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Andrographolide (ANDRO), a bitter diterpene lactone found in Andrographis paniculata (Burm.f.) Nees, possesses several
biological effects such as antioxidant, anti-inflammatory, and organo-protective effects. Scientific reports suggest that it also has
neuroprotective capacity in various test systems. The purpose of this review was to synthesize the neuropharmacological
properties of ANDRO and highlight the molecular mechanisms of action that highlight these activities. A careful search was

Hindawi
Oxidative Medicine and Cellular Longevity
Volume 2022, Article ID 3079577, 9 pages
https://doi.org/10.1155/2022/3079577

https://orcid.org/0000-0003-4773-8320
https://orcid.org/0000-0003-0739-7920
https://orcid.org/0000-0003-0034-8202
https://orcid.org/0000-0002-5934-5201
https://orcid.org/0000-0003-3183-7623
https://orcid.org/0000-0002-4192-6497
https://orcid.org/0000-0002-7301-8151
https://orcid.org/0000-0002-2041-4695
https://orcid.org/0000-0002-1523-9116
https://orcid.org/0000-0003-4174-4586
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/3079577
http://crossmark.crossref.org/dialog/?doi=10.1155%2F2022%2F3079577&domain=pdf&date_stamp=2022-02-01


done in PubMed and Google Scholar databases using specific keywords. Findings suggest that ANDRO possess neuroprotective,
analgesic, and antifatigue effects. Prominent effects were stated on neuro-inflammation, cerebral ischemia, Alzheimer’s and
Parkinson’s diseases, multiple sclerosis, and brain cancer in mice and rats. Furthermore, ANDRO and its derivatives can
enhance memory and learning capacity in experimental animals (rats) without causing any toxicity in the brain. Thus,
ANDRO may be one of the most promising plant-based psychopharmacological lead compounds for new drug development.

1. Introduction

Neurological disorders are very common and important
health issues in elderly people [1, 2]. The inflammation plays
a crucial role in several neurodegenerative diseases, includ-
ing Alzheimer’s (AD) disease and Parkinson’s (PD), multi-
ple sclerosis (MS), and amyotrophic lateral sclerosis (ALS).
Oxidative stress is an important factor in the pathophysiol-
ogy of many chronic diseases such as diseases of the central
system or cancers [3, 4]. Therefore, much attention has been
given to the discovery and development of neurological
drugs from various origins [5, 6].

Current evidence suggests that plants are a promising
source of phytochemicals for the treatment of various dis-
eases [7–9], and thus, phytochemicals are considered one
of the most popular tools for sound health maintenance
throughout the world [10–13]. Diterpenes are evident in
their many promising biological activities, including neuro-
protective capacity [14, 15].

Andrographolide (ANDRO, C20H30O5; Figure 1), a bicy-
clic diterpene lactone isolated from Andrographis paniculata
(Burm.f.) Nees (Family: Acanthaceae), has shown diverse
biological activities [15–18].

ANDRO has neurobiological properties, such as antide-
pressant [19], anti-Alzheimer [20, 21], anti-Parkinsonism
[22], neuroprotective [23], antioxidant [24], anticancer
[25], and cognitive improvement [26] effects. It also shows
neuroprotective effects by inhibiting proinflammatory cyto-
kines such as tumor necrosis factor-α (TNF-α) and interleu-
kin-1β (IL-1β) production and microglial activation [27,
28]. In addition, ANDRO (0.25–8mg/kg) is known to exert
antifatigue activity in experimental animals [29]. Moreover,
solid lipid nanoparticles prepared by ANDRO have been
found to improve the transport facility through the BBB in
healthy rats [30]. No serious toxic effects in mice were
observed with two ANDRO derivatives, 3,19-isopropylide-
nyl- and 3,19-dipalmitoyl, up to 100mg/kg [31].

In this sense, the present review is aimed at focusing on
ANDRO neurobiological effects.

2. Search Strategy

A search was done in the following databases: PubMed/
Medline and Google Scholar using the next MeSH terms:
“Diterpenes”, “Neuroprotective Agents”, “Andrographo-
lide”, “Animals”, “Central Nervous System/drug effects”,
“Diterpenes/pharmacology”, “Diterpenes/therapeutic use”,
“Humans”, “Neuroprotective Agents/pharmacology”, and
“Neuroprotective Agents/therapeutic use”.

The research was done according to the consensus state-
ment of researchers active in ethnopharmacology and with
particular input by the ConSEFS Advisory group [32], and

the name of the plant was verified according to the PlantList
[33]. No language restrictions were imposed, and manu-
scripts were evaluated for dose/concentration, administra-
tion route, test systems, results, discussion, conclusion, and
proposed mechanisms of action.

