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Abstract: In this work, we present a new methodology integrating data from multiple sources, such as
observations from the Landsat-8 (L8) and Sentinel-2 (S2) satellites, with information gathered in field
campaigns and information derived from different public databases, in order to characterize the water
demand of crops (potential and estimated) in a spatially and temporally distributed manner. This
methodology is applied to a case study corresponding to the basin of the Longavi River, located in
south-central Chile. Potential and estimated demands, aggregated at different spatio-temporal scales,
are compared to the streamflow of the Longavi River, as well as extractions from the groundwater
system. The results obtained allow us to conclude that the availability of spatio-temporal information
on the water availability and demand pairing allows us to close the water gap—i.e., the difference
between supply and demand—allowing for better management of water resources in a watershed.

Keywords: data integration; multi-source data; water management; crop water demand; water
availability

1. Introduction

In a context of increasing water scarcity and climate change, water resource man-
agement policies have focused on ensuring food and energy for the world’s growing
populations [1,2]. This has caused a profound imbalance between water supply and de-
mand, and an unequal water resources distribution between users [3], leading to increasing
conflicts over water [4], and has forced authorities to take extreme decisions, including
watershed closures [5,6].

Water scarcity occurs when the demand exceeds the water availability in time and/or
space due to a combination of natural processes and human actions [7]. Globally, the
impact of groundwater and surface water extraction relative to the sustainable extraction
volume is largely unknown, mainly due to a lack of data [8,9].

Accessing, analyzing and understanding reliable data on the availability, demand
and use conditions of water, soil type and land use, and water distribution networks,
among other aspects, could provide an information baseline allowing us to transit from
management based on water availability to a system based on narrowing the gap between
water availability and water demand [10].
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Spatio-temporal characterization of the pair water availability-water demand can help
support decision making for water management generally, and especially for irrigation
management in watersheds with high agricultural land use, achieving rational distribution,
control and use of water resources [11]. Thus, the development of tools based on appropri-
ate information technologies for water management generally, and irrigation particularly,
must integrate and process data of different types, and from multiple sources at different
scales. It must also generate results in an easily used format, allowing for analyzing situ-
ations and exploring different scenarios for informed decision making based on the best
evidence and experience, allowing for sustainable and rational water management.

Regarding the water demand in basins characterized by a highly agricultural land
use, evapotranspiration (ET) links the water balance and energy balance at the Earth’s
surface [12]. ET is also a key component for estimating the water demand. ET, in this
case, is considered an important indicator of climate change and the water cycle [13], and
characterizing its long-term variation is crucial for determining crop water requirements.

Satellite image-based technologies which have been used to estimate crop ET, in a
spatio-temporally distributed way, have allowed for improving evidence-based decision
making, reducing the gap between crop water demand and available water and diminishing
uncertainty in decision making [9,14,15].

The behavior of the pair water availability-water demand as a strategy for improving
the spatio-temporal water distribution has been a research question in various works. In
Kolokytha et al. [16], the authors strongly emphasized the importance of determining
and characterizing the water availability and demand in a basin in order to carry out
precise decisions regarding future water management, especially where there is already
high stress due to water shortages within the context of climate change. In [8], the authors
proposed a methodology which allowed for an ex post analysis of water management
strategies at the parcel scale. They integrated information derived from observations by the
satellites Landsat-8 (L8) and Sentinel-2 (52) with field data, in order to estimate in time and
space the water consumption of a blueberry field. The proposed focus was based on the
comparison of water volumes applied to the crop, potential demand (amount of water to
reach maximum performance) and water availability at the level of agricultural exploitation,
and their impact on crop production. The principal result was the determination that water
management at the study site was inadequate, impacting production volumes. The authors
concluded that having information on the water availability-demand binomial would
allow for increased agricultural production.

