACCESS
Lenguaje
en
Resumen
In this paper, we propose a novel face recognition system based on fusing thermal and visible descriptors. The proposed approach is divided in two steps: training and validation. In the training stage, the system obtained the optimal weights from the particle swarm optimization (PSO) algorithm to maximize the recognition rates obtained from different combinations of local descriptor methods using a standard thermal face database (Equinox database). The weights were then used to fuse visible and thermal face descriptors to achieve high recognition rates during the validation stage using the Pontificia Universidad Catolica de Valparaiso-Visible Thermal Face (PUCV-VTF) database. Three local matching methods were used to perform the face recognition: local binary pattern, histograms of the oriented gradients, and local derivative pattern. In addition, this paper considers a comparison with the following methods: a previous work based on Genetic Algorithms and a modified PSO approach. The results of this paper show recognition rates over 99% for the PUCV-VTF database, largely surpassing the results for Genetic Algorithms. The fusion methodology is found to be unaffected to variations in illumination and expression conditions, combining the visible and thermal information efficiently through the PSO algorithm, and thus choosing the optimal regions where a given spectrum is more relevant.
Tipo de Recurso
Artículo original
Description
This work was supported in part by FONDECYT-Chile under Grant 1161584, in part by FONDECYT-Chile under Grant 1181943, and in part by DI Regular Code 0.39.420/2017.
Este trabajo fue financiado en parte por FONDECYT-Chile bajo la subvención 1161584, en parte por FONDECYT-Chile bajo la subvención 1181943 y en parte por el Código Regular DI 0.39.420/2017.
doi
10.1109/ACCESS.2018.2850281
Formato Recurso
pdf
Palabras Claves
Face recognition# fusion of descriptors# particle swarm optimization# genetic algorithm# visible and infrared spectra
Ubicación del archivo
http://dx.doi.org/10.1109/ACCESS.2018.2850281
Categoría OCDE
Computer Science, Information Systems# Engineering, Electrical & Electronic# Telecommunications
Materias
Reconocimiento facial# fusión de descriptores# optimización del enjambre de partículas# algoritmo genético# espectros visible e infrarrojo
Disciplinas de la OCDE
Robótica y Sistemas de Control Automático
Ingeniería de Sistemas y Comunicaciones
Ciencias de la Computación
Id de Web of Science
WOS:000442404500049
Título de la cita (Recomendado-único)
Particle Swarm Optimization for the Fusion of Thermal and Visible Descriptors in Face Recognition Systems
Identificador del recurso (Mandatado-único)
Artículo original
Versión del recurso (Recomendado-único)
version publicada
Editorial
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Revista/Libro
IEEE ACCESS
Categoría WOS
Ciencias de la Computación, Sistemas de Información# Ingeniería Eléctrica y Electrónica# Telecomunicaciones
ISSN
2169-3536
Idioma
en
Referencia del Financiador (Mandatado si es aplicable-repetible)
ANID FONDECYT 1161584#ANID FONDECYT 1181943
ANID FONDECYT 1161584
ANID FONDECYT 1181943
0.39.420/2017
Descripción
This work was supported in part by FONDECYT-Chile under Grant 1161584, in part by FONDECYT-Chile under Grant 1181943, and in part by DI Regular Code 0.39.420/2017.
Formato
pdf
Tipo de ruta
hibrida
Access Rights
acceso abierto
Derechos de acceso
acceso abierto
Página de inicio (Recomendado-único)
333
Página final (Recomendado-único)
337
Revisa las metricas alternativas de Almetrics
Revisa las citaciones de Dimensions