The following inclusion criteria were considered:

(1) Studies developed in vitro, ex vivo, or in vivo, and
humans and their derived tissues and cells

(2) Studies with ANDRO and its derivatives

(3) ANDRO or its derivative joint effects with other
chemical compounds

(4) Studies with or without proposing mechanisms of
action

After careful search and strict analysis, 38 reports
(PubMed: 28; Google Scholar: 10) were included. The most
important mechanism of ANDRO’ effects on AD, PD, MS,
cerebral ischemia, intracerebral haemorrhage, neuropathic
pain, brain tumour, and depression is summarized in
Table 1 and Figure 2.

3. The Neurobiological Role of
Andrographolide: Molecular Mechanisms
and Pathways

3.1. Andrographolide and Neurodegenerative Diseases. Neu-
rodegeneration occurs in the CNS and involves the loss of
neuronal structure and function, triggered by several factors
including CNS inflammation [34, 35]. CNS degeneration
involves the progressive chronic loss of neural structure
and function, resulting in functional and mental neurologi-
cal deficiencies [7, 13].

3.1.1. Alzheimer’s Disease. Alzheimer’s disease (AD) is a
chronic neurodegenerative disease, which usually has a slow
progression and gradually worsens over time. It is the cause
of 60–70% of cases of dementia [36, 37].

Current treatment protocols are not sufficient for effec-
tively preventing AD signs and symptoms [38, 39]. Many
natural resources have been discovered in recent decades
which can be used as adjuvant therapies in the treatment
of AD. [8, 40, 41].

In some recent studies, ANDRO administration (2 and
4mg/kg i.p.) suppressed the spatial learning and memory
function impairment in Octodon degus [42], and the pro-
posed mechanisms of ANDRO were as follows: (1) recovery
of learning performance and spatial memory, (2) synaptic
basal transmission recovery, (3) protection of synaptic
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proteins, and (4) lowering of amyloid-beta (Aβ) aggregate
maturation and phosphorylated tau protein [42].

In another study, ANDRO (2mg/kg) was found to
improve learning/memory by activating Wnt signaling.
Wnt is a signaling pathway that enhances glucose metabo-
lism via gene expression and/or activity enhancement of
hexokinase, phosphofructokinase, and AMP-activated pro-
tein kinase (AMPK) [20, 43].

ANDRO also reduced the Aβ levels and tau phosphory-
lation and changed amyloid plaques in AβPPswe/PS-1 dou-
ble transgenic male mice [26]. Hence, ANDRO recovered
synaptic proteins, increases β-catenin levels, reduces active
glycogen synthase kinase- (GSK-) 3β levels, increases synap-
tic transmission, and protects long-term potentiation (LTP)
at the same time that suppresses postsynaptic-density-
protein 95 (PSD-95), GluA2, GluN2B, and Shank decrease
in the hippocampus [26]. Besides, the activation of nuclear
factor erythroid 2-related factor 2- (Nrf2-) mediated heme
oxygenase (HO)-1 expression, ANDRO (1–10μM) also
inhibited Aβ42-overexpression in microglial BV-2 cells [44].

In human microglia cells, ANDRO also inhibited nuclear
factor- (NF-) κB translocation via IκB phosphorylation
modulation and attenuated Aβ- (1-42-) induced Jun N-
terminal kinase- (JNK-) mitogen-activated protein kinase
(MAPK) overactivation [45]. ANDRO sulfonate (2.5 and
5mg/kg, 5 months) was found to inhibit AD via mitochon-
dria protection in APPswe/PSENΔ9 double transgenic mice
having AD [46].

Other studies narrate that ANDRO treatment during
chronic cerebral hypoperfusion suppressed astrocyte activa-
tion supported by decreased expression of the glial fibrillary
acid protein (GFAP), enhanced brain-derived neurotrophic
factor (BDNF) and tyrosine kinase receptor B (TrkB)
expression, and reversed upregulated expression of TNF-α,
IL-1β, and caspase-3. Thus, in the rat model of chronic cere-
bral hypoperfusion, ANDRO improved impaired spatial
learning and memory [47].

3.1.2. Parkinson Disease. Parkinson’s disease (PD) is
described as a gradual loss of midbrain substantia nigra
dopaminergic neurons [48, 49].

