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Abstract. In this paper we consider the class of K3 surfaces defined
as hypersurfaces in weighted projective space, that admit a non-symplectic
automorphism of non-prime order, excluding the orders 4, 8, and 12. We show

that on these surfaces the Berglund–Hübsch–Krawitz mirror construction and
mirror symmetry for lattice polarized K3 surfaces constructed by Dolgachev
agree; that is, both versions of mirror symmetry define the same mirror K3
surface.

Introduction.

Since its discovery by physicists nearly 30 years ago, mirror symmetry has been

the focus of much interest for both physicists and mathematicians. Although mirror

symmetry has been “proven” physically, we have much to learn about the phenomenon

mathematically. When we speak of mirror symmetry mathematically, there are many

different constructions or rules for determining when a Calabi–Yau manifold is “mirror”

to another. The constructions are often formulated in terms of families of Calabi–Yau

manifolds. A natural question is whether, in a situation where more than one version

can apply, they produce the same mirror (or mirror family). In this article, we consider

two versions of mirror symmetry for K3 surfaces, and show that in this case the answer

is affirmative, as we might expect.

The first version of mirror symmetry of interest to us is known as BHK mir-

ror symmetry. This was formulated by Berglund–Hübsch [10], Berglund–Henningson

[9] and Krawitz [23] for Landau–Ginzburg models. Using the ideas of the Landau–

Ginzburg/Calabi–Yau correspondence, BHK mirror symmetry also produces a version of

mirror symmetry for certain Calabi–Yau manifolds (see Section 2).

In the BHK construction, one starts with a quasihomogeneous and invertible polyno-

mial W and a group G of symmetries of W satisfying certain conditions (see Section 2.2

for more details). From this data, we obtain the Calabi–Yau (orbifold) defined as the

hypersurface YW,G = {W = 0}/G. Given an LG pair (W,G), BHK mirror symmetry

allows to obtain another LG pair (WT , GT ) satisfying the same conditions, and therefore

another Calabi–Yau (orbifold) YWT ,GT . We say that YW,G and YWT ,GT form a BHK mir-

ror pair. In our case, we resolve singularities to obtain K3 surfaces XW,G and XWT ,GT ,
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which we call a BHK mirror pair. When no confusion arises, we will denote these mirror

K3 surfaces simply by X and XT , respectively.

Another form of mirror symmetry for K3 surfaces, which we will call LPK3 mirror

symmetry, is described by Dolgachev in [17]. LPK3 mirror symmetry says that the

mirror family of a given K3 surface admitting a polarization by a lattice M is the family

of K3 surfaces polarized by the mirror lattice M∨. We say that the two K3 surfaces are

LPK3 mirror when they are lattice polarized and they belong to LPK3 mirror families

(see details in Section 2.1).

Returning to the question posed earlier, one can ask whether the BHK mirror sym-

metry and LPK3 mirror symmetry produce the same mirror. A similar question was

considered by Belcastro in [8]. She considers a family of K3 surfaces that arise as (the

resolution of) hypersurfaces in weighted projective space, uses the Picard lattice of a

general member of the family as polarization, and finds that this particular polarization

does not yield very many mirror families.

This polarization fails to yield mirror symmetry for at least two reasons. First, it does

not consider the group of symmetries. And secondly—and perhaps more compelling—a

result proved by Lyons–Olcken (see [25]) following Kelly (see [22]) shows that the rank

of the Picard lattice of XW,G does not depend on G at all. This fact suggests that we

need a finer invariant than the full Picard lattice to exhibit LPK3 mirror symmetry. We

need to find a polarizing lattice that recognizes the role of the group G.

The correct polarizing lattice seems to be the invariant lattice

SX(σ) = {x ∈ H2(X,Z) : σ∗x = x}

of a certain non-symplectic automorphism σ ∈ AutX. This was proven in [3] and [14]

in the case of K3 surfaces admitting a non-symplectic automorphism of prime order.

In what follows, we generalize the results of [3] and [14] to K3 surfaces admitting

a non-symplectic automorphism σ of any finite order, excepting orders 4, 8 and 12. By

polarizing each of the K3 surfaces in question by the invariant lattice SX(σ) of a non-

symplectic automorphism σ of finite order, we prove that BHK mirror symmetry and

LPK3 mirror symmetry agree. This is done as in the previous works, by showing that

SXT (σT ) is the mirror lattice of SX(σ).

This situation differs significantly from the case of prime order automorphism in

that the invariant lattice is no longer p-elementary and there is no longer a (known)

relationship between the invariants of SX(σ) and the fixed locus of σ. Hence, instead

of studying the fixed locus in order to recover SX(σ), we determine SX(σ) with other

methods. As for orders 4, 8 and 12, more details are required and the methods are

slightly different, so that this will be the object of further work.

The question of whether two versions of mirror symmetry produce the same mir-

ror has been investigated by others as well, but for different constructions of mirror

symmetry than we consider here. Partial answers to the question are given by Artebani–

Comparin–Guilbot in [4], where Batyrev and BHK mirror constructions are both seen

as specializations of a more general construction based on the definition of good pairs of

polytopes. Rohsiepe also considered Batyrev mirror symmetry in connection with LPK3

mirror symmetry in [29], where he shows a duality for the K3’s obtained as hypersurfaces
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in one of the Fano toric varieties constructed by one of the 4319 3-dimensional reflexive

polytopes. As in Belcastro’s paper [8], Rohsiepe used the Picard lattice of a general

member of the family of such hypersurfaces to polarize the K3 surfaces. As it turns out,

only 14 of the 95 weight systems yield a K3 surface in a Fano ambient space. We do not

consider such a restriction in the current paper.

Clarke has also described a framework which he calls an auxiliary Landau–Ginzburg

model, which encapsulates several versions of mirror symmetry, including Batyrev–

Borisov, BHK, Givental’s mirror theorem and Hori–Vafa mirror symmetry (see [13]).

Kelly also has some results in this direction in [22], where he shows by means of Shioda

maps, that certain BHK mirrors are birational. The current article is similar in scope to

these articles.

There are also several papers treating non-symplectic automorphisms of K3 surfaces,

which are closely related to this paper. These include [5] for automorphisms of order

four, [15] for order six, [31] for order 2p, [1] for order eight, and [2] for order sixteen. In

general, it seems difficult to find the invariant lattice of a non-symplectic automorphism

on a K3 surface. The current article gives some new methods for computing the invariant

lattice, which we hope will yield more general results.

As complementary results, in doing this classification we discovered the existence of

one of the cases that couldn’t be discovered in the order 16 classification in [2] namely a

K3 surface admitting a purely non-symplectic automorphism of order sixteen, which has

as fixed locus a curve of genus zero, and 10 isolated fixed points. This is number 58 in

Table 8. Dillies has also found such an example in [16].

Additionally, our computations unearthed a different result from Dillies in [15]. If

we look at Table 13, we find the invariant lattice for number 29 and one of rows of 5d

has an invariant lattice of order 12. These K3 surfaces admit an automorphism of order

three, namely σ6
2, with invariants (g, n, k) = (0, 8, 5), but the automorphism σ6 fixes one

rational curve and 8 isolated points. This is missing from Table 1 in [15]. Furthermore,
1the same can be said for the K3 surfaces in same table which have v ⊕ 4w as the2,1

invariant lattice, namely one of 8b, 8d, 33a, and 33b. These K3 surfaces admit a non-

symplectic automorphism of order three with invariants (g, n, k) = (0, 7, 4), but σ6 fixes

one rational curve and seven isolated points. This is also missing from the Table in [15].

The paper is organized as follows. In Section 1 we recall some definitions and results

on K3 surfaces and lattices, while Section 2 is dedicated to the introduction of mirror

symmetry, both LPK3 and BHK. The main result of the paper is Theorem 2.3. Section 3

is dedicated to the explanation of the methods used in the proof. In Section 4 we report

some meaningful examples, and Section 5 contains the tables proving the main theorem.

Acknowledgments. The authors would like to thank Michela Artebani, Alice

Garbagnati, Alessandra Sarti and Matthias Schütt for many useful discussions and help-

ful insights. They would also thank Antonio Laface for the help on magma code [11].

1. Background.

In this section we recall some facts about K3 surfaces and lattices. For notations

and theorems, we follow [7], [27].



406

406(78)

P. Comparin and N. Priddis

1.1. K3 surfaces.

A K3 surface is a compact complex surface X with trivial canonical bundle and

dimH1(X,OX) = 0. All K3 surfaces considered here will be projective and minimal.

It is well-known that all K3 surfaces are diffeomorphic and Kähler. Given a K3

surface X, H2(X,Z) is free of rank 22, the Hodge numbers of X are h2,0(X) = h0,2(X) =

1, h1,1(X) = 20 and h1,0(X) = h0,1(X) = 0, and the Euler characteristic is 24. The

Picard group of X coincides with the Néron–Severi group, and both are torsion free.

From the facts above, we see thatH2,0(X) is one-dimensional. In fact, it is generated

by a nowhere-vanishing two-form ωX , which satisfies ⟨ωX , ωX⟩ = 0 and ⟨ωX , ωX⟩ > 0.

Given an automorphism σ of the K3 surface X, we get an induced Hodge isometry

σ∗, which preserves H2,0(X), i.e., σ∗ωX = λσωX for some λσ ∈ C∗. We call σ symplectic

if λσ = 1 and non-symplectic otherwise. If σ is an automorphism with nonprime order

m, we say σ is purely non-symplectic if λσ = ξm with ξm a primitive m-th root of unity.

1.2. Lattice theory.

A lattice is a free abelian group L of finite rank together with a non-degenerate

symmetric bilinear form B:L × L → Z. A lattice L is even if B(x, x) ∈ 2Z for each

x ∈ L. The signature of L is the signature (t+, t−) of B. A lattice L is hyperbolic if its

signature is (1, rank(L)− 1). A sublattice L ⊂ L′ is called primitive if L′/L is free. On

the other hand, a lattice L′ is an overlattice of finite index of L if L ⊂ L′ and L′/L is a

finite abelian group. We will refer to it simply as an overlattice.

