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Abstract. In this paper we consider the class of K3 surfaces defined
as hypersurfaces in weighted projective space, that admit a non-symplectic
automorphism of non-prime order, excluding the orders 4, 8, and 12. We show
that on these surfaces the Berglund—Hiibsch—Krawitz mirror construction and
mirror symmetry for lattice polarized K3 surfaces constructed by Dolgachev
agree; that is, both versions of mirror symmetry define the same mirror K3
surface.

Introduction.

Since its discovery by physicists nearly 30 years ago, mirror symmetry has been
the focus of much interest for both physicists and mathematicians. Although mirror
symmetry has been “proven” physically, we have much to learn about the phenomenon
mathematically. When we speak of mirror symmetry mathematically, there are many
different constructions or rules for determining when a Calabi—Yau manifold is “mirror”
to another. The constructions are often formulated in terms of families of Calabi—Yau
manifolds. A natural question is whether, in a situation where more than one version
can apply, they produce the same mirror (or mirror family). In this article, we consider
two versions of mirror symmetry for K3 surfaces, and show that in this case the answer
is affirmative, as we might expect.

The first version of mirror symmetry of interest to us is known as BHK mir-
ror symmetry. This was formulated by Berglund-Hiibsch [10], Berglund—Henningson
[9] and Krawitz [23] for Landau-Ginzburg models. Using the ideas of the Landau—
Ginzburg/Calabi-Yau correspondence, BHK mirror symmetry also produces a version of
mirror symmetry for certain Calabi—Yau manifolds (see Section 2).

In the BHK construction, one starts with a quasihomogeneous and invertible polyno-
mial W and a group G of symmetries of W satisfying certain conditions (see Section 2.2
for more details). From this data, we obtain the Calabi-Yau (orbifold) defined as the
hypersurface Yy = {W = 0}/G. Given an LG pair (W, G), BHK mirror symmetry
allows to obtain another LG pair (W7, GT) satisfying the same conditions, and therefore
another Calabi-Yau (orbifold) Yy gr. We say that Yiy,¢ and Y7 gr form a BHK mir-
ror pair. In our case, we resolve singularities to obtain K3 surfaces Xyw,¢ and Xy gr,
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which we call a BHK mirror pair. When no confusion arises, we will denote these mirror
K3 surfaces simply by X and X7, respectively.

Another form of mirror symmetry for K3 surfaces, which we will call LPK3 mirror
symmetry, is described by Dolgachev in [17]. LPK3 mirror symmetry says that the
mirror family of a given K3 surface admitting a polarization by a lattice M is the family
of K3 surfaces polarized by the mirror lattice MY. We say that the two K3 surfaces are
LPK3 mirror when they are lattice polarized and they belong to LPK3 mirror families
(see details in Section 2.1).

Returning to the question posed earlier, one can ask whether the BHK mirror sym-
metry and LPK3 mirror symmetry produce the same mirror. A similar question was
considered by Belcastro in [8]. She considers a family of K3 surfaces that arise as (the
resolution of) hypersurfaces in weighted projective space, uses the Picard lattice of a
general member of the family as polarization, and finds that this particular polarization
does not yield very many mirror families.

This polarization fails to yield mirror symmetry for at least two reasons. First, it does
not consider the group of symmetries. And secondly—and perhaps more compelling—a
result proved by Lyons-Olcken (see [25]) following Kelly (see [22]) shows that the rank
of the Picard lattice of Xyy,¢ does not depend on G at all. This fact suggests that we
need a finer invariant than the full Picard lattice to exhibit LPK3 mirror symmetry. We
need to find a polarizing lattice that recognizes the role of the group G.

The correct polarizing lattice seems to be the invariant lattice

Sx(0) ={xr € HX(X,Z): o*x = x}

of a certain non-symplectic automorphism ¢ € Aut X. This was proven in [3] and [14]
in the case of K3 surfaces admitting a non-symplectic automorphism of prime order.

In what follows, we generalize the results of [3] and [14] to K3 surfaces admitting
a non-symplectic automorphism ¢ of any finite order, excepting orders 4, 8 and 12. By
polarizing each of the K3 surfaces in question by the invariant lattice Sx (o) of a non-
symplectic automorphism o of finite order, we prove that BHK mirror symmetry and
LPK3 mirror symmetry agree. This is done as in the previous works, by showing that
Sxr(oT) is the mirror lattice of Sx (o).

This situation differs significantly from the case of prime order automorphism in
that the invariant lattice is no longer p-elementary and there is no longer a (known)
relationship between the invariants of Sx (o) and the fixed locus of o. Hence, instead
of studying the fixed locus in order to recover Sx (o), we determine Sx (o) with other
methods. As for orders 4, 8 and 12, more details are required and the methods are
slightly different, so that this will be the object of further work.

The question of whether two versions of mirror symmetry produce the same mir-
ror has been investigated by others as well, but for different constructions of mirror
symmetry than we consider here. Partial answers to the question are given by Artebani-
Comparin—-Guilbot in [4], where Batyrev and BHK mirror constructions are both seen
as specializations of a more general construction based on the definition of good pairs of
polytopes. Rohsiepe also considered Batyrev mirror symmetry in connection with LPK3
mirror symmetry in [29], where he shows a duality for the K3’s obtained as hypersurfaces
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in one of the Fano toric varieties constructed by one of the 4319 3-dimensional reflexive
polytopes. As in Belcastro’s paper [8], Rohsiepe used the Picard lattice of a general
member of the family of such hypersurfaces to polarize the K3 surfaces. As it turns out,
only 14 of the 95 weight systems yield a K3 surface in a Fano ambient space. We do not
consider such a restriction in the current paper.

Clarke has also described a framework which he calls an auxiliary Landau—Ginzburg
model, which encapsulates several versions of mirror symmetry, including Batyrev—
Borisov, BHK, Givental’s mirror theorem and Hori—Vafa mirror symmetry (see [13]).
Kelly also has some results in this direction in [22], where he shows by means of Shioda
maps, that certain BHK mirrors are birational. The current article is similar in scope to
these articles.

There are also several papers treating non-symplectic automorphisms of K3 surfaces,
which are closely related to this paper. These include [5] for automorphisms of order
four, [15] for order six, [31] for order 27, [1] for order eight, and [2] for order sixteen. In
general, it seems difficult to find the invariant lattice of a non-symplectic automorphism
on a K3 surface. The current article gives some new methods for computing the invariant
lattice, which we hope will yield more general results.

As complementary results, in doing this classification we discovered the existence of
one of the cases that couldn’t be discovered in the order 16 classification in [2] namely a
K3 surface admitting a purely non-symplectic automorphism of order sixteen, which has
as fixed locus a curve of genus zero, and 10 isolated fixed points. This is number 58 in
Table 8. Dillies has also found such an example in [16].

Additionally, our computations unearthed a different result from Dillies in [15]. If
we look at Table 13, we find the invariant lattice for number 29 and one of rows of 5d
has an invariant lattice of order 12. These K3 surfaces admit an automorphism of order
three, namely o2, with invariants (g, n, k) = (0,8,5), but the automorphism g fixes one
rational curve and 8 isolated points. This is missing from Table 1 in [15]. Furthermore,
the same can be said for the K3 surfaces in same table which have v @& 4w%’1 as the
invariant lattice, namely one of 8b, 8d, 33a, and 33b. These K3 surfaces admit a non-
symplectic automorphism of order three with invariants (g,n,k) = (0,7,4), but o4 fixes
one rational curve and seven isolated points. This is also missing from the Table in [15].

The paper is organized as follows. In Section 1 we recall some definitions and results
on K3 surfaces and lattices, while Section 2 is dedicated to the introduction of mirror
symmetry, both LPK3 and BHK. The main result of the paper is Theorem 2.3. Section 3
is dedicated to the explanation of the methods used in the proof. In Section 4 we report
some meaningful examples, and Section 5 contains the tables proving the main theorem.

ACKNOWLEDGMENTS. The authors would like to thank Michela Artebani, Alice
Garbagnati, Alessandra Sarti and Matthias Schiitt for many useful discussions and help-
ful insights. They would also thank Antonio Laface for the help on magma code [11].

1. Background.

In this section we recall some facts about K3 surfaces and lattices. For notations
and theorems, we follow [7], [27].
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1.1. K3 surfaces.

A K3 surface is a compact complex surface X with trivial canonical bundle and
dim H'(X,0x) = 0. All K3 surfaces considered here will be projective and minimal.

It is well-known that all K3 surfaces are diffeomorphic and Kéahler. Given a K3
surface X, H?(X,Z) is free of rank 22, the Hodge numbers of X are h?°(X) = h%2(X) =
1, hY1(X) = 20 and hYO(X) = h%1(X) = 0, and the Euler characteristic is 24. The
Picard group of X coincides with the Néron—Severi group, and both are torsion free.

From the facts above, we see that H*?(X) is one-dimensional. In fact, it is generated
by a nowhere-vanishing two-form wx, which satisfies (wyx,wx) =0 and (wx,wx) > 0.

Given an automorphism o of the K3 surface X, we get an induced Hodge isometry
o*, which preserves H2°(X), i.e., c*wyx = A wx for some \, € C*. We call o symplectic
if A, = 1 and non-symplectic otherwise. If ¢ is an automorphism with nonprime order
m, we say o is purely non-symplectic if A\, = &, with &, a primitive m-th root of unity.