An approximation to larger spatial scales in quantifying the water availability-demand
binomial was presented in [9]. In this study, the authors proposed integrating in situ infor-
mation on water management of crops within the study area with ET time series, through
integrating images from L8 and S2. Using this information, they performed a seasonal
water balance of different crops present in the study area. Finally, they compared the
crop water demands (consumed and potential) against the water availability. The authors
concluded that having the information necessary to determine the existing gap between
water availability and demand improves management of the water volumes applied in
different irrigation season stages, with a positive impact on agricultural production and
water allocation to users. This work was carried out at a local scale (70 km?) and based on
prior agricultural soil and land use knowledge. However, if it were possible to characterize
the use of agricultural soil at larger scales, systematically gathering its spatio-temporal
variability, and allowing researchers to comprehend its change dynamic, the same method-
ology could be used to carry out an ex post analysis of water management at the basin level,
which would allow people to have an important information source for water distribution
management and planning [17].

At the watershed level, the Sen2-Agri project [18], from the European Space Agency
(ESA), is aimed at providing validated algorithms to the international community for gener-
ating agriculture observation products at a spatial resolution of 10 m, using a methodology
based on the random forest (RF) algorithm [19], for analyzing image observations from
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the 52 satellite [20,21]. Its use has been validated for generating maps of principal crops
in Central Europe, with overall accuracy (OA) results above 85%. Studies have also been
conducted in other parts of the world. In [22], a study was carried out on the plains of
Haouz, Morocco, to evaluate Sen2-Agri’s potentiality to generate agricultural soil use maps
in zones with highly fragmented and heterogeneous land parcels. The crops selected for
the classification process were cereals (in winter), melons (in summer) and three types
of fruit trees (olives, oranges and apricots). Results showed a crop classification OA of
85.6%. This high OA value is principally due to the low number of classes used to train the
Sen2-Agri model. In [23], Sen2-Agri products were evaluated for agricultural scenarios in
India. The authors considered six crop types (pearl millet, fodder, maize, pomegranate,
soybean and sugarcane) and reported an average OA of 70%, with the lowest OA values
for pearl millet and fodder (61%) and the highest for soybean (86%).

In Chile, agriculture uses around 85% of freshwater resources. On the other hand,
there has been a significant decline in precipitation—solid and liquid—since 2010 [24,25].
Under this scenario of increasing scarcity, decision-makers require better information for
better decisions. Even though precipitation-related datasets are becoming more available,
there is a significant information gap regarding the actual and future water demands for
different water uses, enabling water demand management [9,26].

In this study, we integrated data from multiple sources to allow a spatio-temporal
characterization of the agricultural water use and thus allow for management and decision
making based on the evidence of the available and required water resources within a basin.
To achieve this aim, open source software called Sen2-Agri was used to characterize the
land use and time series of the potential crop water demand, as well as the surface energy
balance (SEB), in order to determine the time series of water used by crops during the
agricultural season. To improve the temporal resolution of the water used by crops’ crop
water demand, we carried out a harmonization strategy for leaf area index (LAI) maps
drawn from L8 and S2 images. The proposed methodology was applied to a watershed of
676 km?, of which approximately 73% is in agricultural use, for around 4000 producers,
where over 80% are small farmers exploiting lands smaller than 12 ha.

2. Materials and Methods

The methodology considered the estimation of 3 main variables in its workflow: (1)
potential water demand of crops (PWD), corresponding to the amount of water to reach
maximum yields; (2) estimated water use of crops (EWU), corresponding to estimation of
evapotranspirated water from crops; and (3) water availability (WA), corresponding to the
water volume available in the basin. Comparing PWD and EWU approaches the water
supply conditions of crops, that is, whether a given crop receives the required amount
of water to reach a high productivity level. Comparing PWD with WA lets us know
the potential water supply gap. Finally, the relation between EWU and WA allows for
analyzing the expected or actual scarcity conditions. Furthermore, the definition of an
updated crop pattern within the basin allows for defining maximum demand zones or time
periods when the water demand would peak.

2.1. Study Site

The study site is located in the Maule Region, Chile (36°08’ S, 71°40” W), and covers
the entire basin of the Longavi River, with an area of 676 km?. The Longavi River is born in
an upper watershed in the Andes Mountains, with a north-south orientation at 2000 masl.
It runs for 120 km and presents a pluvio-nival component. Its annual mean flow, measured
at the Quiriquina gauging station, is 2670 m3/min [27].

