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Viruses are worldwide pathogens with a high impact on the human population. Despite the constant efforts to
fight viral infections, there is a need to discover and design new drug candidates. Antiviral peptides are mole-
cules with confirmed activity and constitute excellent alternatives for the treatment of viral infections. In the
present study, we developed AntiVPP 1.0, an accurate bioinformatic tool that uses the Random Forest algorithm
for antiviral peptide predictions. The model of AntiVPP 1.0 for antiviral peptide predictions uses several features
of 1088 peptides for training and validation. During the validation of the model we achieved the TPR = 0.87,

SPC = 0.97, ACC = 0.93 and MCC = 0.87 performance measures, which were indicative of a robust model.
AntiVPP 1.0 is a fast, accurate and intuitive software focused on the assessment of antiviral peptides candidates.
AntiVPP 1.0 is available at https://github.com/bio-coding/AntiVPP.

1. Introduction

Viruses are very old and ubiquitous pathogens, which cause high
rates of infection and mortality in the human population [1]. The
success of viruses during evolution has been possible due to three
general attributes: genetic variation, the variety of forms for their
transmission and the efficient way to replicate within their host cells in
order to remain in them [2,3]. Due to these attributes, the control of
viral diseases throughout history has not been an easy task [4]. In spite
of the existence of antiviral drugs, it is necessary to explore novel an-
tiviral compounds in order to control emerging viral pathogens [4,5].

In recent decades, peptides have become increasingly important in
the design and delivery of drugs. Research in this regard is focused on
the development and refinement of techniques to design and identify
synthetic and natural peptides as drug candidates [1,6]. Antiviral
peptides (AVPs) are known to fight against various types of viruses and
can come from synthetic combinatorial libraries or segments of natural
proteins [5,6]. There are different scenarios in which the AVPs have
shown activity, e.g. Enfuvirtide (also known as T20), the first peptide
inhibitor approved by the FDA against the HIV-1 [7]. Antiviral activity
has also been reported for viruses, e.g. Rabies [8], HCV [9], influenza A
virus HIN1, H3N2, H5N1, H7N7, H7N9, SARS-CoV and MERS-CoV
[10], among others.

Nowadays, there are different databases that contain collections of
AVPs, among them: AVPpred [11], APD3 [12], CAMPR3 [13] and
HIPdb [14], which constitutes excellent opportunities for the develop-
ment of computational tools focused on the prediction of these

molecules. However, unlike the development of bioinformatics tools in
the field of antimicrobial peptides predictions (bacteria, fungi, animal
cells) [15], the development of in silico tools for the prediction of AVPs
is an area that has remained scarcely explored [11]. Currently, there are
only three methods for predicting AVPs. The first one is the AVPpred
server, which uses a vector support machine (SVM) for its predictions
[11]. The second method is based on Random Forest (RF) algorithm
and the resulting model of this work showed a better performance in
the prediction of AVPs than AVPpred [16]. However, this model has not
software to carry out prediction tasks by researchers who are not re-
lated to the field of machine learning. The third method, AVP-IC50Pred,
was developed by Quresshi and coworkers. AVP-IC50Pred is a regres-
sion-based algorithm which uses experimentally proven datasets by
employing multiple machine learning algorithms [17]. In this work, we
have developed a friendly and portable software based on the RF al-
gorithm for the prediction of AVPs with excellent performance mea-
surements.

2. Materials and methods
2.1. Datasets

To carry out this study, the data set reported by Thakur et al., was
selected [11]. For training of the model, the data set T544p + 544n* was
used (a total of 1088 peptides). 544p corresponds to a collection of 544
antiviral peptides with experimentally validated activity, while the
544n* are 544 non-experimental negative peptides, which has been
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Fig. 1. Architecture of the training and validation model based on the dataset
reported by Thakur and coworkers [11].
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used in the development of prediction models of antiviral peptides
[11,16]. For validation of the model, the independent data set V60p
+60n* was selected, composed of 60 peptides with experimentally
validated activity (V60p) and 60 negative non-experimental peptides
(60n*) (a total of 120 peptides). The building of the training and va-
lidation of the model is shown in Fig. 1.