Given a finite abelian group A, a finite quadratic form is a map q : A → Q/2Z such
′ 2that for all n ∈ Z and a, a ∈ A, we have q(na) = n q(a) and q(a+ a′)− q(a)− q(a′) ≡

2b(a, a′) (mod 2Z) where b : A×A → Q/Z is a finite symmetric bilinear form. We define

orthogonality on subgroups of A via b.

Given a lattice L, the corresponding bilinear form B induces an embedding L σ→ L∗,

where L∗ := Hom(L,Z). The discriminant group AL := L∗/L is a finite abelian group.

In fact, if we write B as a symmetric matrix in terms of a minimal set of generators of L,

then the order of AL is equal to |det(B)|. The bilinear form B can be extended to L∗×L∗

taking values in Q. If L is even, this induces a finite quadratic form qL : AL → Q/2Z.
The minimal number of generators of AL is called the length of L. If AL is trivial,

L is called unimodular. For a prime number p, L is called p-elementary if AL ≃ (Z/pZ)a
for some a ∈ N0; in this case, a is the length of AL.

Two lattices L and K are said to be orthogonal, if there exists an even unimodular
∼lattice S such that there is a primitive embedding L ⊂ S and L⊥ = K. Orthogonality willS

be a key ingredient in the definition of mirror symmetry for K3 surfaces. The following

fact will also be useful.

Proposition 1.1 (cf. [27, Corollary 1.6.2]). Two even lattices L and K are or-
∼thogonal if and only if qL = −qK .

We recall the definition of several lattices that we will encounter later. The lattice
1U is the hyperbolic lattice of rank 2 whose bilinear form is given by the matrix ( 0 ).1 0

The lattices An, Dm, E6, E7, E8, n ≥ 1,m ≥ 4 are the even negative definite lattices

associated to the respective Dynkin diagrams. For n ≥ 1, the lattice An has rank n and

its discriminant group is Z/(n+ 1)Z. If p is prime, Ap−1 is p-elementary (with a = 1).
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For m ≥ 4, the lattice Dm has rank m and its discriminant group is Z/2Z⊕Z/2Z for m

even, and Z/4Z for m odd. Finally, E6, E7, E8 have ranks 6, 7, and 8 and discriminant

groups of order 3, 2, and 1, respectively.

For p ≡ 1 (mod 4) the lattice Hp is the hyperbolic even lattice of rank 2, whose

bilinear form is given by the matrix ( )
(p− 1)/2 1

Hp = .
1 −2

The discriminant group of Hp is Z/pZ.
There are two non–isomorphic hyperbolic lattices of rank 2 with discriminant group

Z/9Z defined by the matrices( ) ( )
−2 1 −4 5

L9 = , M9 = .
1 4 5 −4

Following [8] we recall that Tp,q,r with p, q, r ∈ Z is the lattice determined by a

graph which has the form of a T , and p, q, r are the respective lengths of the three legs.

The rank of Tp,q,r is p+q+r−2 and the discriminant group has order pqr−pq−qr−pr.

Given a lattice L, we denote by L(n), the lattice with the same rank as L, but whose

values under the bilinear form B are multiplied by n.

Many even lattices are uniquely determined by their rank and the discriminant qua-

dratic form. To make this statement precise, we introduce the following finite quadratic

forms. The notation follows [8] and the results are proven in [27].
ϵWe define three classes of finite quadratic forms, wp,k, uk, vk as follows:

1. For p ̸= 2 prime, k ≥ 1 an integer, and ϵ ∈ {±1}, let a be the smallest even integer
ϵthat has ϵ as quadratic residue modulo p. Then we define wp,k : Z/pkZ → Q/2Z

via wϵ (1) = ap−k.p,k

ϵ2. For p = 2, k ≥ 1 and ϵ ∈ {±1,±5}, we define w : Z/2kZ → Q/2Z on the2,k
ϵgenerator via w2,k(1) = ϵ · 2−k.

3. For k ≥ 1 an integer, we define the forms uk and vk on Z/2kZ × Z/2kZ via the

matrices: ( ) ( )
2−k0 2 1

uk = , vk = 2−k .
2−k 0 1 2

∼For example, if we consider the lattice L = A2, then AL = Z/3Z and qL has value
∼ 14/3 on the generator. Thus qL = w3,1.

ϵTheorem 1.2 (cf. [27, Theorem 1.8.1]). The forms wp,k, uk, vk generate the semi-

group of finite quadratic forms.

In other words every finite quadratic form can be written (not uniquely) as a direct
ϵsum of the generators w Relations can be found in [27, Theorem 1.8.2].p,k, uk, vk.
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For a finite quadratic form q, and a prime number p, we denote q restricted to the

p-component (Aq)p of A by qp. The following results describe the close link between

discriminant quadratic forms and even lattices.

Theorem 1.3 (cf. [27, Theorem 1.13.2]). An even lattice S with invariants

(t+, t−, q) is unique if, simultaneously,

1. t+ ≥ 1, t− ≥ 1, t+ + t− ≥ 3;

ϵ′2. for each p ̸ ) or qp ∼ ϵ ⊕ w ⊕ q′ ;= 2, either rankS ≥ 2 + l((Aq = w)p p,k p,k p

3. for p = 2, either rankS ≥ 2 + l((Aq)2) or one of the following holds

∼ ′ ∼ ′ ∼ ϵ ′q2 = uk ⊕ q2, q2 = vk ⊕ q2, q2 = w2,k ⊕ w2
ϵ′

,k ⊕ q2.

Corollary 1.4 (cf. [27, Corollary 1.13.3]). An even lattice S with invariants

(t+, t−, q) exists and is unique if t+ − t− ≡ sign q (mod 8), t+ + t− ≥ 2 + l(Aq), and

t+, t− ≥ 1.

Corollary 1.5 (cf. [27, Corollary 1.13.4]). Let S be an even lattice of signature

(t+, t−). If t+ ≥ 1, t− ≥ 1 and t+ + t− ≥ 3 + l(AS), then S ∼= U ⊕ T for some lattice T .

In Table 1, we list the discriminant form associated to each of the lattices appearing

in our calculations (see Sections 4, 5). A complete description can be found in [8,

Appendix A].

Table 1. Lattices and forms.

L signL qL L signL qL L signL qL

U (1,1) trivial D6 (0,6) (w1
2,1)

2 T4,4,4 (1,9) v2
U(2)

A1

(1,1)

(0,1)

u

w−1
2,1

D9

E6

(0,9)

(0,6)

w−1
2,2

w−1
3,1

T3,4,4

T2,5,6

(1,8)

(1,10)

w5
2,3

w−5
2,3

A2 (0,2) w1
3,1 E7 (0,7) w1

2,1 ⟨2⟩ (1,0) w1
2,1

A3

A1(2)

D4

D5

(0,3)

(0,1)

(0,4)

(0,5)

w5
2,2

w−1
2,2

v

w−5
2,2

E8

H5

L9

M9

(0,8)

(1,1)

(1,1)

(1,1)

trivial

w−1
5,1

w1
3,2

w−1
3,2

⟨4⟩
⟨8⟩
⟨−8⟩

(1,0)

(1,0)

(0,1)

w1
2,2

w1
2,3

w−1
2,3

Let L′ be an overlattice of the lattice L. We call HL′ := L′/L. By the chain of

embeddings L ⊂ L′ ⊂ (L′)∗ ⊂ L∗ one has HL′ ⊂ AL and AL′ = ((L′)∗/L)/HL′ .

Proposition 1.6 (cf. [27, Proposition 1.4.1]). The correspondence L′ ↔ HL′

is a 1:1 correspondence between even overlattices of finite index of L and qL-isotopic

subgroups of AL, i.e., subgroups on which the form qL is 0. Moreover, HL
⊥
′ = (L′)∗/L

and qL′ = (qL|H⊥ )/HL′ .
L′
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1.3. K3 lattices.

Let X be a K3 surface. It is well-known that H2(X,Z) is an even unimodular lattice

of signature (3, 19). As such, it is isometric to the K3-lattice LK3 = U3 ⊕ (E8)
2.

We let

SX = H2(X,Z) ∩H1,1(X,C)

denote the Picard lattice of X in H2(X,Z) and TX = S⊥ denote the transcendentalX

lattice.

Let σ be a non-symplectic automorphism of X. We let SX(σ) ⊆ H2(X,Z) denote

the σ∗-invariant sublattice of H2(X,Z):

SX(σ) = {x ∈ H2(X,Z) : σ∗x = x}.

One can check that it is a primitive sublattice of H2(X,Z). In fact, SX(σ) is a primitive

sublattice of SX and in general SX(σ) ⊊ SX . We let TX(σ) = SX(σ)⊥ denote its

orthogonal complement in H2(X,Z). The signature of SX(σ) is (1, t) for some t ≤ 19,

i.e., SX(σ) is hyperbolic.

2. Mirror symmetry.

2.1. Mirror symmetry for K3 surfaces.

Mirror symmetry for a Calabi–Yau manifold X and its mirror X∨ can be thought of

as an exchanging of the Kähler structure on X for the complex structure of X∨. Thus,

a first prediction of mirror symmetry is the rotation of the Hodge diamond:

Hp,q(X,C) ∼= Hq,N−p(X,C)

where N is the dimension of X.

For K3 surfaces, however, the Hodge diamond is symmetric under the rotation men-

tioned above. So we need to consider a refinement of this idea. This is accomplished

by the notion of lattice polarization. Roughly, we choose a primitive lattice M σ→ SX ,

which plays the role of the Kähler deformations, and the mirror lattice M∨, which we

now define, plays the role of the complex deformations. We will refer to this formulation

of mirror symmetry simply as LPK3 mirror symmetry.

Following [17], let X be a K3 surface and suppose that M is a lattice of signature

(1, t). If j:M σ→ SX is a primitive embedding into the Picard lattice of X, the pair (X, j)

is called an M -polarized K3 surface. There is a moduli space of M -polarized K3 surfaces

with dimension 19− t.

We will not be concerned about the embedding. As in [14], we will call the pair

(X,M) an M -polarizable K3 surface if such an embedding j exists. Note that for an

M -polarizable K3 surface (X,M), the lattice M naturally embeds primitively into LK3.