1.2. Lattice theory.

A lattice is a free abelian group L of finite rank together with a non-degenerate
symmetric bilinear form B:L x L — Z. A lattice L is even if B(z,x) € 2Z for each
x € L. The signature of L is the signature (t4,t_) of B. A lattice L is hyperbolic if its
signature is (1,rank(L) — 1). A sublattice L C L’ is called primitive if L' /L is free. On
the other hand, a lattice L’ is an overlattice of finite index of L if L C L' and L'/L is a
finite abelian group. We will refer to it simply as an overlattice.

Given a finite abelian group A, a finite quadratic form is a map ¢ : A — Q/2Z such
that for all n € Z and a,a’ € A, we have q(na) = n?q(a) and g(a + a’) — q(a) — q(d’) =
2b(a,a’) (mod 27Z) where b: Ax A — Q/Z is a finite symmetric bilinear form. We define
orthogonality on subgroups of A via b.

Given a lattice L, the corresponding bilinear form B induces an embedding L — L*,
where L* := Hom(L,Z). The discriminant group Ay, := L*/L is a finite abelian group.
In fact, if we write B as a symmetric matrix in terms of a minimal set of generators of L,
then the order of Ay, is equal to |det(B)|. The bilinear form B can be extended to L* x L*
taking values in Q. If L is even, this induces a finite quadratic form ¢, : A;, — Q/2Z.

The minimal number of generators of Ay, is called the length of L. If Ay is trivial,
L is called unimodular. For a prime number p, L is called p-elementary if Ay, ~ (Z/pZ)*
for some a € Ny; in this case, a is the length of Ap.

Two lattices L and K are said to be orthogonal, if there exists an even unimodular
lattice S such that there is a primitive embedding L C S and L = K. Orthogonality will
be a key ingredient in the definition of mirror symmetry for K3 surfaces. The following
fact will also be useful.

ProPOSITION 1.1 (cf. [27, Corollary 1.6.2]). Two even lattices L and K are or-
thogonal if and only if q, = —qK.

We recall the definition of several lattices that we will encounter later. The lattice
U is the hyperbolic lattice of rank 2 whose bilinear form is given by the matrix (9 ).

The lattices A,,, Dy, Eg, E7, Eg,n > 1,m > 4 are the even negative definite lattices
associated to the respective Dynkin diagrams. For n > 1, the lattice A,, has rank n and
its discriminant group is Z/(n + 1)Z. If p is prime, A,_; is p-elementary (with a = 1).
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For m > 4, the lattice D,, has rank m and its discriminant group is Z/27 & Z /27 for m
even, and Z/47Z for m odd. Finally, Fg, E7, Es have ranks 6, 7, and 8 and discriminant
groups of order 3, 2, and 1, respectively.

For p = 1 (mod 4) the lattice H,, is the hyperbolic even lattice of rank 2, whose
bilinear form is given by the matrix

i, - (<p -2 _12) |

The discriminant group of H, is Z/pZ.
There are two non—isomorphic hyperbolic lattices of rank 2 with discriminant group
7./9Z defined by the matrices

-2 1 —4 5
ne() me(3 )

Following [8] we recall that T, ,, with p,q,7 € Z is the lattice determined by a
graph which has the form of a T', and p, ¢, are the respective lengths of the three legs.
The rank of T}, 4., is p+¢g+r — 2 and the discriminant group has order pgr —pg —qr —pr.

Given a lattice L, we denote by L(n), the lattice with the same rank as L, but whose
values under the bilinear form B are multiplied by n.

Many even lattices are uniquely determined by their rank and the discriminant qua-
dratic form. To make this statement precise, we introduce the following finite quadratic

forms. The notation follows [8] and the results are proven in [27].

We define three classes of finite quadratic forms, w¢

ks ks Uk as follows:

1. For p # 2 prime, k > 1 an integer, and € € {£1}, let a be the smallest even integer

that has e as quadratic residue modulo p. Then we define wy ; : Z/p*Z — Q/2Z

via wy ;. (1) = ap~*.

2. For p =2,k > 1and € € {£1,+5}, we define w3, : 7.)2%7 — Q/2Z on the
generator via w (1) =€~ 27k,

3. For k > 1 an integer, we define the forms u, and vy, on Z/2*7Z x Z/2*7 via the

matrices:
0 27k k(2 1
uk—<2k 0 ), Uk—2 <1 2)

For example, if we consider the lattice L = As, then Ay = Z/37Z and ¢, has value
4/3 on the generator. Thus ¢z = w} ;.

THEOREM 1.2 (cf. [27, Theorem 1.8.1]).  The forms wy, ;. , uk, vy generate the semi-

group of finite quadratic forms.

In other words every finite quadratic form can be written (not uniquely) as a direct
sum of the generators wy ;. uy, vg. Relations can be found in [27, Theorem 1.8.2].
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For a finite quadratic form ¢, and a prime number p, we denote ¢ restricted to the
p-component (A4), of A by gp. The following results describe the close link between
discriminant quadratic forms and even lattices.

THEOREM 1.3 (cf. [27, Theorem 1.13.2]). An even lattice S with invariants
ty,t_,q) is unique if, simultaneously,
+

Loty >0t > 1t +1 >3
2. for each p # 2, either rank S > 2 +1((Aq)p) or qp = wy, ;. & w;/k ©qp;

3. for p =2, either rank S > 2+ 1((Ay)2) or one of the following holds
BEu D, GEvdd, ¢ =wh, ®us, )

COROLLARY 1.4 (cf. [27, Corollary 1.13.3]). An even lattice S with invariants
(t4.t—,q) exists and is unique if t4 —t_ = signg (mod 8), t4 +t_ > 2+ 1(A,), and
ot > 1.

COROLLARY 1.5 (cf. [27, Corollary 1.13.4]).  Let S be an even lattice of signature
(ty, o). Ifty >1,t- > 1 andty +t_ >3+1(Ag), then SZU ST for some lattice T.

In Table 1, we list the discriminant form associated to each of the lattices appearing
in our calculations (see Sections 4, 5). A complete description can be found in [8,
Appendix A].

Table 1. Lattices and forms.

L sign L qr, L sign L qr, L signL  qr,
U (171) trivial D6 (0 6) (w%71)2 T47474 (1,9) (%]
U2 (1,1) u Dy (0,9)  wyy || Tsaa (18) wg
Ay (0,1)  wyy || B (06) wsy | Tase (1,10) wys
Az (072) w%,l Er7 (037) w%,l <2> (170) w%,l
As 03) wi, || Bs (08 trivial | (4)  (1,0) wi,
A1(2) (01)  wyy ([ Hs (L) wii |[(8)  (1,0) wiy
Dy (04) v (Lo (L) wi, |[(=8) (0,1) wyy
Dy 05)  wyy || My (1,1)  wiy

Let L' be an overlattice of the lattice L. We call Hy, := L’/L. By the chain of
embeddings L C L’ C (L')* C L* one has Hy» C A and Ay = ((L')*/L)/HL:.

ProOPOSITION 1.6 (cf. [27, Proposition 1.4.1]).  The correspondence L' <> Hp,
is a 1:1 correspondence between even overlattices of finite index of L and qp-isotopic
subgroups of Ay, i.e., subgroups on which the form qr, is 0. Moreover, H, = (L')*/L
and qr = (QL|H2-/)/HL’-
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1.3. K3 lattices.

Let X be a K3 surface. It is well-known that H?(X,Z) is an even unimodular lattice
of signature (3,19). As such, it is isometric to the K3-lattice Lxs = U® @ (Fg)?.

We let

Sx = H*(X,Z)n H"'(X,C)

denote the Picard lattice of X in H?(X,Z) and Tx = Sy denote the transcendental
lattice.

Let o be a non-symplectic automorphism of X. We let Sx (o) C H?(X,Z) denote
the o*-invariant sublattice of H?(X,Z):

Sx (o) ={x € H*(X,Z): "z = x}.

One can check that it is a primitive sublattice of H?(X,Z). In fact, Sx (o) is a primitive
sublattice of Sx and in general Sx (o) € Sx. We let Tx (o) = Sx (o)t denote its
orthogonal complement in H?(X,Z). The signature of Sx (o) is (1,t) for some ¢ < 19,
i.e., Sx (o) is hyperbolic.

2. Mirror symmetry.

2.1. Mirror symmetry for K3 surfaces.

Mirror symmetry for a Calabi—Yau manifold X and its mirror XV can be thought of
as an exchanging of the Kéhler structure on X for the complex structure of XV. Thus,
a first prediction of mirror symmetry is the rotation of the Hodge diamond:

HP(X,C) = H*N"P(X,C)

where N is the dimension of X.

For K3 surfaces, however, the Hodge diamond is symmetric under the rotation men-
tioned above. So we need to consider a refinement of this idea. This is accomplished
by the notion of lattice polarization. Roughly, we choose a primitive lattice M — Sx,
which plays the role of the Kihler deformations, and the mirror lattice MY, which we
now define, plays the role of the complex deformations. We will refer to this formulation
of mirror symmetry simply as LPK3 mirror symmetry.

Following [17], let X be a K3 surface and suppose that M is a lattice of signature
(1,t). If j: M — Sx is a primitive embedding into the Picard lattice of X, the pair (X, j)
is called an M -polarized K3 surface. There is a moduli space of M-polarized K3 surfaces
with dimension 19 — ¢.

We will not be concerned about the embedding. As in [14], we will call the pair
(X, M) an M -polarizable K3 surface if such an embedding j exists. Note that for an
M-polarizable K3 surface (X, M), the lattice M naturally embeds primitively into Lxs.

DEFINITION 2.1. Let M be a primitive sublattice of Lks of signature (1,t) with
t < 18 such that M7, = U & MY. We define M" to be (up to isometry) the mirror
lattice of M.