The region has a Mediterranean climate, with hot dry summers (December to March).
Annual average precipitation is 1051 mm. A total of 85% of annual precipitation occurs
between the months of May and August, while the maximum water demand for agricultural
activities—which use about 85% of the national water resources—occurs between September
and March [24,28]. The temperature regime of this zone is characterized by a median
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temperature of 19 °C with extremes of 30 °C, during the summer period. During the winter
period, median minimum temperatures are 7 °C [29]. Soils originate from volcanic ash
deposits and clayey sediments on rock.

The climate regime supports the construction of winter storage infrastructure and
water distribution during the the spring-summer season (SONDJF). Storage and distri-
bution infrastructure in the Longavi River watershed consists of a storage reservoir with
a capacity of 60 million m3, and 22 main canals with their respective derivations. This
watershed is managed by the Longavi River Oversight Board [30] (Figure 1). River boards
are water user organizations (WUO) using water from a single source, having the duty to
administer and distribute the water volume according to water rights, to use and conserve
common exploitation works and to carry out other tasks assigned to them by the law.
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Figure 1. (a) The study site is located in Maule, Chile (36°08' S and 71°40’ W, Zone 19, Datum
WGS 84), covering the entire basin of the Longavi River, with an area of 676 km?. (b) The water
distribution network in the Longavi River watershed consists of a storage reservoir with a capacity
of 60 Mm?, and 22 main canals with their respective derivations.

2.2. Image Acquisition

The study period corresponds to the farming season which began in the month of
September 2019, and ended in March 2020. For this season, 36 satellite images were
obtained: 10 images from the L8 satellite and the other 26 from the 52 satellite (Table 1).

Table 1. Dates of images used during 2019-2020 season.

Landsat-8 (L8) Sentinel-2 (52)
Date DOY Date DOY Date DOY Date DOY
20 September 2019 263 16 September 2020 259 25 December 2020 359 23 February 2020 54
22 October 2019 295 21 September 2020 264 30 December 2020 364 28 February 2020 59
7 Novermber 2019 311 21 October 2020 294 9 January 2020 9 4 March 2020 64
25 December 2019 359 5 Novermber 2020 309 14 January 2020 14 9 March 2020 69
10 January 2020 10 10 Novermber 2020 314 24 January 2020 24 14 March 2020 74
26 January 2020 26 20 Novermber 2020 324 29 January 2020 29 19 March 2020 79
11 February 2020 42 30 Novermber 2020 334 3 February 2020 34
27 February 2020 58 5 December 2020 339 8 February 2020 39
14 March 2020 74 10 December 2020 344 13 February 2020 44
30 March 2020 90 20 December 2020 354 18 February 2020 49




Remote Sens. 2021, 13, 2022

50f 14

2.3. Characterization of Agricultural Soil Use via Integration of Sentinel-2 Images and in
Situ Information

To characterize the agricultural land use for the entire study area, the open source
software system called Sen2-Agri was used [31]. This software allows for automatically car-
rying out the procedure of downloading and conditioning S2 images, as well as generating
the classification of agricultural covers for a specific time frame.

Figure 2 depicts the process to obtain a seasonal series of LAI using an automatic
learning strategy [32], as well as an updated layer of agricultural land use using the RF
algorithm [12].

In situ data ‘ﬁ

L

Agricultural

land use
g
A4
—»  Sen2-Agri i—
o !
2 LAI
Seasonal series

Sentinel-2
Seasonal series

Figure 2. Workflow of land use mapping using Sen2-Agri.

Classification models using RF require in situ data for the model training stage. In this
sense, a series of field campaigns were carried out from November 2019 to February 2020
to identify and record the principal crop patterns present in the study zone. During these
trips, hand-drawn maps were made of all boundaries of farm fields in the basin, using 52
images of the start, middle and end of farming seasons as base information along with
statistical information from the Instituto Nacional de Estadistica de Chile [33]. The 30 main
crops in the zone were also characterized based on the information raised from 2545 farm
fields (polygons) during the 8890 ha field trips, corresponding to 18% of the total area of
farm uses. All of this information was organized with QGis 3.14 software.