Definition 2.1. Let M be a primitive sublattice of LK3 of signature (1, t) with
∼t ≤ 18 such that M⊥ = U ⊕ M∨. We define M∨ to be (up to isometry) the mirrorLK3

1lattice of M .

1As in [14], our definition in this restricted setting is slightly coarser than the one used by Dolgachev in
[17], since we do not keep track of the embedding U '→ Ml and instead only consider Mv up to isometry.
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By Theorem 1.3 this definition is independent of the embedding M into LK3. Fur-

thermore under some conditions, (see e.g., Corollary 1.5 and Theorem 1.3) this definition

is also independent of the embedding U into M⊥. One can check that these conditions

are satisfied for the lattices we consider here.

Note that M∨ also embeds primitively into LK3 and has signature (1, 18− t). Fur-
∼ ∼thermore, qM = −qM∨ . One easily checks that (M∨)⊥ = U ⊕M .LK3

Given (X,M) an M -polarizable K3 surface and (X ′,M ′) an M ′-polarizable K3
′surface, with M and M primitive sublattices of SX and SX′ , resp., we say that (X,M)

∨′and (X ′,M ′) are LPK3 mirrors if M = M∨ (or equivalently M = (M ′) ).

Notice that if M has rank t + 1, then the dimension of the moduli space of M∨

polarized K3 surfaces is 19− (18− t) which agrees with the rank of M . Returning to the

question of Kähler deformations and complex deformations, we see that this definition of

mirror symmetry matches the idea behind rotation of the Hodge diamond, as mentioned

earlier.

2.2. Quasihomogeneous polynomials and diagonal symmetries.

We recall a few facts and definitions (cf. [14] for details). A quasihomogeneous map

of degree d with integer weights w1, w2, . . . , wn is W : Cn → C such that for every λ ∈ C,

W (λw1x1, λ
w2x2, . . . , λ

wnxn) = λdW (x1, x2, . . . , xn).

One can assume gcd(w1, w2, . . . , wn) = 1 and say W has the weight system

(w1, w2, . . . , wn; d). Given a quasihomogeneous polynomial W : Cn → C with a criti-

cal point at the origin, we say it is non-degenerate if the origin is the only critical point

of W and the fractional weights w1/d, . . . , wn/d of W are uniquely determined by W .

A non-degenerate quasihomogeneous polynomial W (also called potential in the

literature) is invertible if it has the same number of monomials as variables.∑ ∏n n aijIf W is invertible we can rescale variables so that W = . Thisi=1 j=1 xj

polynomial can be represented by the square matrix AW = (aij), which we will call the

exponent matrix of the polynomial. Since W is invertible, the matrix AW is an invertible

matrix.

The group GW of diagonal symmetries of an invertible polynomial W is

GW = {(c1, c2, . . . , cn) ∈ (C∗)n : W (c1x1, c2x2, . . . , cnxn) = W (x1, x2, . . . , xn)}.

Observe that, given γ = (c1, c2, . . . , cn) ∈ GW , the ci’s are roots of unity. Thus,

one can consider GW as a subgroup of (Q/Z)n, using additive notation and identifying

(c1, c2, . . . , cn) = (e2πig1 , e2πig2 , . . . , e2πign) with (g1, g2, . . . , gn) ∈ (Q/Z)n. Observe that

the order of GW is |GW |= det(AW ).

Since W is quasihomogeneous, the exponential grading operator jW =

(w1/d,w2/d, . . . , wn/d) is contained in GW . We denote by JW the cyclic group of order d

generated by jW : JW = ⟨jW ⟩. Moreover, each γ = (g1, . . . , gn) define a diagonal matrix

and thus GW is embedded in GLn(C). We define

SLW := GW ∩ SL(n,C),
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i.e., γ = (g1, . . . , gn) ∈ SLW if and only if i gi ∈ Z. The group SLW is called the

symplectic group since, by [3, Proposition 1], an automorphism σ ∈ GW is symplectic if

and only if detσ = 1, that is, if and only if σ ∈ SLW .

2.3. K3 surfaces from (W,G).

Reid (in an unpublished work) and Yonemura [32] have independently compiled

a list of the 95 normalized weight systems (w1, w2, w3, w4; d) (“the 95 families”) such

that P(w1, w2, w3, w4) admits a quasismooth hypersurface of degree d whose minimal

resolution is a K3 surface. We consider one of these weight systems (w1, w2, w3, w4; d)

and an invertible quasihomogeneous polynomial of the form

mW = x + f(x2, x3, x4). (1)1

Moreover, let G be a group of symmetries such that JW ⊆ G ⊆ SLW and let GG = G/JW .

The polynomial W defines a hypersurface YW,G ⊂ P(w1, w2, w3, w4)/ GG and one shows

that the minimal resolution XW,G of YW,G is a K3 surface (see [3], [14]).

The group GW acts on YW,G via automorphisms, which extend to automorphisms

on the K3 surface XW,G. The given form of W ensures that the K3 surface XW,G admits

a purely non-symplectic automorphism of order m:

σm : [x1 : x2 : x3 : x4] 7→ [ζmx1 : x2 : x3 : x4]

where ζm is a primitive m-th root of unity. With additive notation, it is σm =

(1/m, 0, 0, 0).

2.4. BHK mirror symmetry.

Now we can describe the second relevant formulation of mirror symmetry com-

ing from mirror symmetry for Landau–Ginzburg models and which we call BHK (from

Berglund–Hübsch–Krawitz) mirror symmetry. This particular formulation of mirror sym-

metry was developed initially by Berglund–Hübsch in [10], and later refined by Berglund–

Henningson in [9] and Krawitz in [23]. Because of the LG/CY correspondence and a

theorem from Chiodo–Ruan [12], this mirror symmetry of LG models can be translated

into mirror symmetry for Calabi–Yau varieties (or orbifolds).∑ ∏n n aijWe consider (W,G) with W invertible and W = and define anotheri=1 j=1 xj

pair (WT , GT ), called the BHK mirror. We first define the polynomial WT as

n n∑ ∏
WT = x

a
j
ji ,

i=1 j=1

i.e., the matrix of exponents of WT is AT By the classification of invertible polynomialsW .

(cf. [24, Theorem 1]), WT is invertible.

Next, using additive notation, one defines the dual group GT of G as

GT =
{
g ∈ GWT | gAWhT ∈ Z for all h ∈ G

}
. (2)

The following useful properties of the dual group can be found in [3, Proposition 3]:
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Proposition 2.2 (cf. [3, Proposition 3]). Given G and GT as before, one has :

1. (GT )T = G.

2. If G1 ⊂ G2, then GT ⊂ GT and G2/G1 =∼ G1
T /G2

T .2 1

3. (GW )T = {0}, ({0})T = GWT .

4. (JW )T = SLWT . In particular, if JW ⊂ G, then GT ⊂ SLWT .

Given the pair (W,G) withW invertible with respect to one of the 95 weight systems,

we associated to it the K3 surface XW,G. One can check that in this case the weight

system of WT also belongs to the 95. By the previous result, JWT ⊆ GT ⊆ SLWT , so

that XWT ,GT is again a K3 surface. We call XWT ,GT the BHK mirror of XW,G.

2.5. Main theorem.

We have described two kinds of mirror symmetry for K3 surfaces: LPK3 mirror

symmetry and BHK one. Since mirror symmetry describes a single physical phenomenon,

we expect the two constructions to be compatible in situations where both apply. We

will now state our main theorem, which shows that BHK and LPK3 mirror symmetry

agree for the K3 surfaces XW,G, when W is of the form (1). When no confusion arises,

we will denote the mirror K3 surfaces XW,G and XWT ,GT simply by X and XT .

Consider the data (W,G, σm), where

• W is an invertible polynomial of the form (1) whose weight system belong to the

95 families of Reid and Yonemura,

• σm = (1/m, 0, 0, 0) is the non-symplectic automorphism of order m,

• G is a group of diagonal symmetries of W such that JW ⊆ G ⊆ SLW .

By Section 1.3, the invariant lattice SX(σm) is a primitive sublattice of SX and

(XW,G, SX(σm)) is a SX(σm)-polarizable K3 surface. Let r be the rank of SX(σm).

The BHK mirror is given by (WT , GT , σT ), where σT is the non-symplectic automor-m m

phism of order m on XWT ,GT . Notice that σm and σT have the same form, namelym

(1/m, 0, 0, 0), but they act on different surfaces.

Theorem 2.3. Suppose m ̸= 4, 8, 12. If W is a polynomial of the form (1), quasi-

homogeneous with respect to one of the 95 weight systems for K3 surfaces as in Sec-

tion 2.3 and G is a group of diagonal symmetries satisfying JW ⊆ G ⊂ SLW , then( )
XWT ,GT , SXT (σT ) is an LPK3 mirror of (XW,G, SX(σm)).m

The theorem is proved by showing that

)∨ ∼SX(σm = SXT (σT ).m

As we have seen in Section 1.2, this amounts to checking that the invariants (r, qSX(σm))
T T ∼for XW,G and (r , qSXT (σT )) for XWT ,GT satisfy r = 20− r and qSX(σm) = −qSXT (σT ).m m

Thus, the heart of the proof is determining qSX(σm) (or equivalently in our case SX(σm)).

In the following section, we will describe how this is done. It involves computing the



413

413(85)

BHK mirror symmetry for K3 surfaces with non-symplectic automorphism

invariant lattice and its overlattices. We list the results in tables in Section 5. Un-

fortunately, our method does not work for m = 4, 8, 12 due to the presence of many

overlattices, so that we cannot exactly pinpoint the invariant lattice.

3. Methods.

)∨ ∼In the setting of Theorem 2.3, one has to show that SX(σm = SXT (σT ). Wheneverm

m = p a prime number, Theorem 2.3 was proved using a similar method in [3] for m = 2

and [14] for other primes. There is not a general method of proof in either article; instead

the theorem is checked in every case.

In [3] and [14] there are several tools introduced in order to facilitate computation of

the invariant lattice. The proof we give here follows roughly the same idea, however the

methods used in the previous articles for computing SX(σm) are no longer valid, when

m is not prime. In order to illustrate the differences, we highlight briefly the method

used in case of p prime. Then we will describe the proof of the theorem, in case m is not

prime.