L As in [14], our definition in this restricted setting is slightly coarser than the one used by Dolgachev in
[17], since we do not keep track of the embedding U < M~ and instead only consider MY up to isometry.
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By Theorem 1.3 this definition is independent of the embedding M into Lks. Fur-
thermore under some conditions, (see e.g., Corollary 1.5 and Theorem 1.3) this definition
is also independent of the embedding U into M~*. One can check that these conditions
are satisfied for the lattices we consider here.

Note that MV also embeds primitively into Lxs and has signature (1,18 — ¢). Fur-
thermore, qp; = —qprv. One easily checks that (Mv)iKS =Ua M.

Given (X, M) an M-polarizable K3 surface and (X', M’) an M’-polarizable K3
surface, with M and M’ primitive sublattices of Sx and Sx, resp., we say that (X, M)
and (X', M') are LPK3 mirrors if M' = M" (or equivalently M = (M')").

Notice that if M has rank ¢t + 1, then the dimension of the moduli space of MY
polarized K3 surfaces is 19 — (18 —¢) which agrees with the rank of M. Returning to the
question of Kéahler deformations and complex deformations, we see that this definition of
mirror symmetry matches the idea behind rotation of the Hodge diamond, as mentioned
earlier.

2.2. Quasihomogeneous polynomials and diagonal symmetries.
We recall a few facts and definitions (cf. [14] for details). A quasihomogeneous map
of degree d with integer weights wy, ws, ..., w, is W : C" — C such that for every A € C,

WA 2, N2, .. A 2,) = NW (21, 22, . .., Tp).

One can assume ged(wi,ws,...,w,) = 1 and say W has the weight system
(w1, ws,...,wy;d). Given a quasihomogeneous polynomial W : C* — C with a criti-
cal point at the origin, we say it is non-degenerate if the origin is the only critical point
of W and the fractional weights wy/d, ..., w,/d of W are uniquely determined by W.

A non-degenerate quasihomogeneous polynomial W (also called potential in the
literature) is invertible if it has the same number of monomials as variables.

If W is invertible we can rescale variables so that W = 27| [T7_, ;. This
polynomial can be represented by the square matrix Ay = (a;;), which we will call the
exponent matriz of the polynomial. Since W is invertible, the matrix Ay, is an invertible
matrix.

The group Gw of diagonal symmetries of an invertible polynomial W is

Gw ={(c1,ca,...,¢cn) € (C)" : W(cra1, coa, ..., Crty) = W(x1,Z2,...,2n)}

Observe that, given v = (¢1,¢2,...,¢,) € Gw, the ¢;’s are roots of unity. Thus,
one can consider Gy as a subgroup of (Q/Z)"™, using additive notation and identifying
(c1,¢2,...,c,) = (e2™91 e2mi92 e2™i9n) with (g1, g2,...,9n) € (Q/Z)™. Observe that
the order of Gy is |Gw|= det(Aw).

Since W is quasihomogeneous, the exponential grading operator jw =
(w1/d,wa/d, ..., w,/d) is contained in Gy. We denote by Jy the cyclic group of order d
generated by jw: Jw = (jw). Moreover, each v = (g1, ..., gn) define a diagonal matrix
and thus Gy is embedded in GL,(C). We define

SLw :=Gw N SL(TL,(C),
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ie, v =(91,.--.,9n) € SLw if and only if )", g; € Z. The group SLy is called the
symplectic group since, by [3, Proposition 1], an automorphism o € Gy is symplectic if
and only if det 0 = 1, that is, if and only if 0 € SLy .

2.3. K3 surfaces from (W, G).

Reid (in an unpublished work) and Yonemura [32] have independently compiled
a list of the 95 normalized weight systems (wi,ws,ws, ws;d) (“the 95 families”) such
that P(wq,ws, ws,ws) admits a quasismooth hypersurface of degree d whose minimal
resolution is a K3 surface. We consider one of these weight systems (wy, we, w3, wy; d)
and an invertible quasihomogeneous polynomial of the form

W :$71n+f($2,3337l’4). (].)

Moreover, let G be a group of symmetries such that Jyr C G C SLy and let G= G/Jw.
The polynomial W defines a hypersurface Yiv.¢ C P(wy, ws, ws, ws) /é and one shows
that the minimal resolution Xw.¢ of Yy ¢ is a K3 surface (see 3], [14]).

The group Gw acts on Yy, via automorphisms, which extend to automorphisms
on the K3 surface Xy, . The given form of W ensures that the K3 surface Xyy,¢ admits
a purely non-symplectic automorphism of order m:

Om t (X1 1 @e X3 1 wy] > [Cy : T2 @ @3 24

where (,, is a primitive m-th root of unity. With additive notation, it is o, =
(1/m,0,0,0).

2.4. BHK mirror symmetry.

Now we can describe the second relevant formulation of mirror symmetry com-
ing from mirror symmetry for Landau-Ginzburg models and which we call BHK (from
Berglund-Hiibsch-Krawitz) mirror symmetry. This particular formulation of mirror sym-
metry was developed initially by Berglund—H{iibsch in [10], and later refined by Berglund—
Henningson in [9] and Krawitz in [23]. Because of the LG/CY correspondence and a
theorem from Chiodo—Ruan [12], this mirror symmetry of LG models can be translated
into mirror symmetry for Calabi-Yau varieties (or orbifolds).

We consider (W, G) with W invertible and W = 37" [/, x?] and define another
pair (W1 GT), called the BHK mirror. We first define the polynomial W7 as

n n

T _ aji

wt =% 115"
i=1 j=1

i.e., the matrix of exponents of W7 is A,. By the classification of invertible polynomials
(cf. [24, Theorem 1]), W7 is invertible.
Next, using additive notation, one defines the dual group G” of G as

G' ={g€Gwr | gAwh" € Z for all h € G} . (2)

The following useful properties of the dual group can be found in [3, Proposition 3]:
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PROPOSITION 2.2 (cf. [3, Proposition 3]).  Given G and GT as before, one has:
1. (GHT =aG.
2. If Gy C Ga, then GY C GT and Go/G, = GT )GY.
3. (Gw)" = {0}, {0p" = G-
4. (Jw)T = SLyr. In particular, if Jw C G, then GT C SLyr.

Given the pair (W, G) with W invertible with respect to one of the 95 weight systems,
we associated to it the K3 surface Xy,¢. One can check that in this case the weight
system of W7 also belongs to the 95. By the previous result, Jyyr € G* C SLyr, so
that Xy gr is again a K3 surface. We call Xy~ or the BHK mirror of Xw,q.

2.5. Main theorem.

We have described two kinds of mirror symmetry for K3 surfaces: LPK3 mirror
symmetry and BHK one. Since mirror symmetry describes a single physical phenomenon,
we expect the two constructions to be compatible in situations where both apply. We
will now state our main theorem, which shows that BHK and LPK3 mirror symmetry
agree for the K3 surfaces Xy ¢, when W is of the form (1). When no confusion arises,
we will denote the mirror K3 surfaces Xw,¢ and Xyyr gr simply by X and X T

Consider the data (W, G, o,,), where

e W is an invertible polynomial of the form (1) whose weight system belong to the
95 families of Reid and Yonemura,

e 0, = (1/m,0,0,0) is the non-symplectic automorphism of order m,
e (G is a group of diagonal symmetries of W such that Jyy C G C SLyy.

By Section 1.3, the invariant lattice Sx(o,,) is a primitive sublattice of Sx and
(Xw.a,Sx(om)) is a Sx(o,)-polarizable K3 surface. Let r be the rank of Sx(o,,).
The BHK mirror is given by (W7T,GT,ol), where o2, is the non-symplectic automor-
phism of order m on Xyr gr. Notice that o, and ol have the same form, namely

(1/m,0,0,0), but they act on different surfaces.

THEOREM 2.3.  Suppose m # 4,8,12. If W is a polynomial of the form (1), quasi-
homogeneous with respect to one of the 95 weight systems for K3 surfaces as in Sec-
tion 2.3 and G is a group of diagonal symmetries satisfying Jyv C G C SLyw, then
(Xwr gr,Sxr(ok)) is an LPK3 mirror of (Xw,q, Sx (om))-

m

The theorem is proved by showing that
SX<Um)v & Sxr (O'ZD

As we have seen in Section 1.2, this amounts to checking that the invariants (7, ¢s (o,.))
for Xw.¢ and (rT, qSXT(C";l;;)) for Xyyr gr satisfy r = 20 — 77 and ASx (om) = =45 1 (oT)-
Thus, the heart of the proof is determining gg (o) (or equivalently in our case Sx (0:,)).
In the following section, we will describe how this is done. It involves computing the
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invariant lattice and its overlattices. We list the results in tables in Section 5. Un-
fortunately, our method does not work for m = 4,8,12 due to the presence of many
overlattices, so that we cannot exactly pinpoint the invariant lattice.

3. Methods.

In the setting of Theorem 2.3, one has to show that Sx (¢,,)" = Sxr(cL). Whenever
m = p a prime number, Theorem 2.3 was proved using a similar method in [3] for m = 2
and [14] for other primes. There is not a general method of proof in either article; instead
the theorem is checked in every case.

In [3] and [14] there are several tools introduced in order to facilitate computation of
the invariant lattice. The proof we give here follows roughly the same idea, however the
methods used in the previous articles for computing Sx (o,,) are no longer valid, when
m is not prime. In order to illustrate the differences, we highlight briefly the method
used in case of p prime. Then we will describe the proof of the theorem, in case m is not
prime.