Every identified farm cover was tagged based on the nomenclature proposed by
CORINE Land Cover [34] and registered on a dataset, of which 75% was used for training
models via Sen2-Agri, and 25% was used for validation. For the RF classifier, used by
Sen2-Agri, a configuration of 100 decision trees was used, with a maximum depth of 25
and a minimum sample number in every tree node of 25. Finally, the overall accuracy (OA)
of the classification was evaluated [35]. A more detailed description of the process carried
out by Sen2-Agri can be found in [19].

Sen2-Agri also allows users to generate leaf area index (LAI) maps. To obtain these,
an automatic learning strategy is used to build a non-linear regression model from surface
reflectance values obtained from 52 images [32]. These reflectance values are simulated
using the ProSail model described in [36].

2.4. Multi-Source Data Integration for Crop Water Demand Estimation

To estimate water demand for crops present in the study zone, data from multiple
public information sources were integrated with dissimilar characteristics from both a
spatio-temporal viewpoint and a format perspective, as seen hereinafter.

2.4.1. Potential Water Demand

Figure 3 shows the workflow for estimating PWD. Outputs from Sen2-Agri, agri-
cultural land use and LAI, as shown in Figure 2, along with theoretical crop coeffi-
cient (FAO — Kc) values [2], allow estimating an adjusted crop coefficient value (kAC)
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(Equation (2)). The output of this process is crop evapotranspiration (ETc) by combin-
ing ground-based meteorological data and adjusted crop coefficients.

. Daily

Time of Season ‘}

A4

A
ETc=Kc (LAI) x ETrJ

)

A

FAO-Kc

Sen2-Agri

Sentinel-2
Seasonal series

Figure 3. Workflow to estimate PWD for different crop patterns.

For this, crop evapotranspiration (ETc) was calculated, adjusted to the condition of
phenological development of each of the studied crops [9], which was called adjusted
ETc (ETc).

To determine the value of ETc for each crop (k), and for each day of the season (i), we
used relation (1):

ETey; = ETr; x key 1)

where ETr; is the reference evapotranspiration for day i, estimated with data from the
Longavi-Norte meteorological station that is representative of the study area, which delivers
daily data on precipitation, temperature, relative humidity and atmospheric pressure and
is operated by the National Agrometorological Network [37]; lék\, is the adjusted crop
coefficient, calculated for each crop (k), for the days which have 52 images (/). The values of
k/c\kJ were obtained via a linear relationship between FAO — k¢, established in FAO bulletin
66 [2], and the LAI maps generated from S2 images via Sen2-Agri [38]. For the construction
of the linear relationship, only the theoretical minimum and maximum kc (start and end of
analyzed farm season) and the LAI maps closest to the date which produced minimum and
maximum kc values were considered. Linear relationships were determined for each crop
in the study area (k crops), obtaining the corresponding relation coefficients (a’,ﬁc, b’,z':). These

coefficients were used to calculate an adjusted crop coefficient value (kAC) via Equation (2):

ke, = af° x LA + b @)

In the analyzed system, water is distributed via open canals; therefore, we assumed
that all necessary irrigation water travels happen via these canals. Thus, based on ETc
values and considering the conveyance efficiency (CE) of each water system canal, we can
calculate the PWD of water for each canal, for each day of the study zone farm season (3).
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v ETey
PWD;; = 7&:& - ki
]

®)
where 7 is the total of crops considered in the study. If one particular canal has no k crop
types present, ETc has a value of zero.

2.4.2. Estimation of Water Use

For EWU for crops, the ETc was calculated via a spatially distributed model of surface
energy balance (SEB) [39,40], following the protocol proposed by [41]. The SEB model
entries were the images captured by the L8 satellite (Table 1) during the farm season and in
situ data captured by the Longavi-Norte meteorological station [37].