3.1. Method for m = p prime.

As mentioned, the argument given in [3] and [14] essentially boils down to deter-

mining the invariant lattice SX(σp) for X = XW,G. The method for determining this

lattice relies on the following powerful theorems.

Theorem 3.1 ([6]). Given a K3 surface with a non-symplectic automorphism σ

of order p, a prime, the invariant lattice SX(σ) is p-elementary, i.e., ASX(σ)
∼ .= (Z/pZ)a

Theorem 3.2 ([27], [30]). For a prime p ̸= 2, a hyperbolic, p-elementary lattice

L with rank r ≥ 2 is completely determined by the invariants (r, a), where a is the length

of L. An indefinite 2-elementary lattice is determined by the invariants (r, a, δ), where

δ ∈ 0, 1 and δ = 0 if the discriminant quadratic form takes values 0 or 1 only and δ = 1

otherwise.

By Proposition 1.1, the orthogonal complement in LK3 of a p-elementary lattice with

invariants (r, a) is a p-elementary lattice with invariants (22 − r, a). For both a given

2-elementary lattice and its orthogonal complement, the third invariant δ agrees. In the

setting of Theorem 2.3, Corollary 1.5 shows that we also have SX(σp = U ⊕M where)⊥ ∼
M is a hyperbolic p-elementary lattice with invariants (20 − r, a). Thus, for p ̸= 2 it

T Tis enough to verify that (r, a) for XW,G and (r , aT ) for XWT ,GT satisfy r = 20 − r

and a = aT . For p = 2 the third invariant δ must also be compared, which the authors

checked in [3].

In order to compare (r, a), we first look at the topology of the fixed point locus.

Theorem 3.3 (cf. [6], [28]). Let X be a K3 surface with a non-symplectic auto-

morphism σ of prime order p ̸ 2. Then the fixed locus Xσ is nonempty, and consists=

of either isolated points or a disjoint union of smooth curves and isolated points of the

following form :

Xσ = C ∪R1 ∪ · · · ∪Rk ∪ {p1, . . . , pn}. (3)
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Here C is a curve of genus g ≥ 0, Ri are rational curves and pi are isolated points.

If p = 2, then the fixed locus is either empty, the disjoint union of two elliptic curves,

or is of the form (3) with n = 0.

In [3] and [14], σp always fixes a curve. Furthermore, the case of two elliptic curves

does not appear in this setting described there. Therefore, the fixed locus is determined

by the invariants (g, k, n). In [6], the authors give formulas to calculate (r, a) given

(g, k, n) for each prime p (see [6, Theorem 0.1]). Thus, in order to prove Theorem 2.3

for p prime, one first computes the invariants (g, k, n), and from them computes the

invariants (r, a) (if p = 2, additional computation are required to obtain δ). Then one

compares the invariants for BHK mirrors as described above.

3.2. Method for m not prime.

If m is not prime, SX(σm) is no longer p-elementary for any prime p. The best we

can say about ASX(σ) is that it is a subgroup of (Zm)a, as in the following lemma.

Lemma 3.4. Let σ be a purely non-symplectic automorphism of order m. The

discriminant group ASX(σ) is a subgroup of (Zm)a for some a ≥ 0.

Proof. We know ASX(σ) is a finite abelian group. Thus, it suffices to show

that for each x ∈ ASX(σ), we have mx = 0. By Maschke’s theorem, the vector space

H2(X,Z)⊗Q is completely reducible. Therefore, it decomposes as a sum of irreducible

Q[Z/mZ]-modules. Each direct summand is of the form Q(ξd) where d|m. So we have∑m−1
(σ∗)i = 0 on TX(σ). Now we have ASX(σ) = H2(X,Z)/(SX(σ)⊕TX(σ)) ∼i=0

∼ = ATX(σ),

and these automorphisms commute with the action of σ∗. Thus, σ∗ acts by identity on
m−1

ATX(σ), but since
∑

i=0 (σ∗)i = 0 on TX(σ), mx = 0 (mod TX(σ)) for x ∈ TX(σ)∗. □

We see that ASX(σm) can have any possible order dividing a power of m. Even

in the best of situations (e.g., ASX(σm
∼ Za ) the lattice is no longer determined by) = m

(r, a). Consider, for example, the two lattices L1 = U ⊕ D2 and L2 = U ⊕ A3 ⊕ D7:5
3they both have discriminant group Z2 and (r, a) = (12, 2), but qL1 = (w2,2)

2 whereas4
1 5qL2 = w2,2 ⊕ w2,2. In other words, we have two different lattices with the same rank,

and isomorphic discriminant groups (though different discriminant quadratic forms).

It is true, however, that the lattice is determined in all cases considered here by

the rank and the discriminant quadratic form (cf. Corollary 1.4). Thus, rather than

computing (r, a) it suffices to compute (r, qSX(σm)). We will be able to compute these

invariants for all K3 surfaces XW,G with W as in (1) and G ⊂ SLW except in case

m = 4, 8, 12.

The first step to compute SX(σm) is to compute its rank r. In order to do so, we

describe an important set of curves on XW,G, namely the orbits of the exceptional curves.

Consider the hypersurface YW,G as in Section 2.3, and the resolution of singularities

XW,G → YW,G. Because W is nondegenerate, all of the singularities of YW,G lie on the

coordinate curves.

Let E denote the set of the exceptional curves on XW,G. Because σm leaves the

coordinate curves invariant, the action of σm on XW,G induces an action of σm on E .
Given an exceptional curve E, let GE denote the isotropy group for E and let E/σm
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denote the set of orbits of this action. Now we set

m−1∑1
σibE = E.m|GE | i=0

This is simply the sum of all curves in the orbit of E. In particular, if E is fixed by σm,

then bE = E. We can use this topology to determine r:

Lemma 3.5. The rank r of SX(σ) is equal to 1 plus the number of orbits of excep-

tional curves in the blow-up XW,G → YW,G, i.e.,

rankSX(σm) = 1 + |E/σm|.

Proof. Consider the quotient XW,G/σm. We have the following diagram

XW,G YW,G

π π

P(w2, w3, w4)XW,G/σm

where the bottom horizontal arrow is obtained by blowing up isolated singular points

of P(w2, w3, w4) and singular points on the branch locus {f(x2, x3, x4) = 0} ⊂
P(w2, w3, w4). Notice in the quotient P(w2, w3, w4) ∼ , the branch locus corre-= YW,G/σm

sponds to the curve x1 = 0 in YW,G. Furthermore, each orbit of exceptional curves will

correspond to exactly one exceptional curve of the bottom horizontal map.

Since h2(P(w2, w3, w4)) = 1 (see e.g., [21] or [18]), and H2(XW,G/σm,Q) is gener-

ated by the exceptional curves and the pullback from P(w2, w3, w4), we have

dimH2(XW,G/σm,Q) = 1 + |E/σm|.

Finally, we know by [26] that H2(XW,G/σm,Q) = H2(XW,G,Q)σm . This implies

the result. □

Remark. Although H2(XW,G,Q)σm is generated by the orbits of the exceptional

curves and one coordinate curve, this is not always the case for the lattice SX(σm).

The second step in determining (r, q) requires another set of curves. Let K be the

set of smooth irreducible components of (the strict transforms of) the coordinate curves

xi = 0 (we omit curves that have worse singularities than separating nodes between two

or more smooth components). As before σm acts on this set. For C ∈ K, we define GC

as the isotropy group, K/σm as the set of orbits, and

m−1∑1
bC = σi C.m|GC | i=0

Notice that σm leaves the coordinate curves invariant, so bC is the sum of some of the

smooth irreducible components of one of the coordinate curves. In cases where the
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coordinate curve is smooth, bC is the coordinate curve. There are cases, however, where

the coordinate curve is not irreducible.

Finally we define the set of orbit curves B = {bE | E ∈ E/σm} ∪ {bC | C ∈ K/σm}.
Let LB denote the sublattice of SX generated by B. This lattice is clearly a sublattice

of S(σm) since σm fixes each of the generators. Therefore, rankLB ≤ r. By Lemma 3.5,

we see that rankLB = r. Hence S(σm) is an overlattice of LB. Because of this explicit

description, we can actually determine the lattice LB in each case. (See the appendix for

Magma code, which allows us to compute LB.)

Determining (r, q) now breaks into four different cases, each of which requires a differ-

ent method. We now describe those four methods. In most cases (except for Method II),

we show LB = SX(σm).

3.2.1. Method I.

The first method is the most common. Using Proposition 1.6, we can determine all

of the overlattices of LB. It often happens that the discriminant group has no isotropic

subgroups, and so there are no nontrivial overlattices. Since SX(σm) is an overlattice of

LB, we can conclude SX(σm) = LB. An example of this situation is shown in Example 4.1.

This covers all possibilities when m = 18, 20, 24, 30, 42, and parts of the other orders,

namely whenever m and r are one of the following possibilities: m = 10, r = 3, 8, 12, 17;

m = 9, r = 4, 16; and m = 6, r = 1, 4, 6, 9, 11, 14, 16, 19.

3.2.2. Method II.

The second method does not use LB. Instead, we notice that some power σk hasm

order p for some prime p and SX(σm) ⊂ SX(σk ) is a primitive embedding of lattices. Ifm

it happens that rankSX(σm) = rankSX(σk ), then indeed SX(σm) = SX(σk ). In thism m

case SX(σm) is p-elementary and we can use the methods in Section 3.1 to compute it.

See Example 4.2 for an example of this situation.

This covers the remaining cases with m = 6, 10, 14, 15, 22 and the case with m = 9,

r = 16. That leaves exactly four cases, namely m = 9, r = 8, 12 and both cases with

m = 16.

3.2.3. Method III.

The third method is for m = 9, r = 8 and m = 16, r = 9. For this method, we

consider the family of K3 surfaces of Belcastro in [8]. Belcastro has computed the Picard

lattice of the general member of a family of K3 surfaces. Each invertible polynomial W

that we consider in this article yields a special member of such a family, but often with

bigger Picard lattice. We will use the Picard lattice of the general member of the family

to show that LB is primitively embedded into SX(σm).