3.1. Method for m = p prime.

As mentioned, the argument given in [3] and [14] essentially boils down to deter-
mining the invariant lattice Sx (o) for X = Xy,g. The method for determining this
lattice relies on the following powerful theorems.

THEOREM 3.1 ([6]). Given a K3 surface with a non-symplectic automorphism o
of order p, a prime, the invariant lattice Sx (o) is p-elementary, i.e., Ag, (o) = (Z/pZ)*.

THEOREM 3.2 ([27], [30]). For a prime p # 2, a hyperbolic, p-elementary lattice
L with rank r > 2 is completely determined by the invariants (r,a), where a is the length
of L. An indefinite 2-elementary lattice is determined by the invariants (r,a,d), where
0 €0,1 and 6 = 0 if the discriminant quadratic form takes values 0 or 1 only and § =1
otherwise.

By Proposition 1.1, the orthogonal complement in Lk3 of a p-elementary lattice with
invariants (r,a) is a p-elementary lattice with invariants (22 — r,a). For both a given
2-elementary lattice and its orthogonal complement, the third invariant § agrees. In the
setting of Theorem 2.3, Corollary 1.5 shows that we also have Sx (0,)* 2 U & M where
M is a hyperbolic p-elementary lattice with invariants (20 — r,a). Thus, for p # 2 it
is enough to verify that (r,a) for Xy, and (r’,ar) for Xy gr satisfy r = 20 — r7
and a = ar. For p = 2 the third invariant § must also be compared, which the authors
checked in [3].

In order to compare (r,a), we first look at the topology of the fixed point locus.

THEOREM 3.3 (cf. [6], [28]). Let X be a K3 surface with a non-symplectic auto-
morphism o of prime order p # 2. Then the fized locus X is nonempty, and consists
of either isolated points or a disjoint union of smooth curves and isolated points of the
following form:

XU:CUR1U---URkU{p1,...,pn}. (3)
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Here C is a curve of genus g > 0, R; are rational curves and p; are isolated points.
If p = 2, then the fized locus is either empty, the disjoint union of two elliptic curves,
or is of the form (3) with n = 0.

In [3] and [14], 0, always fixes a curve. Furthermore, the case of two elliptic curves
does not appear in this setting described there. Therefore, the fixed locus is determined
by the invariants (g,k,n). In [6], the authors give formulas to calculate (r,a) given
(g, k,n) for each prime p (see [6, Theorem 0.1]). Thus, in order to prove Theorem 2.3
for p prime, one first computes the invariants (g, k,n), and from them computes the
invariants (r,a) (if p = 2, additional computation are required to obtain ¢). Then one
compares the invariants for BHK mirrors as described above.

3.2. Method for m not prime.
If m is not prime, Sx (o,,) is no longer p-elementary for any prime p. The best we
can say about Ag, (,) is that it is a subgroup of (Z,,)?, as in the following lemma.

LEMMA 3.4. Let o be a purely non-symplectic automorphism of order m. The
discriminant group Ag, (o) 15 a subgroup of (Zy,)* for some a > 0.

ProOF. We know Ag, (s is a finite abelian group. Thus, it suffices to show
that for each z € Ag,(s), we have mxz = 0. By Maschke’s theorem, the vector space
H?(X,Z) ® Q is completely reducible. Therefore, it decomposes as a sum of irreducible
Q[Z/mZ]-modules. Each direct summand is of the form Q(&;) where d|/m. So we have
27;61(0'*)2 =0on Tx(d). Now we have ASX(O') = H2(X, Z)/(Sx(O')EBTx(O')) = ATx(a)a
and these automorphisms commute with the action of ¢*. Thus, o* acts by identity on
Ary (), but since Z:.i_ol(a*)i =0on Tx (o), mz =0 (mod Tx (o)) for x € Tx(o)*. O

We see that Agy(s,,) can have any possible order dividing a power of m. Even
in the best of situations (e.g., Agy (s,,) = Zj,) the lattice is no longer determined by
(r,a). Consider, for example, the two lattices Ly = U @ D? and Ly = U & Az @ Dr:
they both have discriminant group Z% and (r,a) = (12,2), but ¢z, = (w3 ,)* whereas
qr, = w%Q S3] ng. In other words, we have two different lattices with the same rank,
and isomorphic discriminant groups (though different discriminant quadratic forms).

It is true, however, that the lattice is determined in all cases considered here by
the rank and the discriminant quadratic form (cf. Corollary 1.4). Thus, rather than
computing (r,a) it suffices to compute (r,¢s,(s,,)). We will be able to compute these
invariants for all K3 surfaces Xw,¢ with W as in (1) and G C SLw except in case
m=4,812.

The first step to compute Sx (o) is to compute its rank r. In order to do so, we
describe an important set of curves on Xy, ¢, namely the orbits of the exceptional curves.
Consider the hypersurface Yy ¢ as in Section 2.3, and the resolution of singularities
Xw,c = Yw,c. Because W is nondegenerate, all of the singularities of Yy ¢ lie on the
coordinate curves.

Let £ denote the set of the exceptional curves on Xy . Because o, leaves the
coordinate curves invariant, the action of o, on Xy g induces an action of o, on &.
Given an exceptional curve E, let Gg denote the isotropy group for E and let £/o,,
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denote the set of orbits of this action. Now we set

1 m—
E:TZO

This is simply the sum of all curves in the orbit of E. In particular, if F is fixed by o,
then by = E. We can use this topology to determine r:

LEMMA 3.5.  The rank r of Sx (o) is equal to 1 plus the number of orbits of excep-
tional curves in the blow-up Xw.q = Yw.q, t.e.,

rank Sx (o) =1+ |E/om].
ProOOF. Consider the quotient Xy, ¢ /om,. We have the following diagram

XW,G — YW,G

[ [

XW,G/Um —_— P(wg,wg,w4)

where the bottom horizontal arrow is obtained by blowing up isolated singular points
of P(wy,ws,wy) and singular points on the branch locus {f(ze,x3,24) = 0} C
P(ws, w3, wq). Notice in the quotient P(ws, w3, ws) = Y ¢/0m, the branch locus corre-
sponds to the curve z; = 0 in Yyy,¢. Furthermore, each orbit of exceptional curves will
correspond to exactly one exceptional curve of the bottom horizontal map.

Since h?(P(w2, w3, wy)) =1 (see e.g., [21] or [18]), and H*(Xw,g/om, Q) is gener-
ated by the exceptional curves and the pullback from P(ws, w3, ws), we have

dim H*(Xw.c/0m, Q) = 1+ |E/0om|.

Finally, we know by [26] that H?(Xw.g/om,Q) = H*(Xw.g,Q)°". This implies
the result. O

REMARK. Although H?(Xyy, ¢, Q)%™ is generated by the orbits of the exceptional
curves and one coordinate curve, this is not always the case for the lattice Sx (oy,).

The second step in determining (r,q) requires another set of curves. Let K be the
set of smooth irreducible components of (the strict transforms of) the coordinate curves
2; = 0 (we omit curves that have worse singularities than separating nodes between two
or more smooth components). As before o, acts on this set. For C' € K, we define G¢
as the isotropy group, /o, as the set of orbits, and

m—1
1
bc = = o,,C
|Gel ;

Notice that o, leaves the coordinate curves invariant, so b¢o is the sum of some of the
smooth irreducible components of one of the coordinate curves. In cases where the
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coordinate curve is smooth, b is the coordinate curve. There are cases, however, where
the coordinate curve is not irreducible.

Finally we define the set of orbit curves B = {bg | E € £/o,} U{bc | C € K/om}.
Let Lg denote the sublattice of Sx generated by B. This lattice is clearly a sublattice
of S(o,,) since o, fixes each of the generators. Therefore, rank Ly < r. By Lemma 3.5,
we see that rank Ly = r. Hence S(o,,) is an overlattice of Lg. Because of this explicit
description, we can actually determine the lattice Lg in each case. (See the appendix for
Magma code, which allows us to compute Lp.)

Determining (r, ¢) now breaks into four different cases, each of which requires a differ-
ent method. We now describe those four methods. In most cases (except for Method II),
we show Lg = Sx (o).

3.2.1. Method I.

The first method is the most common. Using Proposition 1.6, we can determine all
of the overlattices of L. It often happens that the discriminant group has no isotropic
subgroups, and so there are no nontrivial overlattices. Since Sx (o) is an overlattice of
L, we can conclude Sx (0,,) = Lg. An example of this situation is shown in Example 4.1.

This covers all possibilities when m = 18, 20, 24, 30, 42, and parts of the other orders,
namely whenever m and r are one of the following possibilities: m = 10, r = 3,8,12,17;
m=9,r=4,16;and m =6, r =1,4,6,9,11,14, 16, 19.

3.2.2. Method II.

The second method does not use Lg. Instead, we notice that some power o¥, has
order p for some prime p and Sx(0,,) C Sx(ck) is a primitive embedding of lattices. If
it happens that rank Sy (0,,) = rank Sx (o)), then indeed Sy (0,,) = Sx(oF,). In this
case Sx(0,,) is p-elementary and we can use the methods in Section 3.1 to compute it.
See Example 4.2 for an example of this situation.

This covers the remaining cases with m = 6, 10, 14, 15, 22 and the case with m = 9,
r = 16. That leaves exactly four cases, namely m = 9,7 = 8,12 and both cases with
m = 16.

3.2.3. Method III.

The third method is for m = 9, r = 8 and m = 16, r = 9. For this method, we
consider the family of K3 surfaces of Belcastro in [8]. Belcastro has computed the Picard
lattice of the general member of a family of K3 surfaces. Each invertible polynomial W
that we consider in this article yields a special member of such a family, but often with
bigger Picard lattice. We will use the Picard lattice of the general member of the family
to show that Lg is primitively embedded into Sx (o.,).