For each date with L8 images available, LAl maps were obtained as an intermediate
SEB process outcome. Thus, ETc and LAI maps were integrated via linear-type relations
for each of the k crops present in the study zone (4).

ETeES = af 1™ x LAILS + bET” @)

where ETC{;EI5 is the evapotranspiration of crop k determined for capture date / of the L8

image via the SEB model. The coefficients a,flTCLB and bijCLS are the constants of the linear

relation generated between ETC]%’? and LA IkL/? for each one of the k crop types present in the
study zone.

As a way of improving the temporal resolution of the ETc"® maps obtained from L8
images, we carried out a harmonization strategy for LAl maps drawn from L8 and S2
images, using the methodology described in [9]. Thus, LAI map pairs obtained from L8 and
52 which were captured on the same day during the season were selected and integrated
via a linear relation for each one of the crop k types. This relation allowed for creating LAI
maps from harmonized S2 for L8. This procedure is formalized in Equation (5).

LALE = ol x LAIP? 4 pEAT (5)

where LA I,’<L8 corresponds to the LA 152 maps obtained from the linear relation (harmoniza-
tion), and abA! and bE4! are the constants of the linear relation for each crop present in the
study zone.

In this way, using the harmonization equation of Equation (5), it was possible to
construct a harmonized LAI time series, called LA, composed of LAI*® and LAI'"® maps
for the entire study period.

Based on the time series of LAI and the coefficients obtained from Equation (4), a
harmonized ETc time series was determined for every day when L8 or 52 images were
available (6).

== L8 L8 s L8
ETci, = ag)° X LAl + bi[© (6)
where 7 is a particular date of the dates comprising the time series of LAI Tt should be
——L8
emphasized that for calculating ETcy ,,, one must consider the coefficient values of afchLg
and b,flTCLS closest to the date n being determined.
= L8 . .
Based on the values of ETcy ,,, and the values of ETr;,, one can calculate the coefficients

of every crop (kc), adjusted to the local study zone conditions, for every day where data
exist for the series LAI (7):

— 8
~ ETc k
Koy, = 7
Ckn E Tl’n ( )

Finally, the daily ETc for each crop considered in the study zone was calculated based
on Equation (8):
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ETc; = ETr; x ke, , 8)

Care must be taken to consider the coefficient values of /k\ck,n closest to the i date being
determined. In this way, the EWU of the crops for the study period for each canal is
formalized in Equation (9).

EWU; =) Y ETcjx; )
ki

2.5. Water Availability

The water resource assignment and distribution system in Chile is based on the Water
Code. The key pieces are the so-called surface water rights (SWR) which grant a real right
of use to the proprietors who extract water from surface water and groundwater sources.
Furthermore, water distribution is conducted within the so-called water user organizations
(WUO) proportionally to the water volume of the SWR.

The water system of the Longavi River feeds a network made up of twenty main
canals. Each canal is constituted by a water community which has assigned surface water
rights (SWR) on the river flow [4].

The availability of water resources in the basin (WA) is the amount of exploitable
water including the surface flow (SW), and available groundwater (GW). In this way, water
availability for each main canal is represented by Equation (10):

WA,*,]‘ = SWZ' X + GW] (10)

]
SWRy
where WA, ; is the availability of water for day 7 in canal j, SW; is the daily surface flow
of the Longavi River measured at Quiriquina station [27], SWR1y; is the sum of all SWR
involved in the basin, according to official records of the General Water Directorate of
Chile [42], and SWR; and GW; are surface water rights and available groundwater for
canal j, respectively.

From the preceding, the daily available surface flow per canal (SWC) is defined
considering SW and the SWR, as shown in Equation (11):

SWR;
SWRry

Finally, as a way of quantifying the amount of water demanded by each studied canal
regarding availability, the efficiency (7) of use per canal was determined via a direct relation
between Equations (9) and (10).

SWCZ',]‘ = SWl' X (11)

%) = “V9 100 (12)
nNi{70) = X
j WA

3. Results and Discussion

Figure 4 shows the thematic map of agricultural land use obtained from the classifica-
tion process at the farm level.