To do this, we consider the family of K3 surfaces defined by polynomials quasiho-

mogeneous with respect to each of the weight systems (3, 3, 2, 1; 9) and (8, 4, 3, 1; 16),

respectively (these weight systems are numbered 18 and 37, resp.). Let Xη denote the

general member of this family and let X = XW,G. In the construction of each family in

question, one must resolve the singularities of a family of hypersurfaces in P(w1, . . . , w4).

In doing so, we see that the same generators of LB also generate SX� , giving us a canonical

isomorphism
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=
LB−→SX .

In [19, Remark 2.13], Huybrechts showed, that since X is a special member of this

family, we get an primitive embedding

sp : SX σ→ SX

making the following diagram commute

LB SX

∼=
sp

SX¯

Figure 1.

∼Therefore, SX/LB = SX/SX , and since the latter is a free abelian group, the lattice

LB is a primitive sublattice of SX . Since SX(σm)/LB ⊂ SX/LB and the latter is a free

abelian group, we see that LB is a primitive sublattice of SX(σm). Since they have the

same rank, we have LB = SX(σm). We illustrate this method in Example 4.3.

3.2.4. Method IV.

This leaves two cases: m = 16, r = 11 and m = 9, r = 12. As each of these cases

is different we will work out each case in Examples 4.5 and 4.6. This method involves

finding SXW,G
and showing explicitly that LB embeds primitively into SXW,G

. Then, as

in Method III, we can conclude that LB = SX(σm).

Remark. What we see when employing these four methods is that the invariant

lattice seems to be the lattice LB. This is certainly true for every invariant lattice

computed by Methods I, III and IV, though it also seems to be true for each of the others

(including the invariant lattice for the automorphisms of prime order and of order 4, 8,

12), though we have not checked every case explicitly.

In what follows, we will make use of the following lemma.

Lemma 3.6 (cf. [5], [15]). Let R1, R2, . . . , Rs be a tree of smooth rational curves on

a K3 surface X and σ a non-symplectic automorphism of finite order on X leaving each of

the Ri invariant. Then the intersection points of the Ri’s are fixed by the automorphism

and it suffices to know the action at one intersection point to know the action on the

entire tree.

We will also make use of the following formula, giving the genus of a curve of degree d

in weighted projective space P(w1, w2, w3) in order to compute the genus of the coordinate

curves. This formula can be found, e.g., in [20, Theorem 12.2].
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3

1 d2 ∑ gcd(wi, wj) ∑ gcd(wi, d)
g(C) = − d + − 1 .

2 w1w2w3 wiwj wi
1≤j<i i=1

With the genus, one can also compute self-intersection numbers for curves on a K3 surface

via Riemann–Roch:

2g(C)− 2 = C · C.

3.3. Proof of main theorem.

We now provide the details of the proof of Theorem 2.3. For each K3 surface

XW,G we have the invariants (r, qSX(σm)) for the invariant lattice SX(σm), as discussed

in the previous section. We know the invariant lattice has signature (1, r − 1), and

so the orthogonal complement has signature (2, 20 − r). We check that the conditions
2of Corollary 1.5 are fulfilled so that SX(σm)⊥ ∼ U ⊕ M for some lattice M .= ThisLK3

lattice M is hyperbolic with signature (1, 19 − r) and has discriminant quadratic form

−qSX(σm). One can see from the tables that the conditions of Theorem 1.3 are satisfied.

Hence, there is exactly one lattice with these invariants. To prove the theorem, therefore,

we need simply to check that (20−r,−qSX(σm)) are the invariants for the invariant lattice

SXT (σT ) for XWT ,GT . This can be checked by consulting the tables in Section 5. Thism

concludes the proof.

Tables 2–13 contain all possible invertible polynomial of the form (1) with non-

symplectic automorphism of order m, and for each polynomial, we list the orders of the

possible groups G/JW satisfying JW ⊂ G ⊂ SLW . In most cases SLW /JW is cyclic, so

the properties of GT make it clear what the dual group is. However, for two examples,

one can see by the multiplicity of subgroups with the same order that the group SLW /JW
3 3 6 2 4 6 12is not cyclic. These two examples are x +y +z +w6 (number 3d) and x +y +z +w

(number 8d) in Table 13. In these cases, we will clear up any ambiguities in the following

sections.

From now on we will make a change of notation from (x1, x2, x3, x4) to (x, y, z, w) for

the variables of W , so that the variables are arranged with the weights in nonincreasing

order. In other words, it is possible that x1 corresponds to any of x, y, z, or w. This

convention is also used in tables of Section 5.

Remark. It is possible that a given K3 surface admits a purely non-symplectic

automorphism of different orders. It turns out that it does not matter which automor-

phism one uses to exhibit LPK3 mirror symmetry, the notion still agrees with BHK

mirror symmetry, in the sense of Theorem 2.3, as long as the defining polynomial is of

the proper form (1). We expect that the theorem still holds for K3 surfaces that do not

take the form of (1), but that is a topic for further investigation.

2In one case, the conditions are not fulfilled, namely m = 6, r = 1. However, in this case, we know
the lattice U ⊕ ⟨4⟩ has the given invariants, and by Corollary 1.4 this is the only such lattice.
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4. Examples.

In this section we will first give examples to illustrate each of the methods that was

used to determine SX(σm). Then we will describe the subgroups in the two cases where

SLW /JW is not cyclic.

Example 4.1. Method I:

This first example will illustrate Method I for determining SX(σm). Let us consider

the K3 surface with equation

2 3 9W = x + y + z + yw12 = 0

in the weighted projective space P(9, 6, 2, 1) with degree 18. This is number 12b in

Table 12. There are two non-symplectic automorphisms of interest σ2 : (x, y, z, w) 7→
(−x, y, z, w) and σ9 : (x, y, z, w) 7→ (x, y, µ9z, w). The invariant lattice SX(σ2) was dealt

with in [3], so we focus on σ9.

Here |GW |= 36 · 18, |JW |= 18 and the weight system for the BHK mirror is

(18, 11, 4, 3; 36) so that [GW : SLW ] = 36. Thus, |SLW /JW |= 1.

Looking at the action of C∗ on the weighted projective space P(9, 6, 2, 1), we find

the following isotropy:

2µ3 : fixes z = w = 0, x + y3 = 0,

3µ2 : fixes x = w = 0, y + z9 = 0.

The first row provides a single point with Z/3Z isotropy (A2 singularity), and the sec-

ond provides three points each with Z/2Z isotropy (3 A1’s). Their resolution gives the

configuration of curves on XW,G depicted in Figure 2. In this depiction, we have not

indicated the three intersection points between Cx and Cz.

Figure 2. Resolution of singularities on XW .

The set E consists of these five exceptional curves. Denote by E1, E2 and E3 the

three A1 fibers, and E4 and E5 the two curves in the A2 fiber. Looking at the form of

W , we see that the curves Cx = {x = 0}, Cz = {z = 0} and Cw = {w = 0} are smooth.

The curve Cy = {y = 0} is not smooth. Thus, the set K consists of these three smooth

curves. The curve Cx has genus 7, Cz has genus 1, and Cw has genus 0.

There are two important representatives of the coset σ9JW in GW which will help

us compute the fixed locus for σ9, namely (0, 0, 1/9, 0) and (0, 2/3, 0, 4/9). These rep-

resentatives show us that the curve Cz = {z = 0} is fixed and the point defined by
2 9{w = y = 0, x + z = 0} is also fixed. Because Cz is fixed, E4 and E5 are invariant

(though not fixed pointwisely). The point of intersection of Cw and the A2 exceptional

Cz

Cw

Cx
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fiber and this other point are the only fixed points on Cw. Thus, the three A1 singulari-

ties are permuted by the action. By Lemma 3.5, since there are three orbits, SX(σ9) has

rank 4.

We now compute the lattice LB, generated by B = {E1+E2+E3, E4, E5, Cx, Cz, Cw}.
Since there are six generators, two of them are redundant, for example Cx and Cz.

Consider the lattice L generated by E1 + E2 + E3, E4, E5, and Cw. This lattice has

bilinear form 
−6 0 0 3

0 −2 1 0

0 1 −2 1

3 0 1 −2


which has discriminant form ω3

1
,1. By Proposition 1.6, there are no non-trivial even

overlattices of this lattice, hence L = LB = SX(σ9). Thus, we have the invariants
1 = U ⊕A2.(r, qSX(σ9)) = (4, w3,1). In fact, SX(σ9) ∼

Remark. This method also yields some other interesting facts regarding the

Picard lattice of these surfaces. In [8], Belcastro computes the Picard lattice for a

generic hypersurface with these weights and degree as U ⊕ D4. However, if we look at

the non-symplectic automorphism σ9
3, we can compute the invariants g = 1, n = 4, k = 1,

and therefore r = 10, a = 4 for the invariant lattice, giving us the invariant lattice

SX(σ9
3) = U ⊕ A2 ⊕ E6. This shows us in particular, that the Picard lattice of this

surface is bigger than the Picard lattice for a generic quasihomogeneous polynomial with

these weights.

Example 4.2. Method II:

In order to illustrate Method II, we repeat the computations for the BHK mirror of

the previous example:

2 3 9 12WT = x + y w + z + w

with weight system (18, 11, 4, 3; 36). This is number 43a in Table 12. Here again

|SLW /JW |= 1. As before, we also have an involution, but we consider only σ9
T .

Looking at the action of C∗ on C4 and resolving the singularities we have an A10

given by resolving the point (0, 1, 0, 0), 2A2 coming from the two points with y = z = 0

fixed by µ3 and an A1 coming from the point with y = w = 0 fixed by µ2. This time E
has 15 curves and K = {Cx, Cy, Cz} as in Figure 3. Again we do not depict the three

points of intersection between Cx and Cy.

