Particle Swarm Optimization for the Fusion of Thermal and Visible Descriptors in Face Recognition Systems
| Primer Autor |
Hermosilla, Gabriel
|
| Co-autores |
Rojas, Mauricio#Mendoza, Jorge#Farias, Gonzalo#Pizarro T, Francisco#San Martin, Cesar#Vera, Esteban
|
| Título |
Particle Swarm Optimization for the Fusion of Thermal and Visible Descriptors in Face Recognition Systems
|
| Editorial |
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
|
| Revista |
IEEE ACCESS
|
| Lenguaje |
en
|
| Resumen |
In this paper, we propose a novel face recognition system based on fusing thermal and visible descriptors. The proposed approach is divided in two steps: training and validation. In the training stage, the system obtained the optimal weights from the particle swarm optimization (PSO) algorithm to maximize the recognition rates obtained from different combinations of local descriptor methods using a standard thermal face database (Equinox database). The weights were then used to fuse visible and thermal face descriptors to achieve high recognition rates during the validation stage using the Pontificia Universidad Catolica de Valparaiso-Visible Thermal Face (PUCV-VTF) database. Three local matching methods were used to perform the face recognition: local binary pattern, histograms of the oriented gradients, and local derivative pattern. In addition, this paper considers a comparison with the following methods: a previous work based on Genetic Algorithms and a modified PSO approach. The results of this paper show recognition rates over 99% for the PUCV-VTF database, largely surpassing the results for Genetic Algorithms. The fusion methodology is found to be unaffected to variations in illumination and expression conditions, combining the visible and thermal information efficiently through the PSO algorithm, and thus choosing the optimal regions where a given spectrum is more relevant.
|
| Tipo de Recurso |
Artículo original
|
| Description |
This work was supported in part by FONDECYT-Chile under Grant 1161584, in part by FONDECYT-Chile under Grant 1181943, and in part by DI Regular Code 0.39.420/2017.
Este trabajo fue financiado en parte por FONDECYT-Chile bajo la subvención 1161584, en parte por FONDECYT-Chile bajo la subvención 1181943 y en parte por el Código Regular DI 0.39.420/2017.
|
| doi |
10.1109/ACCESS.2018.2850281
|
| Formato Recurso |
pdf
|
| Palabras Claves |
Face recognition# fusion of descriptors# particle swarm optimization# genetic algorithm# visible and infrared spectra
|
| Ubicación del archivo |
http://dx.doi.org/10.1109/ACCESS.2018.2850281
|
| Categoría OCDE |
Computer Science, Information Systems# Engineering, Electrical & Electronic# Telecommunications
|
| Materias |
Reconocimiento facial# fusión de descriptores# optimización del enjambre de partículas# algoritmo genético# espectros visible e infrarrojo
|
| Disciplinas de la OCDE |
Robótica y Sistemas de Control Automático
Ingeniería de Sistemas y Comunicaciones
Ciencias de la Computación
|
| Id de Web of Science |
WOS:000442404500049
|
| Título de la cita (Recomendado-único) |
Particle Swarm Optimization for the Fusion of Thermal and Visible Descriptors in Face Recognition Systems
|
| Identificador del recurso (Mandatado-único) |
Artículo original
|
| Versión del recurso (Recomendado-único) |
version publicada
|
| Editorial |
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
|
| Revista/Libro |
IEEE ACCESS
|
| Categoría WOS |
Ciencias de la Computación, Sistemas de Información# Ingeniería Eléctrica y Electrónica# Telecomunicaciones
|
| ISSN |
2169-3536
|
| Idioma |
en
|
| Referencia del Financiador (Mandatado si es aplicable-repetible) |
ANID FONDECYT 1161584#ANID FONDECYT 1181943
ANID FONDECYT 1161584
ANID FONDECYT 1181943
0.39.420/2017
|
| Descripción |
This work was supported in part by FONDECYT-Chile under Grant 1161584, in part by FONDECYT-Chile under Grant 1181943, and in part by DI Regular Code 0.39.420/2017.
|
| Formato |
pdf
|
| Tipo de ruta |
hibrida
|
| Access Rights |
acceso abierto
|
| Derechos de acceso |
acceso abierto
|
| Página de inicio (Recomendado-único) |
333
|
| Página final (Recomendado-único) |
337
|
- Colecciones
- Colección Publicaciones Científicas