To do this, we consider the family of K3 surfaces defined by polynomials quasiho-
mogeneous with respect to each of the weight systems (3,3,2,1;9) and (8,4, 3,1;16),
respectively (these weight systems are numbered 18 and 37, resp.). Let X, denote the
general member of this family and let X = Xy . In the construction of each family in
question, one must resolve the singularities of a family of hypersurfaces in P(wy, ..., wy).
In doing so, we see that the same generators of L also generate S, , giving us a canonical
isomorphism
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Lp—35y .

In [19, Remark 2.13], Huybrechts showed, that since X is a special member of this
family, we get an primitive embedding

sp:Sx < Sx

making the following diagram commute

Ly — Sy
e
Sx-
Figure 1.

Therefore, Sx/Lp = Sx/Sx , and since the latter is a free abelian group, the lattice
Lg is a primitive sublattice of Sx. Since Sx(0,,)/Ls C Sx/Lg and the latter is a free
abelian group, we see that L is a primitive sublattice of Sx(o,,). Since they have the
same rank, we have Ly = Sx(0,,). We illustrate this method in Example 4.3.

3.2.4. Method IV.

This leaves two cases: m = 16, r = 11 and m = 9, r = 12. As each of these cases
is different we will work out each case in Examples 4.5 and 4.6. This method involves
finding Sx,, , and showing explicitly that Lz embeds primitively into Sx,, . Then, as
in Method III, we can conclude that Lg = Sx (o).

REMARK. What we see when employing these four methods is that the invariant
lattice seems to be the lattice L. This is certainly true for every invariant lattice
computed by Methods I, IIT and IV, though it also seems to be true for each of the others
(including the invariant lattice for the automorphisms of prime order and of order 4, 8,
12), though we have not checked every case explicitly.

In what follows, we will make use of the following lemma.

LEMMA 3.6 (cf. [5], [15]). Let Ry, Ra, ..., Ry be a tree of smooth rational curves on
a K3 surface X and o a non-symplectic automorphism of finite order on X leaving each of
the R; invariant. Then the intersection points of the R;’s are fixed by the automorphism
and it suffices to know the action at one intersection point to know the action on the
entire tree.

We will also make use of the following formula, giving the genus of a curve of degree d
in weighted projective space P(wy, wa, ws) in order to compute the genus of the coordinate
curves. This formula can be found, e.g., in [20, Theorem 12.2].
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1 d? ged(w;, wy) 2 ged(w;, d)
oy =4 _y gedwi, wy) gedwi, d) )
g( ) 2 <w1w2w3 Z wW; W, + ; w;

1<j<i

With the genus, one can also compute self-intersection numbers for curves on a K3 surface
via Riemann—-Roch:

29(C)—2=C-C.

3.3. Proof of main theorem.

We now provide the details of the proof of Theorem 2.3. For each K3 surface
Xw,c we have the invariants (7, ¢ (o,.)) for the invariant lattice Sx (o), as discussed
in the previous section. We know the invariant lattice has signature (1,7 — 1), and
so the orthogonal complement has signature (2,20 — r). We check that the conditions
of Corollary 1.5 are fulfilled so that Sx(om)f,, = U & M for some lattice M.? This
lattice M is hyperbolic with signature (1,19 — r) and has discriminant quadratic form
—qSx (o) One can see from the tables that the conditions of Theorem 1.3 are satisfied.
Hence, there is exactly one lattice with these invariants. To prove the theorem, therefore,
we need simply to check that (20—, —gg (o,,)) are the invariants for the invariant lattice
Sxr(ol) for Xwr gr. This can be checked by consulting the tables in Section 5. This
concludes the proof.

Tables 2-13 contain all possible invertible polynomial of the form (1) with non-
symplectic automorphism of order m, and for each polynomial, we list the orders of the
possible groups G/Jw satisfying Jyy C G C SLy . In most cases SLy /Jw is cyclic, so
the properties of GT' make it clear what the dual group is. However, for two examples,
one can see by the multiplicity of subgroups with the same order that the group SLw /Jw
is not cyclic. These two examples are 23 +y3 + 25 +w® (number 3d) and 22 +y* + 25 +w!?
(number 8d) in Table 13. In these cases, we will clear up any ambiguities in the following
sections.

From now on we will make a change of notation from (x1, e, 3, x4) to (z,y, z,w) for
the variables of W, so that the variables are arranged with the weights in nonincreasing
order. In other words, it is possible that z; corresponds to any of x,y, z, or w. This
convention is also used in tables of Section 5.

REMARK. It is possible that a given K3 surface admits a purely non-symplectic
automorphism of different orders. It turns out that it does not matter which automor-
phism one uses to exhibit LPK3 mirror symmetry, the notion still agrees with BHK
mirror symmetry, in the sense of Theorem 2.3, as long as the defining polynomial is of
the proper form (1). We expect that the theorem still holds for K3 surfaces that do not
take the form of (1), but that is a topic for further investigation.

2In one case, the conditions are not fulfilled, namely m = 6, r = 1. However, in this case, we know
the lattice U @ (4) has the given invariants, and by Corollary 1.4 this is the only such lattice.
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4. Examples.

In this section we will first give examples to illustrate each of the methods that was
used to determine Sx (o,,). Then we will describe the subgroups in the two cases where
SLyw /Jw is not cyclic.

ExampLE 4.1. Method I:
This first example will illustrate Method I for determining Sx (o,,). Let us consider
the K3 surface with equation

W=+ +2°+yuw'2=0

in the weighted projective space P(9,6,2,1) with degree 18. This is number 12b in
Table 12. There are two non-symplectic automorphisms of interest oo : (z,y,z,w) —
(—z,y,z,w) and o9 : (z,y, z,w) — (z,y, oz, w). The invariant lattice Sx (o2) was dealt
with in [3], so we focus on oy.

Here |Gw|= 36 - 18, |Jw|= 18 and the weight system for the BHK mirror is
(18,11,4, 3;36) so that [Gw : SLw]| = 36. Thus, |SLw /Jw|= 1.

Looking at the action of C* on the weighted projective space P(9,6,2,1), we find
the following isotropy:

ps :fixes z=w =0, 22 +9° =0,
po :fixes x =w =0, 3> +2°=0.

The first row provides a single point with Z/3Z isotropy (As singularity), and the sec-
ond provides three points each with Z/2Z isotropy (3 A1’s). Their resolution gives the
configuration of curves on Xy, depicted in Figure 2. In this depiction, we have not
indicated the three intersection points between C, and C,.

Cuw
C, 2 Cu

Figure 2. Resolution of singularities on Xyy .

The set £ consists of these five exceptional curves. Denote by Ej, Fs and Fs the
three A; fibers, and F, and E5 the two curves in the A, fiber. Looking at the form of
W, we see that the curves C, = {x =0}, C, = {# = 0} and C\, = {w = 0} are smooth.
The curve C, = {y = 0} is not smooth. Thus, the set K consists of these three smooth
curves. The curve C, has genus 7, C, has genus 1, and C,, has genus 0.

There are two important representatives of the coset og9Jy in Gy which will help
us compute the fixed locus for o9, namely (0,0,1/9,0) and (0,2/3,0,4/9). These rep-
resentatives show us that the curve C, = {z = 0} is fixed and the point defined by
{w =1y =0, 22+ 2° = 0} is also fixed. Because C, is fixed, Fy and Es5 are invariant
(though not fixed pointwisely). The point of intersection of C,, and the As exceptional
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fiber and this other point are the only fixed points on C,. Thus, the three A; singulari-
ties are permuted by the action. By Lemma 3.5, since there are three orbits, Sx (og9) has
rank 4.

We now compute the lattice Lg, generated by B = {E1+FEs+FE3, Ey, E5,C,, C,, Cy }.
Since there are six generators, two of them are redundant, for example C, and C.,.
Consider the lattice L generated by Fi + Es + E3, E4, E5, and C,,. This lattice has
bilinear form

—6 0 0 3
0 -2 1 0
0 1 -2 1
3 0 1 -2

which has discriminant form w?{,l. By Proposition 1.6, there are no non-trivial even
overlattices of this lattice, hence L = L = Sx(09). Thus, we have the invariants
(1, 45x (00)) = (4, w%}l). In fact, Sx(09) 2 U @ A,.

REMARK. This method also yields some other interesting facts regarding the
Picard lattice of these surfaces. In [8], Belcastro computes the Picard lattice for a
generic hypersurface with these weights and degree as U & D,. However, if we look at
the non-symplectic automorphism o3, we can compute the invariants g = 1,n = 4,k = 1,
and therefore r = 10,a = 4 for the invariant lattice, giving us the invariant lattice
Sx(03) = U ® Ay @ Eg. This shows us in particular, that the Picard lattice of this
surface is bigger than the Picard lattice for a generic quasihomogeneous polynomial with
these weights.

EXAMPLE 4.2. Method II:
In order to illustrate Method II, we repeat the computations for the BHK mirror of
the previous example:

WT = 22 + 3w + 2° + w'?

with weight system (18,11,4,3;36). This is number 43a in Table 12. Here again
|SLyw /Jw|= 1. As before, we also have an involution, but we consider only o .

Looking at the action of C* on C* and resolving the singularities we have an A
given by resolving the point (0,1,0,0), 245 coming from the two points with y = z =0
fixed by us and an A; coming from the point with ¥y = w = 0 fixed by po. This time £
has 15 curves and K = {C,,C,,C.} as in Figure 3. Again we do not depict the three
points of intersection between C, and C,,.