2.2. Peptide features

For this study, the following features: net charge [18], number of
hydrogen bond donors [19], molecular weight [20] and hydropathy
index [21], were evaluated. Also, the composition of charged (DEKHR),
aliphatic (ILV), aromatic (FHWY), polar (DERKQN), neutral
(AGHPSTY), hydrophobic (CVLIMFW), positively charged (HKR), ne-
gatively charged (DE), tiny (ACDGST), small (EHILKMNPQV) and large
(FRWY) residues as well as the relative frequency of all 20 natural
amino acids, were assessed. All features were computed by using the
Python 3.6 programming language (available at https://www.python.
org/).

2.2.1. Relative frequency (Rfre) of all 20 natural amino acids
Rfre [a. a] = Xi/N

where Rfre [a.a] is the relative frequency of a natural amino acid of
type i. N is the total number of natural amino acids in the peptide
(peptide length).

2.2.2. Residues composition of peptides (PEP [comp])
Ex: PEP|[positively charged] = Rfre[H]| + Rfre[K] + Rfre[R]

where PEP [comp] is the sum of all Rfre [a.a] in a peptide.
2.3. Training and validation

For the construction of the prediction models, the Random Forest
algorithm (RF) was evaluated. The training of the models was carried
out in the Python 3.6 programming language. The Anaconda 3 package
(available at https://www.anaconda.com) was used to run the libraries:
‘sklearn.ensemble’, ‘RandomForestClassifier’, ‘pandas’, ‘sklearn.exter-
nals’, ‘joblib’ and ‘score’. The ‘score’ function (accuracy) was im-
plemented to choose models with scores > 0.95 as the cut-off for
posterior validations.

The score function measures the accuracy of probabilistic predic-
tions and ranges from O to 1. For model validations the following
equations were used:

Sensitivity (TPR) = TP/(TP + FN)
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Specificity (SPC) = TN/(TN + FP)
Accuracy (ACC) = TP + TN/(TP + FP + FN + TN)

where TP represents the true positives; TN the true negatives; FP the
false positives and FN the false negatives. For the validation of the
method, in addition to the equations mentioned above, the correlation
coefficient of Matthews (MCC) was calculated:

MCC = (TP)(TN) — (FP)(FN)
/J(TP + FP)(TP + FN)(IN + FP)(IN + FN)

MCC is used to evaluate the performance of the predictor. Its value
ranges from —1 to 1 and a larger MCC means a better prediction [22].

2.4. Software development

For the development of our application, we used the programming
language Python 3.6 and the WinPython software which is a free open-
source portable distribution of the Python programming language.
AntiVPP 1.0 has a friendly interface that, in addition to having the
ability to discriminate antiviral and non-antiviral peptides, can also be
used to calculate different physical-chemical characteristics of the
peptides. The software as well as the instructions to run it is available at
https://github.com/bio-coding/AntiVPP.1.0.

3. Results
3.1. Training and validation

During the training with the data set T544p + 544n* we obtained
several prediction models based on RF with scores > 0.95, each of these
models were subjected to validation with the use of the independent
data set V60p + 60n*. After evaluating each of the models obtained on
the validation data, we selected a model with the best balance in the
performance measures: TPR = 0.87, SPC = 0.97, ACC = 0.93 and
MCC = 0.87. This model presented a score = 0.993 during the training
phase.

Previously, we had performed an analysis using the Support vector
machine (SVM), Artificial neural network (ANN) and k-nearest
neighbor (kNN) algorithms in the prediction of antiviral peptides, ob-
serving a better balance in the performance measures obtained with the
RF algorithm (Table 1).

3.2. Software development

Our software was developed with the programming language
Python 3.6. AntiVPP 1.0 is an application with a simple and intuitive
interface, making it ideal for researchers who are involved in the search
and design of AVPs and they lack knowledge about the field of machine
learning (Fig. 2). AntiVPP 1.0 returns two types of predictions: 'True' for
positive cases and 'False' for negative cases. In addition, the software
performs the computation of several peptide features, which are the

Table 1
Prediction models of antiviral peptides obtained by different algorithms on the
validation dataset (V60p + 60n*).