Two relevant representatives of σT in GWT /JWT are (0, 0, 1/9, 0) and (0, 4/9, 0, 2/3).9

From these we see that the curve Cz is fixed. It has genus 0. Furthermore, the exceptional

curve from the A1 singularity at y = w = 0 is fixed pointwisely, as well as one of the

curves in the exceptional A10. Since Cz is fixed, each of the exceptional curves is left

invariant under σ9
T . From Lemma 3.5, the rank of the invariant lattice SXT (σ9

T ) is r = 16.

In this case, we compute the invariant lattice for (σ9
T )3, which is a non-symplectic

automorphism of order 3. The curves Cz and Cy are fixed and have genus 0 and 1,
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Cy

Cz

Cx

Figure 3. Resolution of singularities on XWT .

respectively. Three of the curves on the A10 chain are also fixed, as in Lemma 3.6.

Furthermore, the remaining intersection points of the chains of exceptional curves are

fixed, and an additional point on the A1. Thus, the invariants are (g, k, n) = (1, 4, 7).

Using the results cited in Section 3.1, the invariants for the 3-elementary lattice (σ9
T )3

are (16, 1). Since SXT (σ9
T ) is a primitive sublattice of this 3-elementary lattice, and both

have the same rank, they are equal. Therefore, we have invariants (r, q) = (16, w−1) and3,1

the lattice is SX(σ9) = U ⊕ E6 ⊕ E8.

Comparing the ranks, and noticing that ω3
1
,1 = −ω3

−
,1
1, we see the BHK mirror

matches the LPK3 mirror symmetry.

Example 4.3. Method III:
2 4 4Let W := x + y + yz + w16 with m = 16 in weight system (8, 4, 3, 1; 16). This is

number 37b in Table 8. The order of SLW /JW is 2. This appears to be the same K3

surface investigated in [2, Example 3.2]. Computing singularities we obtain an A2 at the

point (0 : 0 : 1 : 0) and two A3’s at the two points with z = w = 0. Resolving these, we

obtain the configuration of curves showed in Figure 4. The curves Cx and Cz intersect

in four points, which are not depicted. The genus of the curve Cw is 0, the genus of Cz

is 1, the genus of Cx is 6. However, Cy consists of two components, each a copy of P1.

Figure 4. Resolution of singularities for XW .

The automorphism σ16 = (0, 0, 0, 1/16) fixes Cw, and therefore leaves all of the

exceptional curves invariant. Thus, we have |E/σ16|= 8, and r = 9. Furthermore, K
consists of the curves Cw, Cz and the two curves that make up Cy. Using an explicit

form of the intersection matrix, one can check that the lattice LB is actually generated

by the exceptional curves and Cw. This is a lattice of type T3,4,4. The discriminant group
5of T3,4,4 is Z/8Z and the corresponding form q is w2,3. This form has one overlattice,

and so we cannot use Method I. Method II will also not work here.

Cw

Cz
Cx
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In [8], Belcastro computed the Picard lattice for a general member of the family of

K3 surfaces with this weight system, using the same configuration of curves described
∼above, giving us the canonical map LB = T3,4,4 that fits into the diagram in Figure 1.

Thus, LB embeds primitively into SX(σm), and so they are equal, i.e., SX(σ16) = LB
5with invariants (r, q) = (9, w2,3).

Remark. There is another case with the same invariant lattice in the same weight

system, namely number 37a. The reasoning is similar to what we have just outlined.

Finally, we will describe both of the cases requiring what we have called Method IV.

These two cases are similar in that we use the Picard lattice to help determine SX(σm).

We will need the following proposition.

Proposition 4.4 ([27, Proposition 1.15.1]). The primitive embeddings of a lat-

tice L into an even lattice with invariants (m+,m−, q) are determined by the sets

(HL,Hq, γ;K, γK), where HL ⊂ AL and Hq ⊂ Aq are subgroups, γ : qL|HL→ q|Hq is

an isomorphism of subgroups preserving the quadratic forms to these subgroups, K is an

even lattice with invariants (m+ − t+,m− − t−,−δ), where δ ∼= qL ⊕ (−q)|r⊥ , Γγ
' /r'

being the pushout of γ in AL ⊕ Aq, and, finally, γK : qK → (−δ) is an isomorphism of

quadratic forms.

From this proposition, we can determine all primitive embeddings of one even lattice

into another. We will use this in the next example.

Example 4.5. Method IV:

We now consider the BHK dual to the previous example. This is the first entry for

37b in Table 8. As mentioned in the introduction, this provides an example to the case

in [2], where no example could be found. In this case, we have

2 4 4 16WT = W = x + y + yz + w ,

and GT = SLW , and we know |SLW /JW |= 2. In fact the group is generated by

(1/2, 0, 1/2, 0), so we see that the points with x = z = 0 are fixed. Another representative

in the same coset is (1/2, 0, 0, 1/2). Thus, we see that the intersection points on the A2

chain from the previous example are fixed, as well as other point with x = w = 0. The

two A3 chains are permuted by the action. Thus, on XWT ,GT we get the configuration

of curves of Figure 5.

Figure 5. Resolution of singularities on XWT ,GT .

Cw

Cz

Cx
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Using the Riemann–Hurwitz theorem, we can compute the genus of the coordinate

curves. The curve Cx is covered by a curve of genus 6 with 6 fixed points, so it has

genus 2. Similarly, we see that the genus of Cw is 0 and the genus of Cz is 0. The two

components of the curve {y = 0} from the previous example are permuted, to give us Cy

of genus 0.

The non-symplectic automorphism σ16 = (0, 0, 0, 1/16), fixes Cw, and therefore the

chains of exceptional curves intersecting Cw are invariant. It is not difficult to see also

that the four exceptional curves intersecting Cx and Cz are permuted. Thus, r = 11. One

can check that Cz, Cy and Cx are superfluous, giving us a lattice LB with discriminant
−5form w2,3.

There is one isotropic subgroup H and hence one overlattice of LB. By Proposi-

tion 1.6 this overlattice has discriminant form ω2
−
,1
1. Since SX(σ16) is an overlattice of LB,

the two possibilities for SX(σ16) are U ⊕E8⊕A1 or T2,5,6. Using Proposition 4.4 we will

show that U⊕E8⊕A1 does not embed primitively into SX , so that SX(σ16) = T2,5,6.WT ,GT

In [2] Al Tabbaa–Sarti–Taki have computed the Picard lattice for K3 surfaces with

non-symplectic automorphisms of order 16, and found that in our case, the Picard lattice

is U(2)⊕D4⊕E8. This lattice is 2-elementary with u⊕v as discriminant quadratic form.

In particular, this quadratic form takes values 0 or 1 (i.e., δ = 0).

On the other hand, ω2
−
,1
1 has value 3/2 on the generator for Z/2Z. By Proposition 4.4,

a primitive embedding of U⊕E8⊕A1 into the Picard lattice U(2)⊕D4⊕E8 must therefore

correspond to the trivial subgroup. The existence of such a primitive embedding depends

on the existence of an even lattice with invariants (0, 3, u⊕ v ⊕ ω2
1
,1). The length of this

discriminant quadratic form is 5, whereas the rank of the desired lattice is 3, and so no

such lattice exists (see [27, Theorem 1.10.1]).

We conclude that the invariant lattice is SX(σ16) ∼= T2,5,6, which has invariants

(11, ω−5).2,3

Remark. The other case with m = 16, r = 11 is number 58 in Table 8. The

method for computing the invariant lattice in this case is very similar to what we have

just computed. Alternatively, that case can also be computed with Method III.

Example 4.6. Method IV:

The other case that requires Method IV is m = 9, r = 12. This occurs for two of the

K3 surfaces, namely 18a and 18b, both instances using the group SLW . Both of these

cases are similar, so we describe only the first.

Using methods similar to those described in the previous examples, we get the

configuration of curves depicted in Figure 6. For the discussion that follows, we denote

by E1 the exceptional curve in the A5 chain, which intersects Cx.

The automorphism σ9 permutes the three A2 chains (yielding one orbit for each

curve in the chain for a total of 2 orbits), but leaves the other nine exceptional curves,

as well as the coordinate curves, invariant. This gives us r = 12, and we can compute
∼ 1 1the lattice LB = M9 ⊕ A2 ⊕ E8 with discriminant quadratic form w3,1 ⊕ w3,2. There is

one isotropic subgroup of this lattice, corresponding to the overlattice U ⊕ A2 ⊕ E8. So

we must find some way to show that LB is primitively embedded in the Picard lattice,

for then it is the invariant lattice.
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Cz

Cw

Cx

Figure 6. Resolution of curves on XW,G for example 18a.

We can determine the Picard lattice SXW,G . We first notice that σ3 has order 3.9

Furthermore, its fixed locus has invariants (g, k, n) = (0, 3, 7). Therefore its invariant

lattice SX(σ9
3) is a 3-elementary lattice with invariants (16, 3), i.e., it is the lattice U ⊕

1E8⊕3A2, with discriminant quadratic form 3w3,1. Since the transcendental lattice S
⊥
XW,G

has rank divisible by ϕ(9) = 6, SX(σ9
3) is the Picard lattice.

In fact, we will determine a basis for SXW,G
. Consider the set E1 consisting of all

of the exceptional curves (15 of them), and K consisting of all irreducible components

of (the strict transforms of) the coordinate curves. Let B1 = E1 ∪ K. This set generates

. One can check by direct computation ([11]) that Cx and E1 are redundant.SXW,G

Now we consider the set B, generating the lattice LB. Again, we compute that Cx

and E1 are redundant, so we get LB generated by the two orbits from the A2 chains,

the remaining exceptional curves, and Cw and Cz. Two of the generators for LB are just

sums of generators of SXW,G
. Thus, a change of basis shows that SX/LB is a free group

of rank 4, and so LB is primitively embedded.

The other example is similar. Instead of three A2 chains, there are three A1’s. One

can check that the set {y = 0} is composed of three curves, each of genus zero. Each of

these curves intersects one of the A1 curves. These are permuted by the action of σ9. Up

to a relabelling, we obtain the same configuration of curves, and the same Picard lattice.
3 3 6The only cases where SLW /JW is not cyclic are x + y + z +w6 (number 3d) and

2 4 6x + y + z + w12 (number 8d) in Table 13. We analyze them separately.