Two relevant representatives of o in Gyyr /Jyr are (0,0,1/9,0) and (0,4/9,0,2/3).
From these we see that the curve C, is fixed. It has genus 0. Furthermore, the exceptional
curve from the A; singularity at y = w = 0 is fixed pointwisely, as well as one of the
curves in the exceptional Aig. Since C, is fixed, each of the exceptional curves is left
invariant under o . From Lemma 3.5, the rank of the invariant lattice Sxr (od ) is r = 16.

In this case, we compute the invariant lattice for (od)3, which is a non-symplectic
automorphism of order 3. The curves C, and C} are fixed and have genus 0 and 1,
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C.

Cy

Co

Figure 3. Resolution of singularities on Xy r.

respectively. Three of the curves on the Ajy chain are also fixed, as in Lemma 3.6.
Furthermore, the remaining intersection points of the chains of exceptional curves are
fixed, and an additional point on the A;. Thus, the invariants are (g, k,n) = (1,4,7).
Using the results cited in Section 3.1, the invariants for the 3-elementary lattice (o )3
are (16, 1). Since Sxr(od) is a primitive sublattice of this 3-elementary lattice, and both
have the same rank, they are equal. Therefore, we have invariants (r,q) = (16, w5 1) and
the lattice is Sx(09) = U @ Eg @ Es.

Comparing the ranks, and noticing that w3, = —w; 1, we see the BHK mirror
matches the LPK3 mirror symmetry.

EXAMPLE 4.3. Method III:

Let W := 2% + y* + yz* + w'® with m = 16 in weight system (8,4, 3,1;16). This is
number 37b in Table 8. The order of SLy /Jw is 2. This appears to be the same K3
surface investigated in [2, Example 3.2]. Computing singularities we obtain an As at the
point (0:0:1:0) and two As’s at the two points with z = w = 0. Resolving these, we
obtain the configuration of curves showed in Figure 4. The curves C, and C, intersect
in four points, which are not depicted. The genus of the curve C,, is 0, the genus of C,
is 1, the genus of Cy is 6. However, C, consists of two components, each a copy of P!

Cuw

Co
C.

Figure 4. Resolution of singularities for X .

The automorphism o165 = (0,0,0,1/16) fixes C,,, and therefore leaves all of the
exceptional curves invariant. Thus, we have |£/o16|= 8, and r = 9. Furthermore, K
consists of the curves Cy,, C; and the two curves that make up C,. Using an explicit
form of the intersection matrix, one can check that the lattice Ly is actually generated
by the exceptional curves and C',. This is a lattice of type T3 4 4. The discriminant group
of T5 44 is Z/8Z and the corresponding form ¢ is wg”g. This form has one overlattice,

and so we cannot use Method I. Method II will also not work here.
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In [8], Belcastro computed the Picard lattice for a general member of the family of
K3 surfaces with this weight system, using the same configuration of curves described
above, giving us the canonical map L = T3 44 that fits into the diagram in Figure 1.
Thus, L embeds primitively into Sx(0,,), and so they are equal, i.e., Sx(o16) = Lg
with invariants (r,q) = (9, w3 3).

REMARK. There is another case with the same invariant lattice in the same weight
system, namely number 37a. The reasoning is similar to what we have just outlined.

Finally, we will describe both of the cases requiring what we have called Method IV.
These two cases are similar in that we use the Picard lattice to help determine Sx (o).
We will need the following proposition.

PROPOSITION 4.4 ([27, Proposition 1.15.1]).  The primitive embeddings of a lat-
tice L into an even lattice with invariants (my,m_,q) are determined by the sets
(Hp, Hy,v; K,vk), where H, C Ay and Hy C Ay are subgroups, v : qr|u,— qlu, is
an isomorphism of subgroups preserving the quadratic forms to these subgroups, K is an
even lattice with invariants (my — t4,m— —t_,=6), where 6 = qr ® (—=q)[rs/r,, Ty
being the pushout of v in Ar @ Ay, and, finally, vi : qx — (—=9) is an isomorphism of
quadratic forms.

From this proposition, we can determine all primitive embeddings of one even lattice
into another. We will use this in the next example.

EXAMPLE 4.5. Method IV:

We now consider the BHK dual to the previous example. This is the first entry for
37b in Table 8. As mentioned in the introduction, this provides an example to the case
in [2], where no example could be found. In this case, we have

W =W =2 +y* +yz* + ',

and GT = SLy, and we know |SLw/Jw|= 2. In fact the group is generated by
(1/2,0,1/2,0), so we see that the points with = z = 0 are fixed. Another representative
in the same coset is (1/2,0,0,1/2). Thus, we see that the intersection points on the Ay
chain from the previous example are fixed, as well as other point with x = w = 0. The
two Ajs chains are permuted by the action. Thus, on Xyr gr we get the configuration
of curves of Figure 5.

Cuw

Co

Figure 5. Resolution of singularities on Xy,r or.
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Using the Riemann—Hurwitz theorem, we can compute the genus of the coordinate
curves. The curve C, is covered by a curve of genus 6 with 6 fixed points, so it has
genus 2. Similarly, we see that the genus of C,, is 0 and the genus of C, is 0. The two
components of the curve {y = 0} from the previous example are permuted, to give us C,,
of genus 0.

The non-symplectic automorphism o164 = (0,0,0,1/16), fixes C,,, and therefore the
chains of exceptional curves intersecting ', are invariant. It is not difficult to see also
that the four exceptional curves intersecting C, and C, are permuted. Thus, » = 11. One
can check that C,, C, and C, are superfluous, giving us a lattice Lz with discriminant
form wy g

There is one isotropic subgroup H and hence one overlattice of Lg. By Proposi-
tion 1.6 this overlattice has discriminant form w, 1. Since Sx (016) is an overlattice of Lg,
the two possibilities for Sx (o16) are U & Eg @& Ay or Ts 5 6. Using Proposition 4.4 we will
show that Ud Eg® A, does not embed primitively into SXWT o7 50 that Sx(016) = T2.5,6-

In [2] Al Tabbaa—Sarti-Taki have computed the Picard lattice for K3 surfaces with
non-symplectic automorphisms of order 16, and found that in our case, the Picard lattice
is U(2)® D4 ® Eg. This lattice is 2-elementary with u@®v as discriminant quadratic form.
In particular, this quadratic form takes values 0 or 1 (i.e., 6 = 0).

On the other hand, w;% has value 3/2 on the generator for Z/27Z. By Proposition 4.4,
a primitive embedding of U® Es® A; into the Picard lattice U(2)® D, ® Eg must therefore
correspond to the trivial subgroup. The existence of such a primitive embedding depends
on the existence of an even lattice with invariants (0,3,u ® v ® wy ;). The length of this
discriminant quadratic form is 5, whereas the rank of the desired lattice is 3, and so no
such lattice exists (see [27, Theorem 1.10.1]).

We conclude that the invariant lattice is Sx(o16) = T25,6, which has invariants
(11, w533).

REMARK. The other case with m = 16, r = 11 is number 58 in Table 8. The
method for computing the invariant lattice in this case is very similar to what we have
just computed. Alternatively, that case can also be computed with Method III.

EXAMPLE 4.6. Method IV:

The other case that requires Method IV is m = 9, r = 12. This occurs for two of the
K3 surfaces, namely 18a and 18b, both instances using the group SLy . Both of these
cases are similar, so we describe only the first.

Using methods similar to those described in the previous examples, we get the
configuration of curves depicted in Figure 6. For the discussion that follows, we denote
by E; the exceptional curve in the A5 chain, which intersects C,.

The automorphism og¢ permutes the three A, chains (yielding one orbit for each
curve in the chain for a total of 2 orbits), but leaves the other nine exceptional curves,
as well as the coordinate curves, invariant. This gives us » = 12, and we can compute
the lattice Lg =& Mg & Ay @ Eg with discriminant quadratic form wil ® w%yz. There is
one isotropic subgroup of this lattice, corresponding to the overlattice U & As & Eg. So
we must find some way to show that Lg is primitively embedded in the Picard lattice,
for then it is the invariant lattice.
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AT

Figure 6. Resolution of curves on Xw,¢ for example 18a.

We can determine the Picard lattice Sx,, .. We first notice that of has order 3.
Furthermore, its fixed locus has invariants (g, k,n) = (0,3,7). Therefore its invariant
lattice Sx (03) is a 3-elementary lattice with invariants (16, 3), i.e., it is the lattice U &
Eg®3As, with discriminant quadratic form 3w} ;. Since the transcendental lattice S )ngﬁc
has rank divisible by ¢(9) = 6, Sx (c3) is the Picard lattice.

In fact, we will determine a basis for Sx,, .. Consider the set £ consisting of all
of the exceptional curves (15 of them), and K consisting of all irreducible components
of (the strict transforms of) the coordinate curves. Let By = & U K. This set generates
Sxyw.o- One can check by direct computation ([11]) that C, and E; are redundant.

Now we consider the set B, generating the lattice Lz. Again, we compute that C
and Fj are redundant, so we get Lp generated by the two orbits from the As chains,
the remaining exceptional curves, and C,, and C,. Two of the generators for Lz are just
sums of generators of Sx,, .. Thus, a change of basis shows that Sx/Lg is a free group
of rank 4, and so Lg is primitively embedded.