Some researchers have shown that pretreatment with
ANDRO (0.5–5μM) abolished lipopolysaccharide- (LPS-)
induced decrease in dopamine (DA) uptake but failed to
affect 1-methyl-4-phenyl-pyridine- (MPP-) induced
decrease in DA uptake. Thereby, ANDRO (1–5M) reduced
the tyrosine hydroxylase- (TH-) immunoreactive neuron
loss and shortened TH-immunoreactive dendrites [22].
Microglia-derived toxic factors include proinflammatory
mediators such as reactive oxygen species (ROS), prosta-
glandin E2 (PGE2), TNF-α, inducible nitric oxide synthetase
(iNOS), nitric oxide (NO), and cyclooxygenase 2 (COX2)
[50, 51].

Anxiety and depressive disorders are frequently comor-
bid with PD [52]. Thus, a forced swimming test was per-
formed in mice to measure depressive symptoms. After
ANDRO (5mg/kg) treatment, the swimming time was
noticeably enhanced showing an improvement of depressive
symptoms [53]. Geng et al. [54] provided evidence that

ANDRO attenuated DA neuron loss, oxidative stress, and
preserved mitochondrial morphology and also reduced
mitochondrial malfunctions, reduced cell death, and inhib-
ited GTPase activity in 1-methyl-4-phenyl-1,2,3,6-tetrahy-
dropyridine- (MPTP-) induced PD. Apoptosis is also an
important factor that triggers PD.

ANDRO reduced Ca2+ influx [55], intracellular ROS
production [56], and lipid peroxidation. In addition,
ANDRO regulated Bcl-2, Bid, Bax, and apoptosis-inducing
factor levels. ANDRO also inhibited the phosphorylation of
mitogen-activated protein kinases (p38, extracellular
signal-regulated kinase (ERK), and c-JNK) [55].

ANDRO (0.1–10μM) was found to decrease apoptosis
and inhibited IL-2 [57] and maybe an antagonist of phor-
bol-12-myristate-13-acetate (PMA) which stimulated
remarkable ROS production [56].

3.1.3. Multiple Sclerosis. Multiple sclerosis (MS) is a well-
known immune-mediated disorder, in which insulating
covers of nerve cells in the spinal cord and brain are dam-
aged in the CNS [58]. From the MS pathogenesis, it was
found that CD4+ T-cell-mediated autoimmunity is crucial
in MS pathogenesis, mainly for early disease initiation [59,
60]. T-helper type 1 (Th1) cells, characterized by interferon-
(IFN-) γ production, mediate the MS pathogenesis [61, 62],
but IL-17-expressing T-helper cells (Th17) are also involved.
CD8+, as well as CD4+ T cells, was equally immune-stained
for IL-17 and IL-17 production inactive areas of MS
lesions [63].

ANDRO inhibits the dendritic cells ability and generates
peptide-major histocompatibility complexes required for T
cell activation. In LPS-treated dendritic cells, ANDRO atten-
uated the upregulation of the maturation markers I-Ab,
CD40, and CD86 (B7.2) [16]. Besides, ANDRO also sup-
pressed T cell function, IFN-γ, and IL-2 production [57].
These effects may contribute to ANDRO’s therapeutic
potential, ameliorating MS symptoms in autoimmune
encephalomyelitis mice through inhibition of T-cell activa-
tion and antibody responses directed to the myelin
sheath [16].

3.2. Andrographolide and Stroke

3.2.1. Ischemic Stroke. Cerebral ischemia occurs when the
metabolic demand of brain is not satisfied due to an insuffi-
cient blood flow [48, 64]. This involves cerebral hypoxia
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Figure 1: Andrographolide chemical structure.
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leading to the death of brain tissues [65, 66]. Cerebral ische-
mia is one of the serious causes of morbimortality world-
wide. The treatment options against cerebral ischemia/
stroke are limited [67].

Some studies have shown that ANDRO (0.1 and 1mg/kg
i.p) lowered the infarct volume and neurological deficits and
drastically reduced microglia cells in permanent middle
cerebral artery occlusion- (pMCAO-) induced rat model
[27]. On the other hand, ANDRO showed a neuroprotective
effect by reducing inflammation in the MCAO-induced rat

model. ANDRO abolished neuroinflammatory markers,
such as IL-1β and TNF-α. ANDRO also suppressed NF-κB
activation [27].

Another study showed that ROS production and protein
nitrosylation, iNOS, gp91phox/NADPH oxidase 2 (NOX2),
IL-1β, and HIF-1α levels were decreased by ANDRO (5
and 10μg/kg, i.v.) in cerebral ischemia in rats [68]. Further-
more, NOX2 and iNOS expression were reduced by impair-
ing PI3K/protein kinase B- (AKT-) dependent NF-κB and
HIF-1α activation in cerebral ischemia in mice [24].