3 3 6 6Example 4.7. The first polynomial we consider is W = x + y + z + w in

P(2, 2, 1, 1). This is number 3d in Table 13.

In this case the order of SLW /JW is 9 and it results that SLW /JW = Z/3Z ⊕
Z/3Z since there are no elements of order 9. The group JW is generated by jW =

(1/2, 1/3, 1/6, 1/6) and two generators for SLW /JW are g1 = (1/3, 2/3, 0, 0) and g2 =

(1/3, 1/3, 1/3, 0). Also we name g3 = (1/3, 0, 2/3, 0) and g4 = (0, 1/3, 0, 2/3). There are

four subgroups of SLW /JW of order 3, namely Gi = ⟨gi, jW ⟩, i = 1, 2, 3, 4. We can also

observe that GT
1 = G2, G

T
3 = G3 and GT

4 = G4.

Now we consider the non-symplectic automorphism σ6 = (0, 0, 0, 1/6). One may no-

tice, there is another automorphism of order 6, namely (0, 0, 1/6, 0), but due to symmetry

(i.e., exchanging z and w), we must only consider one of them.

Using the same methods as before for each group, we can compute the invariant

lattice for the corresponding K3 surface. In each case, the lattice LB has no overlattices,
1so we can use Method I. When G = G3, the invariant lattice has (r, q) = (10, 4w3,1),

which is self-dual. The same is true for G = G4.
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When G = G1 we get an invariant lattice with rank 16 and the discriminant form is
1v ⊕ w3,1. This is the dual of the invariant lattice we get with the choice G = G2 and so

it proves the theorem for this case.

2 4 6 12Example 4.8. Finally, we examine the polynomial W = x + y + z + w in

P(6, 3, 2, 1). This is number 8d in Table 13. There are non-symplectic automorphisms of

order 2, 4 and 12, but we again focus on the non-symplectic automorphism of order 6:

σ6 = (0, 0, 1/6, 0).

The order of SLW /JW is 4 and since there are no elements of order 4, we conclude

that SLW /JW = Z/2Z⊕ Z/2Z. The elements( ) ( ) ( )
1 1 1 1 1 1

g1 = , 0, , 0 , g2 = 0, , , 0 , g3 = , , 0, 0
2 2 2 2 2 2

each have order 2 and represent different cosets in SLW /JW ; let Gi := ⟨gi, jW ⟩, i = 1, 2, 3.

Observe that GT = G1 while GT = G3.1 2

When G = G1, with Method I we compute the invariant lattice and obtain (r, q) =
−1(10, v ⊕ 4w2,1).

−1 1As for G2, we use again Method I and obtain (r, q) = (14, 2w2,1 ⊕ w3,1), while for
1 −1G3 we get (r, q) = (6, 2w2,1 ⊕ w3,1). Observing they are mirror of each other, we can

conclude that the theorem is proved in this case.

5. Tables.

In each table, we have arranged the surfaces by weight system. Each weight system

is listed by the number assigned to it by Yonemura in [32]. In each weight system,

we have listed all possible invertible polynomials of the form (1) with non-symplectic

automorphism of order m, and for each polynomial, we list the orders of the possible

groups G/JW satisfying JW ⊆ G ⊆ SLW . The invariants (r, qSX(σm)) are then given,

as well as the number of the BHK mirror dual. Finally, we have also indicated which

method was used to determine qSX(σm).
ϵ ϵWhen consulting the tables, it will be helpful to know that w = −w5,1, and that5,1

−1 1 −1 14w = 4w3,1, 4w = 4w The first fact follows simply by definition. The latter two3,1 2,1 2,1.

follow from [27, Theorem 1.8.2].

Table 2. Table for m = 42.

No. Weights Polynomial SL/J G/J (r, q) BHK dual Method

2 3 7 4214 (21,14,6,1;42) x + y + z + w 1 1 (10, ⟨0⟩) 14 I

Table 3. Table for m = 30.

No. Weights Polynomial SL/J G/J (r, q) BHK dual Method

2 3 5 3038 (15,8,6,1;30) x + y z + z + w 1 1 (11, w−1) 50 I2,1
2 3 5 3050 (15,10,4,1;30) x + y + yz + w 1 1 (9, w1 ) 38 I2,1



426

78

426(98)

P. Comparin and N. Priddis

Table 4. Table for m = 24.

No. Weights Polynomial SL/J G/J (r, q) BHK dual Method

13a (12,8,3,1;24)

13b (12,8,3,1;24)

20 (9,8,6,1;24)

24x2 + y3 + xz4 + w
24x2 + y3 + z8 + w

2 3 + z4 + w24x z + y

1

2

1

1

2

1

1

(8, w−1)3,1

(12, w1 )3,1

(8, w−1)3,1

(12, w1 )3,1

20 I

13b I

13b I

13a I

Table 5. Table for m = 22.

No. Weights Polynomial SL/J G/J (r, q) BHK dual Method

3 22(11,6,4,1;22) x2 + y z + yz4 + w 1 1 (10, w−1 ⊕ w1 ) 78 II2,1 2,1

Table 6. Table for m = 20.

No. Weights Polynomial SL/J G/J (r, q) BHK dual Method

9a (10,5,4,1;20) x2 + xy2 + z5 + w20 1 1

9b (10,5,4,1;20) x2 + y4 + z5 + w20 2 2

1

(10, w−1)5,1

(10, w−1)5,1

(10, w−1)5,1

9a I

9b I

9b I

Table 7. Table for m = 18.

No. Weights Polynomial SL/J G/J (r, q) BHK dual Method

12a (9,6,2,1;18) x2 + y3 + yz6 + w18 2 2 (11, w1
2,1 ⊕ w1

3,1) 39a I

1 (6, v) 39a I
12b (9,6,2,1;18) x2 + y3 + z9 + w18 3 3 (14, v) 12b I

1 (6, v) 12b I

39a (9,5,3,1;18) x2 + y3z + z6 + w18 2 2 (14, v) 12a I

39b

60

(9,5,3,1;18)

(7,6,4,1;18)

x2 + y3z + xz3 + w18

x2z + y3 + yz3 + w18

1

1

1

1

1

(9, w−1
2,1 ⊕ w−1

3,1)

(9, w−1
2,1 ⊕ w−1

3,1)

(11, w1
2,1 ⊕ w1

3,1)

12a

60

39b

I

I

I

Table 8. Table for m = 16.

No. Weights Polynomial SL/J G/J (r, q) BHK dual Method

37a

37b

58

(8,4,3,1;16)

(8,4,3,1;16)

(6,5,4,1;16)

x2 + xy2 + yz4 + w16

x2 + y4 + yz4 + w16

x2z + xy2 + z4 + w16

1

2

1

1

2

1

1

(9, w5
2,3)

(11, w−5
2,3)

(9, w5
2,3)

(11, w−5
2,3)

Table 9. Table for m = 15.

58 III

37b IV

37b III

37a IV

No. Weights Polynomial SL/J G/J (r, q) BHK dual Method

1511a (15,10,3,2;30) x2 + y3 + xz5 + w 1 1 (10, w−1 ⊕ w1 ) 22a II3,1 3,1
10 + w1511b (15,10,3,2;30) x2 + y3 + z 1 1 (10, w−1 ⊕ w1 ) 11b II3,1 3,1

2 3 5 1522a (6,5,3,1;15) x z + y + z + w 1 1 (10, w−1 ⊕ w1 ) 11a II3,1 3,1
2 1522b (6,5,3,1;15) x z + y3 + xz3 + w 1 1 (10, w−1 ⊕ w1 ) 22b II3,1 3,1
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Table 10. Table for m = 14.

No. Weights Polynomial SL/J G/J (r, q) BHK dual Method

40a (7,4,2,1;14)

40b (7,4,2,1;14)

(21,14,4,3;42)

3 14x2 + y z + z7 + w
3 14x2 + y z + yz5 + w

14x2 + y3 + yz7 + w

Table 11.

1

2

1

1

2

1

1

−1(7, v ⊕ w2,1)
1(13, v ⊕ w2,1)
−1(7, v ⊕ w2,1)
1(13, v ⊕ w2,1)

Table for m = 10.

47 II

40b II

40b II

40a II

No. Weights Polynomial SL/J G/J (r, q) BHK dual Method

6a

6b

6c

11a

11b

36a

36b

42a

42b

42c

63

68

(5,2,2,1;10)

(5,2,2,1;10)

(5,2,2,1;10)

(15,10,3,2;30)

(15,10,3,2;30)

(10,5,3,2;20)

(10,5,3,2;20)

(5,3,1,1;10)

(5,3,1,1;10)

(5,3,1,1;10)

(4,3,2,1;10)

(13,10,4,3;30)

4x2 + y z + z5 + w10

10x2 + y5 + z5 + w

4 10x2 + y z + yz4 + w

10x2 + y3 + z10 + yw

2 3 10 15x + y + z + w
2 4 5 10x + y + yz + w

10x2 + xy2 + yz5 + w
2 + y3 10 + w10x w + z

2 3 5 10x + y z + xz + w
2 3 7 10x + y z + yz + w

2 2 5 10x z + y x+ z + w
2 3 5 10x z + y + yz + w

Table 12.

2

5

3

2

1

2

1

2

1

4

1

1

2

1
5
1
3

1
2

1
1

2

1

1

2

1

1

4

2

1

1

1

(8, w−1 ⊕ 2w1 )5,1 2,1

(6, u⊕ v)
(14, u⊕ v)
(6, u⊕ v)
(14, u⊕ v)

(6, u⊕ v)
(17, w1 )2,1

(10, v ⊕ v)
(10, v ⊕ v)

(14, u⊕ v)
−1 −1(12, w ⊕ 2w )5,1 2,1
−1 −1(12, w ⊕ 2w )5,1 2,1

(10, v ⊕ v)

(3, w−1)2,1

(3, w−1)2,1

(17, w2
1
,1)

(10, v ⊕ v)

(3, w−1)2,1

(8, w−1 ⊕ 2w1 )5,1 2,1

(17, w2
1
,1)

Table for m = 9.