The other example is similar. Instead of three As chains, there are three A;’s. One
can check that the set {y = 0} is composed of three curves, each of genus zero. Each of
these curves intersects one of the A; curves. These are permuted by the action of 9. Up
to a relabelling, we obtain the same configuration of curves, and the same Picard lattice.

The only cases where SLyy /Jy is not cyclic are 2% + y3 + 26 +w® (number 3d) and
22+ y* + 2% + w!? (number 8d) in Table 13. We analyze them separately.

EXAMPLE 4.7. The first polynomial we consider is W = 2% + y3 + 2% + w® in
P(2,2,1,1). This is number 3d in Table 13.

In this case the order of SLy /Jw is 9 and it results that SLy /Jw = Z/3Z @
7,/37Z since there are no elements of order 9. The group Jy is generated by jy =
(1/2,1/3,1/6,1/6) and two generators for SLy /Jw are g1 = (1/3,2/3,0,0) and g5 =
(1/3,1/3,1/3,0). Also we name g3 = (1/3,0,2/3,0) and g4 = (0,1/3,0,2/3). There are
four subgroups of SLy /Jw of order 3, namely G; = (g;, jw), ¢ = 1,2,3,4. We can also
observe that G{ = G, G = G3 and G = G4.

Now we consider the non-symplectic automorphism o¢ = (0,0,0,1/6). One may no-
tice, there is another automorphism of order 6, namely (0,0,1/6,0), but due to symmetry
(i.e., exchanging z and w), we must only consider one of them.

Using the same methods as before for each group, we can compute the invariant
lattice for the corresponding K3 surface. In each case, the lattice Lz has no overlattices,
so we can use Method I. When G = (i3, the invariant lattice has (r,q) = (10, 4w ,),
which is self-dual. The same is true for G = Gjy.
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When G = G; we get an invariant lattice with rank 16 and the discriminant form is
v & ws . This is the dual of the invariant lattice we get with the choice G = G2 and so
it proves the theorem for this case.

EXAMPLE 4.8. Finally, we examine the polynomial W = 22 + y* + 26 + w!'? in
P(6,3,2,1). This is number 8d in Table 13. There are non-symplectic automorphisms of
order 2, 4 and 12, but we again focus on the non-symplectic automorphism of order 6:
o6 = (0,0,1/6,0).

The order of SLy /Jw is 4 and since there are no elements of order 4, we conclude
that SLyw /Jw = Z/2Z & Z/27Z. The elements

1 1 11 11
g1 = (270a2a0>7 g2 = <0a25270)a gs = (2727070>

each have order 2 and represent different cosets in SLy /Jw; let G; == {(g;, jw), i = 1,2, 3.
Observe that GT = G, while GT = Gj.

When G = G, with Method I we compute the invariant lattice and obtain (r,q) =
(10,v & 4w2_%)

As for Go, we use again Method I and obtain (r,q) = (14, 2w2_j ® w?l))l)7 while for
Gs we get (r,q) = (6,2w3, & wg%) Observing they are mirror of each other, we can
conclude that the theorem is proved in this case.

5. Tables.

In each table, we have arranged the surfaces by weight system. Each weight system
is listed by the number assigned to it by Yonemura in [32]. In each weight system,
we have listed all possible invertible polynomials of the form (1) with non-symplectic
automorphism of order m, and for each polynomial, we list the orders of the possible
groups G/Jw satisfying Jys € G € SLw. The invariants (7, ¢s(s,,)) are then given,
as well as the number of the BHK mirror dual. Finally, we have also indicated which
method was used to determine gg (q,.)-

When consulting the tables, it will be helpful to know that wg ; = —w§ ;, and that
dwg ) = 4wy, 4wy = 4w ;. The first fact follows simply by definition. The latter two
follow from [27, Theorem 1.8.2].

Table 2. Table for m = 42.

No. [ Weights [ Polynomial [ SL/J [ G/J [ (r,q) [ BHK dual [ Method

14 | (21,14,6,142) | 22+ +2"+w? | 1 | 1 | (10,(0) | 4| 1

Table 3. Table for m = 30.

No. |  Weights | Polynomial | SL/J | G/J| (r,q) | BHK dual | Method
38 | (15,8,6,1;30) | 22 + y3z + 2° + w30 1 1| (11,wyy) 50 I
50 | (15,10,4,1;30) | z2 + o3 + y2° + w30 1 1 (9, w3 1) 38 I
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Table 4. Table for m = 24.

No. | Weights | Polynomial | SL/7| G/J| (r,q) | BHK dual | Method
13a | (12,8,3,1;24) | o2 + o3 + 22?4+ w24 1 1 (8, w3 1) 20 I
13b | (12,8,3,1;24) | 22 4+ 9> + 28 4 w?? 2 2 (12,w§’1) 13b I

1 (8,wy 1) 13b I
20 (9,8,6,1;24) | 22z 4+ 93 4+ 24 + w?? 1 1 (12, w%yl) 13a I

Table 5. Table for m = 22.

No. | Weights | Polynomial | sL/J | G/J | (r,q) | BHK dual | Method

78 | (11,64,1;22) | 22 + P24yt +w?? | 1 | 1 | (10,w;; ®wl)) | 78 | n

Table 6. Table for m = 20.

No. | Weights | Polynomial | SL/J | G/J| (r,q) | BHK dual | Method
9a | (10,5,4,1;20) | 22 + 2y? + 2% + w20 1 1 (10, ng) 9a I
9b | (10,5,4,1;20) | 2 +y* + 25 +w? 2 2 (10, w5 1) 9b 1

1| (10,w; 1) 9b I

Table 7. Table for m = 18.

No. [ Weights [ Polynomial [ SL/J [ G/J [ (r,q) [ BHK dual [ Method
12a | (9,6,2,1;18) | 22 4+ y3 + y28 + w!® 2 2 (ll,wé,1 EBwé,l) 39a I

1 (6,v) 39a I
12b | (9,6,2,1;18) | 2 + 93 +2° +w!® 3 3 (14,v) 12b I

1 (6,v) 12b I
39a | (9,5,3,1;18) | 22 +y32z+ 26 +wl!8 2 2 (14,v) 12a I

1| (9wy; ®wsy) 12a I
39b | (9,5,3,1;18) | 22 + 3z + 223 + w!® 1 1 (9, w51 ®wyy) 60 I
60 | (7,6,4,1;18) | 22z + 43 +yz3 +w'® 1 1 (11, w3, ®wi,) 39b I

Table 8. Table for m = 16.

No. | Weights | Polynomial | SL/J | G/J | (r,q) | BHK dual | Method
37a | (8,4,3,1;16) | 22 4+ xy? + yz* + w6 1 1 (9, wg73) 58 111
37b | (8,4,3,1;16) | 22+ y* + yz* + w'o 2| (11,w,3) 37b v

1| (9,w3s) 37b 111
58 | (6,5,4,1;16) | 22z + a2y® + 2* + w6 1 1 (11, w;g) 37a 1A%

Table 9. Table for m = 15.

No. [ Weights [ Polynomial [ SL/J [ G/J [ (r,q) [ BHK dual [ Method
11a | (15,10,3,2;30) | 2 + 93 + 2% 4 w!® 1 1 (10, w;j ©w} ) 22a 11
11b | (15,10,3,2;30) | a2 + 43 + 210 + w'® 1 1 (10, wgi ®wi ;) 11b II
22a | (6,5,3,1;15) 2z 4y + 20 4wt 1 1 (10, w;j @w;l) 11a II
22b | (6,5,3,1;15) | 222 + ¢ +x23 + w?® 1 1| (10,wy; ®w},) 22b II
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Table 10. Table for m = 14.

No. |  Weights | Polynomial | sL/7 | G/J | (r,q) | BHK dual | Method
40a | (7,4,2,1;14) 22 +yPz+ 2T +wlt 1 1 (T,0® w;j) a7 1I
40b | (7,4,2,1;14) | 22 + 9Bz + y2® 4wl 2 2 (13,v @ w%,l) 40b 1I

1 (T,v @ wy 1) 40b I
47 | (21,14,4,3;42) | 22 + 4% +y27 +w™ 1 1 (13,v® w%yl) 40a 11

Table 11. Table for m = 10.