Table 1: ANDRO neuropharmacological activities and possible mechanism of action.

Neurological/psychiatric disorders Results/possible mechanisms References

Alzheimer disease

Neuroprotective
↓ Aβ protein

↓ Caspase-3 expression
↓ Apoptosis

↓ Neuronal cell death

([20], [44], [47], [26], [46])

Parkinson’s disease

Neuroprotective
↓ ROS, ↓ NO
↓ TNF-α
↓ IL-1β

↓ Lipid peroxidation
↓ Apoptosis
↓ Cell death

([22], [94], [95], [52], [50], [51], [55], [56], [57], [54])

Multiple sclerosis

Neuroprotective
↓ T-cell activation

↓ IFN-γ
↓ TNF-α

↓ IL-1β, ↓ IL-2
↓ Apoptosis

([16], [62], [61], [63], [57], [96])

Cerebral ischemia

Neuroprotective
↓ β-Catenin
↓ Caspase-3
↓ NF-κB

↓ Apoptosis
↓ Neuroinflammation

([24], [27], [68], [69], [97], [70])

Intracerebral hemorrhage

↓ Brain injury
↓ Catenin-1
↓ TNF-α
↓ IL-1β
↓ IL-6

([15], [23], [98], [71], [72])

Neuropathic pain

↓ TNF-α
↓ IL-1β

↓ Neuronal excitability
↓ Central and peripheral pain sensitization

([31], [75], [76], [77])

Brain tumor
↑ p53 and ERK phosphorylation

↑ Caspase-7
↑ Apoptosis

([83], [81], [82], [84])

Depression

↓ Inflammation
↓ NO, ↓ iNOS

↓ COX-2
↓ TNF-α

↓ IL-1β, ↓ IL-6
↑ β-Catenin
↑ BDNF
↑ pSer9

([19], [93], [92], [54], [90], [91], [89])

↑: increase; ↓: decrease; Aβ: amyloid beta; COX-2: cyclooxygenase 2; ERK: extracellular signal-regulated kinase; IFN: interferon; IL: interleukin; NF-κB:
nuclear factor κB; NO: nitric oxide; ROS: reactive oxygen species.

4 Oxidative Medicine and Cellular Longevity

 2572, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2022/3079577 by C

ochrane C
hile, W

iley O
nline L

ibrary on [06/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



ANDRO, in rat hippocampal cultures, also inhibited GSK-
3β in a non-ATP-competitive, substrate-competitive
way [69].

In a recent study, ANDRO (5–100μg/kg, i.p.) increased
Wnt/β-catenin signaling as evidenced by the enhanced
nuclear β-catenin expression and inhibited GSK-3β (pSer9)
[70].

3.2.2. Hemorrhagic Stroke. Intracerebral hemorrhage (ICH)
occurs within brain tissue or ventricles [71] and is a prime
CNS health problem all over the world with high morbimor-
tality rates. So far, no effective strategies exist to treat this
disorder, and nearly 20% of patients achieve therapeutic out-
comes [72]. There are several causes of, including neuroin-
flammation and microglial activation. Therefore,
prevention and secondary treatment of brain injury are
important for patients with ICH [23, 73].

In some studies, ANDRO (1 and 2mg/kg) was able to
reduce neurobehavioral damage, the water content in the
brain, alleviate neuronal cell death, and degeneration in
ICH-induced SBI rats [23]. Further experimental analysis
shows that ANDRO has inhibitory effects on CD11b+ and
CD16+ microglia cells and attenuated TNF-α and IL-6 level
by deactivating the NF-κB signaling pathway through
reverse phosphorylation of IκBα and p65 in ICH rats [23].
Furthermore, in the ICH brain, ANDRO reduced caspase-
1-caspase-recruitment domain (ASC) and NLRP3-ASC
interaction, thereby inhibiting caspase-1/gasdermin D cleav-
age and IL-1β production [23]. In addition, ANDRO sup-

presses NF-κB and NLPR3 inflammasome activation via
p65 translocation assembly inhibition of NLRP3/ASC/cas-
pase-1 complex [23] and can reduce SBI after ICH [15].

3.3. Andrographolide and Neuropathic Pain. Pain sensation
occurs when tissue injury is detected by nociceptors [74].
ANDRO (25, 50, 100mg/kg) is evident to exert analgesic
effects by reducing writhing reflex [75]. ANDRO and its
derivatives 14-deoxy-11,12-didehydroandrographolide, 14-
acetyl-3,19-isopropylidenyl-, and 3,19-dipalmitoyl-deriva-
tives (4mg/kg) exerted analgesic effects in hot plate and
writhing test in mice [31].