36a

36a
6b
6b
6c

6c
42a

42a
11b

6a

6a

63

11a

11a

68

42c

42c

42c

36b

42b

I

II
II
II
II

II
I

II
II

II

I

I

II

I

I

I

II

I

I

I

No. Weights Polynomial SL/J G/J (r, q) BHK dual Method

12a (9,6,2,1;18) x2 + y3 + z9 + xw9 3 3 (16, w−1
3,1) 25a I

1 (4, w1
3,1) 25a I

12b

12c

(9,6,2,1;18)

(9,6,2,1;18)

x2 + y3 + z9 + yw12

x2 + y3 + z9 + w18

1

3

1

3

(4, w1
3,1)

(16, w−1
3,1)

43a

12c

I

I

1 (4, w1
3,1) 12c I

18a (3,3,2,1;9) x3 + y3 + xz3 + w9 3 3

1

(12, w1
3,1 ⊕ w1

3,2)

(8, w−1
3,1 ⊕ w−1

3,2)

18a

18a

IV

III

18b

25a

(3,3,2,1;9)

(4,3,1,1;9)

x3 + xy2 + yz3 + w9

x2w + y3 + z9 + w9

2

3

2

1

3

(12, w1
3,1 ⊕ w1

3,2)

(8, w−1
3,1 ⊕ w−1

3,2)

(16, w−1
3,1)

18b

18b

12a

IV

III

I

1 (4, w1
3,1) 12a I

25b

25c

(4,3,1,1;9)

(4,3,1,1;9)

x2w + y3 + z9 + yw6

x2w + y3 + z9 + xw5

1

3

1

3

(4, w1
3,1)

(16, w−1
3,1)

43b

25a

I

I

43a

43b

(18,11,4,3;36)

(18,11,4,3;36)

x2 + y3w + z9 + w12

x2 + y3w + z9 + xw6

1

1

1

1

1

(4, w1
3,1)

(16, w−1
3,1)

(16, w−1
3,1)

25a

12b

25b

I

I

I
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Table 13. Table for m = 6.

No. Weights Polynomial SL/J G/J (r, q) BHK dual Method

2a (4,3,3,2;12) x3 + y3z + z4 + w6 3 3 (16, v ⊕ w1
3,1) 3a I

1 (10, 4w1
3,1) 3a II

2b (4,3,3,2;12) x3 + y3z + yz3 + w6 1 1 (10, 4w1
3,1) 2b II

2c (4,3,3,2;12) x3 + y4 + z4 + w6 2 2 (10, 4w1
3,1) 2c II

1 (10, 4w1
3,1) 2c II

3a (2,2,1,1;6) x3 + y3 + yz4 + w6 3 3 (10, 4w1
3,1) 2a II

1 (4, v ⊕ w−1
3,1) 2a I

3b (2,2,1,1;6) x2y + y3 + z6 + w6 6 6 (19, w−1
2,1) 5a I

3 (16, v ⊕ w1
3,1) 5a I

2 (9, 3w−1
2,1 ⊕ 2w−1

3,1) 5a I

1 (4, v ⊕ w−1
3,1) 5a I

3c (2,2,1,1;6) x3 + xy2 + yz4 + w6 1 1 (4, v ⊕ w−1
3,1) 57 I

3d (2,2,1,1;6) x3 + y3 + z6 + w6 9 9 (16, v ⊕ w1
3,1) 3d I

3 (16, v ⊕ w1
3,1) 3d I

3 (10, 4w1
3,1) 3d II

3 (10, 4w1
3,1) 3d II

3

1

(4, v ⊕ w−1
3,1)

(4, v ⊕ w−1
3,1)

3d

3d

I

I

3e (2,2,1,1;6) x2y + xy2 + z6 + w6 3 3 (16, v ⊕ w1
3,1) 3e I

1 (4, v ⊕ w−1
3,1) 3e I

5a (3,1,1,1;6) x2 + xy3 + z6 + w6 6 6 (16, v ⊕ w1
3,1) 3b I

3 (11, 3w1
2,1 ⊕ 2w1

3,1) 3b I

2 (4, v ⊕ w−1
3,1) 3b I

5b (3,1,1,1;6) x2 + y5w + z6 + w6 2

1

2

(1, w1
2,1)

(8, 6w−1
2,1)

3b

29

I

II

1 (1, w1
2,1) 29 I

5c (3,1,1,1;6) x2 + xy3 + yz5 + w6 1 1 (1, w1
2,1) 56 I

5d (3,1,1,1;6) x2 + y6 + z5w + zw5 8 8 (19, w−1
2,1) 5d I

4 (12, 6w1
2,1) 5d II

2 (8, 6w−1
2,1) 5d II

5e (3,1,1,1;6) x2 + y6 + z6 + w6 12

1

12

(1, w1
2,1)

(19, w−1
2,1)

5d

5e

I

I

6 (12, 6w1
2,1) 5e II

4 (9, 3w−1
2,1 ⊕ 2w−1

3,1) 5e I

3 (11, 3w1
2,1 ⊕ 2w1

3,1) 5e I

2 (8, 6w−1
2,1) 5e II

1 (1, w1
2,1) 5e I

8a (6,3,2,1;12) x2 + y4 + z6 + xw6 2 2 (14, 2w−1
2,1 ⊕ w1

3,1) 23 I

8b (6,3,2,1;12) x2 + y4 + z6 + yw9 2

1

2

(6, 2w1
2,1 ⊕ w−1

3,1)

(10, v ⊕ 4w−1
2,1)

23

33a

I

II

1 (6, 2w1
2,1 ⊕ w−1

3,1) 33a I

8c (6,3,2,1;12) x2 + xy2 + z6 + yw9 1 1 (6, 2w1
2,1 ⊕ w−1

3,1) 70 I

8d (6,3,2,1;12) x2 + y4 + z6 + w12 4 4 (14, 2w−1
2,1 ⊕ w1

3,1) 8d I

2 (14, 2w−1
2,1 ⊕ w1

3,1) 8d I

2 (6, 2w1
2,1 ⊕ w−1

3,1) 8d I

2 (10, v ⊕ 4w−1
2,1) 8d II

1 (6, 2w1
2,1 ⊕ w−1

3,1) 8d I

8e (6,3,2,1;12) x2 + xy2 + z6 + w12 2 2

1

(14, 2w−1
2,1 ⊕ w1

3,1)

(6, 2w1
2,1 ⊕ w−1

3,1)

8e

8e

I

I
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No. Weights Polynomial SL/J G/J (r, q) BHK dual Method

23 (5,3,2,2;12) x2w + y4 + z6 + w6 2 2 (14, 2w−1
2,1 ⊕ w1

3,1) 8a I

1 (6, 2w1
2,1 ⊕ w−1

3,1) 8a I

29 (15,6,5,4;30) x2 + y5 + z6 + yw6 2 2 (19, w−1
2,1) 5b I

1 (12, 6w1
2,1) 5b II

33a (9,4,3,2;18) x2 + y4w + z6 + w9 2 2

1

(14, 2w−1
2,1 ⊕ w1

3,1)

(10, v ⊕ 4w−1
2,1)

8b

8b

I

II

33b (9,4,3,2;18) x2 + y4w + z6 + yw7 1 1 (10, v ⊕ 4w−1
2,1) 33b II

56 (11,8,6,5;30) x2y + y3z + z5 + w6 1 1 (19, w−1
2,1) 5c I

57 (9,6,5,4;24) x2y + y4 + xz3 + w6 1 1 (16, v ⊕ w1
3,1) 3c I

70 (8,5,3,2;18) x2w + xy2 + z6 + w9 1 1 (14, 2w−1
2,1 ⊕ w1

3,1) 8c I

A. Computer code for computing lattices.

In order to compute the lattices using the configuration of curves, we used the

following Magma code, developed by Antonio Laface and added here with his permission.

This first function takes an even bilinear form B, and outputs generators of the

discriminant group and the values of qB on these generators.

disc:=function(M)

S,A,B:=SmithForm(M);

l:=[[S[i,i],i]: i in [1..NumberOfColumns(S)]| S[i,i] notin {0,1}];
sA:=Matrix(Rationals(),ColumnSubmatrixRange(B,l[1][2],l[#l][2]));

for i in [1..#l] do

MultiplyColumn(∼sA,1/l[i][1],i);
end for;

Q:=Transpose(sA)*Matrix(Rationals(),M)*sA;

for i,j in [1..NumberOfColumns(Q)] do

if i ne j then

Q[i,j]:=Q[i,j]-Floor(Q[i,j]);

else

Q[i,j]:=Q[i,j]-Floor(Q[i,j])+ (Floor(Q[i,j]) mod 2);

end if;

end for;

return [l[i][1]: i in [1..#l]], Q;

end function;

The next function determines whether a given even bilinear form has overlattices.

Input is a matrix M and a number n. The output is the subgroup of AL that takes values

equal to n modulo 2Z. For isotropic subgroups of the discriminant group, use n = 0.

isot:=function(M,n)

v,U:=disc(M);

Q:=Rationals();

A:=AbelianGroup(v);

return [Eltseq(a) : a in A |

mod2(Matrix(Q,1,#v,Eltseq(a))*U*Matrix(Q,#v,1,Eltseq(a)))[1,1] eq n];

end function;
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The function mod2 is as follows:

mod2:=function(Q);

for i,j in [1..Nrows(Q)] do

if i ne j then Q[i,j]:=Q[i,j]-Floor(Q[i,j]);

else Q[i,j]:=Q[i,j]-2*Floor(Q[i,j]/2);

end if;

end for;

return Q;

end function;

Finally, the following function compares two discriminant quadratic forms, and lets

us know if they are the same finite quadratic form or not. This is not always easy to

check due to the relations in Proposition 1.2.

dicompare:=function(M,Q)

v,U:=disc(M);

w,D:=disc(Q);

if v ne w then return false; end if;

A:=AbelianGroup(v);

Aut:=AutomorphismGroup(A);

f,G:=PermutationRepresentation(Aut);

h:=Inverse(f);

ll:=[Matrix(Rationals(),[Eltseq(Image(h(g),A.i)) :

i in [1..Ngens(A)]]) : g in G];

dd:=[mod2(a*U*Transpose(a)) : a in ll];

return D in dd;

end function;
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