No. [ Weights [ Polynomial [ SL/J [ G/J [ (r,q) [ BHK dual [ Method
6a (5,2,2,1;10) 22 +ylz 4+ 2% 4wt 2 2 (8, ng @2@’1) 36a 1
1 (6,u ®v) 36a 11
6b (5,2,2,1;10) 2 +y® + 25 4wt 5 5 (14,u ® v) 6b 11
1 (6,4 D v) 6b I
6c (5,2,2,1;10) | 22 4+ y*z + yz* + w!0 3 3 (14, u D v) 6c 11
1 (6,u ®v) 6c 11
11a | (15,10,3,2;30) | 22 4 y3 + 210 4 yw10 2 2 (17, w} ;) 42a I
1 (10,v ® v) 42a II
11b | (15,10,3,2;30) | @2 + 43 + 210 4+ w1 1 1 (10,v @ v) 11b 11
36a | (10,5,3,2;20) | z2 4+ y* +y2® +w'° 2 (14, u @ v) 6a. 11
1| (12,wy 1 @ 2wy 7) 6a I
36b | (10,5,3,2;20) | z2 + zy? + yz°® + w'® 1 1| (12,051 @ 2w, 1) 63 I
42a | (5,3,1,1;10) 22 + 3w + 210 4+ w10 2 (10,v ® v) 11la 11
1 (3, w51 1la I
42b | (5,3,1,1;10) | 2% + 932 +22® +w'O 1 1 (3, w;j) 68 I
42¢ | (5,3,1,1;10) | 22 + 93z + yz7 + w0 4 4 (17,w5 1) 42¢ I
2 (10,v ® v) 42c 11
1 (3, w3 1) 42¢ I
63 (4,3,2,1;10) | 22z + y2x + 25 + w'© 1 1 (8, w51 ® 2w} ;) 36b I
68 | (13,10,4,3;30) | 22z + y3 + y2® + w'O 1 1 (17, w3 1) 42b I
Table 12. Table for m = 9.
No. |  Weights | Polynomial | sL/J | G/J | (r,q) | BHK dual | Method
12a | (9,6,2,1;18) 22 + 3 + 29 4+ zw? 3 3 (16, ng) 25a I
1 (4,w3 ) 25a I
12b | (9,6,2,1;18) | 22 + 43 + 29 + yw!? 1 1 (4,w3,) 43a I
12¢ | (9,6,2,1;18) 22 + 93 + 29 + wld 3 (16,w3j}) 12¢ I
1 (4,w5 ) 12¢ I
18a | (3,3,2,1;9) 23+ 98 + 2% 4w 3 3 (12, w5 ; ® wj ,) 18a v
1| (8wy; ®wsy) 18a 11
18b | (3,3,2,1;9) | 23+ ay? +y23 + P 2 2 | (12,0}, ®wl,) 18b v
1| (8 wsy ®ws) 18b 111
25a | (4,3,1,1;9) 22w + y3 + 29 + w? 3 3 (16, w;} 12a I
1 (4,w5 ) 12a I
25b (4,3,1,1;9) 22w + y3 + 29 + ywb 1 1 (4, w§71) 43b I
25¢ (4,3,1,1;9) 22w + y3 + 29 + zw® 3 (16, w;}) 25a, I
1 (4, w3 1) 25a I
43a | (18,11,4,3;36) | 22 + y3w + 29 + w'? 1 1 (16,w3j}) 12b I
43b | (18,11,4,3;36) | =2 + y3w + 2° + zw® 1 1 (16, w;}) 25b I
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Table 13. Table for m = 6.
No. | Weights | Polynomial | sL/J7 | G/J | (r,q) | BHK dual | Method
2a | (4,3,3,2;12) | 23+ 9Pz 42t +wb 3 3 (16,v€Bw§71) 3a, 1
1 (10, 4wy 1) 3a 11
2b (4,3,3,2;12) | a3 + 932 +y23 +wb 1 1 (10, 411)%’1) 2b 11
2c (4,3,3,2;12) 23+ oyt + 24 b 2 2 (10,4w§’1) 2c 11
1 (10, 4w} ) 2c 11
3a (2,2,1,1;6) 3 4+ 3 +yzt 4+ wb 3 3 (10,4w§,1) 2a, 11
1 (4,v® w;j) 2a 1
3b (2,2,1,1:6) 22y + 3 + 28 + wb 6 6 (19, w5 1) 5a I
3 (16,0 © wy ;) 5a I
2 | (9,3wy; ®2wsy) 5a I
1 (4,v P wg_i) 5a 1
3c (2,2,1,1;6) 3 + xy? + yzt + wb 1 1 (4,v® ng) 57 I
3d (2,2,1,1;6) 3 98 + 20 b 9 9 (16,1;6910%’1) 3d 1
3 (16,0 ® wi ;) 3d I
3 (10,4w} ) 3d 11
3 (10, 4w} ;) 3d 11
3 (4,v ®wy ;) 3d I
1 (4,v @ w; 1) 3d I
3e (2,2,1,1;6) 22y + xy? + 26 + wb 3 3 (16,116910%71) 3e 1
1 (4,v® 'w;&) 3e 1
5a (3,1,1,1;6) 22 + xy® + 26 + wb 6 6 (16,0 ® w3 ;) 3b I
3| (11,3wh, @ 2wl ;) 3b I
2 (4, v ®wj ) 3b I
1 (1,117%11) 3b 1
5b (3,1,1,1;6) 22 + yPw + 26 + wb 2 2 (s,ﬁw;}) 29 11
1 (L,wj 1) 29 I
5c (3,1,1,1;6) 2 + xy® 4+ y2°® + wb 1 (1,w%’1) 56 I
5d (3,1,1,1;6) | 22 + b + 25w + 2w 8 (19,wy 1) 5d I
4 (12,6w} ) 5d 11
2 (8, 6wy 1) 5d I
1 (1,11)%11) 5d 1
5e (3,1,1,1;6) 22 + 98 + 26 b 12 12 (19,w2_&) 5e 1
6 (12, 6w} ;) Se 11
4 | (9,3w5 ] ®2w; 1) 5e I
3 | (11,3w; ® 2wy ) 5e I
2 (8, 6wy 1 5e I
1 (1,11)%71) 5e 1
8a (6,3,2,1;12) 22 + y* + 26 + zwb 2 2 (14, 2w2j} D wg’l) 23 I
1 (6,2w} | ® wy ) 23 I
8b | (6,3,2,1;12) | 2 +y*+ 28+ yu? 2 2 (10,v ® 4w2j}) 33a 11
1 (6,2w} | ® wy ) 33a I
8c (6,3,2,1;12) | 22 + zy? + 25 + yu? 1 1 (6,2w3 , @ w;j) 70 I
8d | (6,3,2,1:12) | a2 +y*+ 26 +w!? 4 4| (142w, ] ®w} ) 8d I
2 | (14,2wy; ®wl ) 8d I
2 | (6,2w), ®ws ) 8d 1
2 (10,v @ 4w 1) 8d 11
1 (6,2w} | ® wy 1) 8d I
8e (6,3,2,1;12) | x2 + ay? + 26 + w'? 2 2 (14, 2w2j} & wi ) e 1
1 (6,2w} |, ® wyy) 8e I
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No. | Weights | Polynomial | sL/J | G/J | (r,q) | BHK dual | Method
23 (5,3,2,2;12) | 2?w + y* + 26 + wS 2 2 (14,2w2ji ©w} ;) 8a, I
1 (6,2w} | ® wyy) 8a I
20 | (15,6,54;30) | 22 + 45 + 26 + yuw 2 2 (19, wy 1) 5b I
1 (12,6w] ;) 5b T
33a | (9,4,3,2;18) | 2 +ytw + 26 +w? 2 2 (14, Qij} @©wi ) 8b I
1 (10,v & 4w; ;) 8b 11
33b | (9,4,3,2;18) | 22 + ytw + 25 + yw” 1 1 (10,v @ 4w2—j) 33b 11
56 | (11,8,6,5;30) | a2y +y3z + 2% + wb 1 1 (19, w;j) 5¢ I
57 | (9,6,5,4;24) | a2y +y* + 223 4+ wb 1 1 (16,0 ® w} ;) 3c 1
70 (8,5,3,2;18) | z2w + xy? + 26 4 w? 1 1 (14, 2w2_j ® w:})’l) 8c 1

A. Computer code for computing lattices.

In order to compute the lattices using the configuration of curves, we used the
following Magma code, developed by Antonio Laface and added here with his permission.

This first function takes an even bilinear form B, and outputs generators of the
discriminant group and the values of gg on these generators.

disc:=function(M)
S,A,B:=SmithForm(M) ;
1:=[[S[i,i],il: i in [1..NumberOfColumns(S)]| S[i,i] notin {0,1}1;
sA:=Matrix (Rationals(),ColumnSubmatrixRange(B,1[1][2],1[#1][2]));
for i in [1..#1] do
MultiplyColumn(~sA,1/1[i][1],1);
end for;
Q:=Transpose(sA)*Matrix (Rationals() ,M)*sA;
for i,j in [1..NumberOfColumns(Q)] do
if i ne j then
Qli,j]:=Q[i,j]l-Floor(Qli,jl);
else
Qli,jl:=Q[i,j]l-Floor(Q[i,jl)+ (Floor(Q[i,j]) mod 2);
end if;
end for;
return [1[i][1]: i in [1..#111, Q;
end function;

The next function determines whether a given even bilinear form has overlattices.
Input is a matrix M and a number n. The output is the subgroup of Ay, that takes values
equal to n modulo 2Z. For isotropic subgroups of the discriminant group, use n = 0.

isot:=function(M,n)

v,U:=disc(M);

Q:=Rationals();

A:=AbelianGroup(v);

return [Eltseq(a) : a in A |
mod2(Matrix(Q,1,#v,Eltseq(a))*UxMatrix(Q,#v,1,Eltseq(a))) [1,1] eq nl;
end function;
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The function mod?2 is as follows:

mod2:=function(Q) ;
for i,j in [1..Nrows(Q)] do

if

i ne j then Q[i,jl:=Q[i,jl-Floor(Q[i,jl);

else Q[i,j]:=Q[i,j]-2*%Floor(Qli,j1/2);
end if;
end for;

ret
end

urn Q;
function;

Finally, the following function compares two discriminant quadratic forms, and lets

us know if they are the same finite quadratic form or not. This is not always easy to
check due to the relations in Proposition 1.2.

dicompare:=function(M,Q)
v,U:=disc(M);
w,D:=disc(Q);

if

v ne w then return false; end if;

A:=AbelianGroup(v);

Aut

:=AutomorphismGroup (A) ;

f,G:=PermutationRepresentation(Aut);

h:=Inverse(f);

11:

dd:
ret
end

(1]

(2]
(3]
(4]
(5]
[6]

(7]

=[Matrix(Rationals(), [Eltseq(Image(h(g),A.1))
i in [1..Ngens(A)]]) : g in G];

=[mod2(a*UxTranspose(a)) : a in 11];

urn D in dd;

function;
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