ANDRO is also evident to exert analgesic effects in
Charles Foster male albino rats [76]. ANDRO (25mg/
20mL) also attenuated mechanical and thermal hyperalgesia
and downregulated the expression of the P2X7 receptor.
Besides this, ANDRO decreased TNF-α and IL-1β expres-
sion, increased IL-10 expression, inhibited ERK signaling
pathways activation, and also decreased the coexpression of
GFAP and P2X7 receptors [77], thus reducing neuropathic
pain in the HIV rat model.

3.4. Andrographolide and Brain Tumors. Glioma is a tumor
occurring in the glial cells of the brain or spine [78] and
comprises about 30% of all brain tumors and 80% of all
malignant brain tumors in CNS [79]. Targeted therapies
for cancer are a rapidly advancing field for treating tumor,
and natural products have become the best choice for
researchers ([80], Sharifi-Rad et al., 2021b).
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Figure 2: Schematic representation of the most important molecular mechanisms and signaling pathways of andrographolide in central
nervous system disorders. ↑: increase; ↓: decrease; ANDRO: andrographolide; ROS: reactive oxidative species; NO: nitric oxide; iNOS:
inducible nitric oxide; IL: interleukins; TNF: tumor necrosis alpha; NF-κB: nuclear factor kappa-light-chain-enhancer of activated B cells.
ATG 13 autophagy-related protein 13, ULK ½ Unc-51 like autophagy activating kinase.
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ANDRO showed anticancer potential in several cancer
cell types [25, 81]. ANDRO (15μΜ) induced cell death of
glioblastoma (C6) cells by inducing apoptosis through
ROS-extracellular receptor kinase- (ERK-) p53-caspase 7-
and PARP-pathways in mouse glioblastoma (C6) cells.
ANDRO could increase apoptosis through both phosphory-
lations of p53 and p53 activation. Because ANDRO
increased p53 levels in neural cells [55], findings suggest that
ANDRO can promote p53 protein activation, which acti-
vates the downstream caspase 7-PARP cascade [82] and is
regulated by ERK [83]. In a recent study, ANDRO acceler-
ated RSC96 cell proliferation [84].

3.5. Andrographolide and Depression. One of the most com-
mon neuropsychiatric disorders in the world is depression
[85–87]. Characterized by a variety of signs and symptoms,
antidepressants have been increasingly used for depression
treatment in daily life, but their multiple side effects and
high rates of failure have triggered the researchers’ interest
to find more effective and safer therapeutic strategies [88].
ANDRO (5mg/kg) administration can improve depressive-
like behaviour, as well as to attenuate the expression of pro-
inflammatory mediators and cytokines, including NO,
iNOS, COX-2, IL-1β, IL-6 and TNF-α, NF-κB signaling (p-
p65, p-IκBα), and NLRP3 inflammasome assembly (NLRP3,
ASC, and caspase-1) in the prefrontal cortex. Besides,
ANDRO (5mg/kg) increased Beclin1 expression and abro-
gated phosphorylated mTORC1 (p-mTOR), revealing
autophagic activity in the prefrontal cortex of chronic
unpredictable mild stress mice [54]. Beclin1 stimulates the
initial stages of autophagy, and p-mTOR inhibits autophagy
through ATG13 and ULK1/2 phosphorylation [89].
ANDRO-generated autophagy can attenuate depressive-like
symptoms, inhibits inflammation, and shows antidepressive
effects [54].

In another study performed in mice, ANDRO (20 and
50mg/kg) activated hippocampal BDNF system, thus show-
ing antidepressant effects [19, 90]. Also, ANDRO inhibited
the long-term depression in a concentration-dependent
way, showing β-catenin accumulation and reducing the
GSK-3β active state [91–93].

4. Conclusions

The antioxidant and anti-inflammatory effects of ANDRO
and some of its derivatives are well-known. It is also widely
recognized that substances with these kinds of properties are
cytoprotective and can protect animal organs. This review
gives insights on the neuro-pharmacological effects of
ANDRO and its derivatives in several test systems. In light
of these data, ANDRO can be considered one of the most
important neuro-protective phytochemicals that can be con-
sidered as an adjuvant treatment in neurodegenerative dis-
eases such as AD, PD, and MS. Further studies are needed
to find solutions such as nanocarriers, to increase the bio-
availability of ANDRO in order to cross the blood-brain bar-
rier by incorporating in pharmaceutical formulations such
as nanoparticles.
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