The OA of the classification was 57%. The precision value is below that obtained
by [23] (accuracy ~ 0.70). One possible reason for the precision value obtained in the
classification is the farm fragmentation in size (80% are small farmers using less than 12 ha)
and the variety of cover types present in our study area (the 30 principal types of crops
were considered). One strategy for improving classification precision is increasing the
number of samples used for training RF models included in Sen2-Agri. This would involve
increasing the operational complexity and cost of field operations. Thus, for future studies,
we recommend analyzing the impact of the classification quality regarding the quality of
results obtained in estimating potential crop water demands (PWD). Of the 49,591 ha in
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the total area, 41.9% is perennial crops, 35.3% is fruits, 48.6% is forage and 4.1% is forest
plantations (specifically, poplars).
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71°48.00'W 71°36.00'W

[ Poplar [ Cherry [ Maize [ Sugar Beet

Bl Afalfa [ Grass 1 Apple [] Tomato

I Blueberry (] Asparagus [ Blackberry B Wheat

[ Peas [ Raspberry ] Walnut [ Table Grapes

[ Hazel [ Strawberry ] Pear B Vines

I Oats [ Vegetable [ Beans ] Squash/pumpkin
[ Kiwifruit [ Raps

Figure 4. Classification map, at parcel scale, of agricultural land use in study zone.

For determining WA, formalized in Equation (10), the surface flow (SW) time series
was used, obtained from [27]. Updates were also conducted for available information on
the SWR of each principal canal. Table 2 shows the SWR for the 20192020 season (season
in study) obtained from the General Water Directorate of Chile [42] and consolidated with
information available from the Longavi River Oversight Group [30].

Groundwater rights (GW) were obtained from 562 water rights records in the Chilean
National Water Record [43], for the municipalities of Retiro, Parral and Longavi. The
average annual flow of all these groundwater water rights is 946.8 m?/min.

In Figure 5, we can see WA, GW and SWC per ha for each of the main canals, by using
Equation (10). The main canal Quinta Alto A was the canal with the greatest amount of
total water available (SWC and GW) per surface unit during the farm season. This canal
also has a larger SWC volume compared to the other canals. The opposite situation arises
with the main canal La Tercera, with the lowest volume of water available for the season,
having to satisfy almost 50% of its water requirements from GW. Similarly, the main canals
Copihue, Robles Viejos and Rosas La Piedad are shown to have groundwater contributions
higher than the surface water availability.

In Figure 6, we can observe the time series of images from L8 (10 images) and S2 (26 im-
ages) which were used to generate the LAI synthetic time series. For the analyzed season,
there was a coincidence in the L8 and S2 image capture for the dates 25 December 2019
and 14 March 2020. These dates were used to obtain the coefficients at4! and bE4! for
the harmonization equation (Equation (5)). Thus, coefficients were obtained for each of
the 30 crops in the study zone, with which it was possible to build a time series of LAI,
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composed of a total of 34 images. Figure 6 allows us to see both L8 and 52 image capture
dates, along with the dates of the LAI time series which could be built.

Table 2. Irrigation area and surface water rights (SWR) for each main channel belonging to the
agricultural basin Rio Longavi.

Name of Irrigated Surface Surface Water Rights (SWR)
Main Canal (ha) (m3/min)
Copihue 1704 54.0
El Carmen 1855 61.9
La Sexta 1898 27.7
La Tercera 2113 9.5
Las Mercedes 1561 60.8
Longavi Alto 9548 174.2
Maitenes Lucero Cunao 1914 52.2
Nogales Molino 3344 98.8
Primera Abajo 2195 63.7
Primera Arriba 1344 37.3
Quinta Abajo 973 49.0
Quinta Alto A 739 52.4
Retiro 1865 71.5
Robles Nuevos 1822 35.3
Robles Viejos 3220 48.4
Rosas La Piedad 1188 18.0
San Ignacio 1031 36.0
San José 1546 55.7
San Nicolés 4142 106.7
Remulcao 5590 141.9
Total 49,591 1255.0

m® ha'1 season™1
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Figure 5. Total water availability (WA), surface water (SWC) and groundwater (GW) per ha for each
canal during the 2019-2020 season.