Algorithm Performance measurements

TPR SPC ACC MCC
RF 0.87 0.97 0.93 0.87
SVM 0.85 0.93 0.79 0.84
ANN 0.87 0.95 0.90 0.85
kNN 0.83 0.91 0.90 0.81

TPR: sensitivity, SPC: specificity, ACC: accuracy, MCC: correlation coefficient
of Matthews, RF: Random Forest, SVM: Support vector machine, ANN:
Artificial neural network, kNN: k-nearest neighbor.
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Fig. 2. Front of AntiVPP 1.0 (a). Button (PREDICT) for prediction of peptides in antiviral ['True'] or non-antiviral ['False’] (b). Button (CLEAN) to reset all the fields

(c).
characteristics used for this program in AVPs classifications.

4. Discussion

Viral infections are one of the most important risks to consider for
global health [23,24]. Over the last 50 years, extensive efforts have
been dedicated to the development of antiviral drugs and great success
has been accomplished for some viruses. Nevertheless, there are other
viral infections such as epidemic influenza, which continue to spread
worldwide and new threats of viruses, as well as drug-resistant viruses,
are continuously emerging [23]. Peptide-based drugs have been of
great interest to the scientific community from the past decade to the
present, given that the modern pharmaceutical industry has come to
appreciate the role of these molecules in addressing unmet medical
needs. All this is because the peptides can be an excellent complement
or even a more suitable alternative to small molecules and biological
therapeutics [25]. Regardless of the potential of AVPs, there is a con-
siderable lack of algorithms for AVPs prediction compared to other
areas such as the investigation of antimicrobial peptides.

To date, the algorithm based on RF for the prediction of AVPs has
been the one that has shown a better performance in the prediction of
these molecules as reported in the literature [11,16,17]. The
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comparison of the performance measures obtained in our study, using
the different algorithms, supports the previous results on the robustness
of RF for AVP predictions [16], as shown in Table 1.

In this study, we evaluated the RF algorithm using new combina-
tions of chemical-physical characteristics of the AVPs, obtaining an
excellent model with the following performance measures during the
validation phase: TPR =0.87, SPC = 0.97, ACC=0.93, and
MCC = 0.87. In addition, we also confirmed the need to include the
relative frequency for the improvement of AVP predictions as pre-
viously reported [16]. A comparison among the existing methods for
the prediction of AVPs shows that AntiVPP 1.0 has the highest SPC.
Specificity is one of the most relevant measures in the construction of
predictive models and is characterized by determining the proportion of
positive cases (AVPs) correctly identified (Table 2) [26].

On the other hand, we report for the first time the number of hy-
drogen bond donors as another important characteristic to be con-
sidered in the development of future AVP prediction algorithms, due to
its role improving the quality of performance measures during the
testing of our prediction models. It has been studied that H-bond
pairing has a great influence on ligand-binding affinity, improving the
strength of ligand-receptor interactions [27]. For this reason hydrogen
bonds have had an important role in the design and discovery of new
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Table 2

Comparison of the existing programs for prediction of AVPs.
Programs Performance measurements Ref.

TPR SPC ACC MCC

AntiVPP 1.0  0.87 0.97 0.93 0.87 *
AVPpred 0.93 0.92 0.93 0.85 [11]
Model 0.93 0.93 0.93 0.87 [16]
IC50Pred Not reported  Not reported  Not reported  Not reported  [17]

TPR: sensitivity, SPC: specificity, ACC: accuracy, MCC: correlation coefficient
of Matthews, RF: Random Forest, SVM: Support vector machine, ANN:
Artificial neural network, kNN: k-nearest neighbor, *: current study.

peptide-based drugs [28]. This feature is addressed in our work in a
novel way, since it had not been used previously for the prediction of
antiviral peptides.

5. Conclusion

AntiVPP 1.0 is a fast, accurate and intuitive tool focused on pre-
diction of antiviral peptides as alternatives to the current tools for this
purpose. The hydrogen bond is an important feature to consider in
future algorithms addressed to the design and discovery of future an-
tiviral peptides. This software would be helpful for researchers working
in the development of antiviral therapies based on peptides due to its
high success rates and user-friendliness.
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