Figure 6. Representation of the time series of L8 and S2 images used to generate the synthetic time
series of LAI (LAI) for the study zone during the 2019-2020 season.
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Based on the LAl time series, it was possible to estimate the PWD (Equation (3))
and the EWU (Equation (9)) for each of the principal canals in the study zone. Figure 7
shows the PWD and EWU of accumulated water during the farm season, for each canal.
Comparing the EWU with the PWD, all of the main canals present an average water
deficit of 5% during the season. The largest differences were presented in the Longavi
Alto (21.6%), Remulcao (10.5%) and Robles Viejos (7.6%) main canals. Meanwhile, the
lowest deficit appears for the Quinta Alto A canal (1%). This situation may be due to
bad irrigation management within farms, which may have direct repercussions on yields.
Another explanation is that the available water volumes in given periods were significantly
lower than the demand, meaning that farmers were obliged to generate water stress in the
crops at the cost of diminishing yields and economic income.

x10°

25

m? season™

Figure 7. Potential water demand (PWD) and estimated water use (EWU) accumulated in the farm
season, for each main canal.

Figure 8 presents the curves for PWD, EWU, WA and SW integrated for all canals,
and for each of the days in the studied season (September 2019 to March 2020).

4 x10°

m® day™1

Date

Figure 8. Potential water demand (PWD), estimated water use (EWU), water availability (WA) and
surface water availability (SW), integrated for all canals, and for each day of the studied season
(September 2019 to March 2020).

The start of the irrigation season (September and October) is also the snowmelt season,
when the Longavi River has its maximum flow, and from an operational point of view, the
River Board does not impose restrictions on water allocation for each canal. This coincides
with the low evapotranspiration of crops in this time due to their incipient phenological
development. Consequently, the WA is greater than EWU and PWD, implying an oper-
ational condition called “free river”, where water apportionment is conducted without
any restrictions by the Longavi River Board. As the irrigation season goes on, the demand
increases, due to the crops’ phenological condition, and water availability diminishes. This
condition appears from the beginning of November to the middle of December, where
PWD exceeds the amount of SW and, on some days, WA. During this period, the Longavi
River Board imposes certain water allocation restrictions, exclusively considering an SW
availability criterion, without considering GW availability or the crops” PWD or EWLU.
This type of restriction has a direct impact on crops” potential development and produc-
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tion. From the second week of December on, the storage reservoir comes into operation,
increasing water availability. This has an important effect on crop development from the
last week of December, as reflected by EWU.

The integration of information and multiple data sources allows basin water managers
to visualize and carry out an ex post analysis of the behavior of WA, SW, EWU and PWD.
This gives them tools to make evidence-based decisions, allowing them to shrink the gap
between water availability and demand. This can directly impact farm productivity and in-
crease water users’ satisfaction throughout the basin. For example, it is possible to evaluate
the option of starting reservoir operation ahead of time, to adjust it to maximum demand
periods or to analyze the feasibility of implementing storage measures within farms [44—46].
Another analysis element is shown in Figure 9 regarding water use efficiencies for each
principal canal, obtained from Equation (12).

80
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Figure 9. Efficiency (17(%)) of water use by main canal.

The average water use efficiency of the Longavi River Oversight Board was 40% for
the 2019-2020 farming season. The most efficient main canals were La Tercera at 63%, La
Sexta at 60% and Robles Viejos at 57%. The lowest efficiency was for the Las Mercedes
main canal at 20%.

4. Conclusions

Integrating data from multiple sources makes it possible to carry out management and
decision making based on the evidence of the available and required water resources within
a basin. Comparing the water demand—potential and estimated use—from crops present
in an area and water availability, in space and time, can allow for improvements in farms’
productivity while ensuring the availability of water resources for all users. Integration
of data from S2 and L8 allowed for spatio-temporal characterization of both PWD and
EWU. This information, along with the data from multiple public data sources, provides
a synoptic vision of water resource behavior for managers to make operational decisions
based on empirical evidence.
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