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Abstract: Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis that repli-
cates inside human alveolar macrophages. This disease causes significant morbidity and mortality
throughout the world. According to the World Health Organization 1.4 million people died of this
disease in 2021. This indicates that despite the progress of modern medicine, improvements in
diagnostics, and the development of drug susceptibility tests, TB remains a global threat to public
health. In this sense, host-directed therapy may provide a new approach to the cure of TB, and the
expression of miRNAs has been correlated with a change in the concentration of various inflammatory
mediators whose concentrations are responsible for the pathophysiology of M. tuberculosis infection.
Thus, the administration of miRNAs may help to modulate the immune response of organisms.
However, direct administration of miRNAs, without adequate encapsulation, exposes nucleic acids
to the activity of cytosolic nucleases, limiting their application. Dendrimers are a family of highly
branched molecules with a well-defined architecture and a branched conformation which gives rise to
cavities that facilitate physical immobilization, and functional groups that allow chemical interaction
with molecules of interest. Additionally, dendrimers can be easily functionalized to target different
cells, macrophages among them. In this sense, various studies have proposed the use of different cell
receptors as target molecules to aim dendrimers at macrophages and thus release drugs or nucleic
acids in the cell of interest. Based on the considerations, the primary objective of this review is to
comprehensively explore the potential of functionalized dendrimers as delivery vectors for miRNAs
and other therapeutic agents into macrophages. This work aims to provide insights into the use of
functionalized dendrimers as an innovative approach for TB treatment, focusing on their ability to
target and deliver therapeutic cargo to macrophages.

Keywords: tuberculosis; Mycobacterium tuberculosis; miRNA; dendrimers; host directed therapy

1. Introduction

Tuberculosis (TB) is a disease of the lungs caused by Mycobacterium tuberculosis, which
can result in severe morbidity and mortality [1]. According to World Health Organization
(WHO) figures, 1.4 million people died of TB in 2021. According to the Global Tuberculosis
Report 2022 [2], most of the estimated increase in TB deaths globally was accounted for by
four countries: India, Indonesia, Myanmar, and the Philippines. However, if we look at the
proportion of global cases, India had the highest number of cases, accounting for 26% of
global cases in 2021.
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At the moment, bacille Calmette–Guérin (BCG) is the only licensed TB vaccine. How-
ever, it has limited efficacy against pulmonary TB disease development because it does
not prevent primary infection or reactivation of latent lung infection, which is the main
source of the spread of the bacillus in the community. The effect of BCG vaccines on the
transmission of M. tuberculosis is therefore limited [3].

On the other hand, although antibiotic treatment of drug-susceptible M. tuberculosis
is generally effective, drug-resistant TB has a treatment efficacy below 50% and can, in a
proportion of cases, develop into progressive, untreatable disease [4].

Thus, despite the progress of modern medicine, improvements in diagnosis and the
development of drug susceptibility tests, TB remains one of the most threatening curable
infectious diseases. Therefore, it is necessary to study new therapies for the treatment of TB.

In this sense, host-directed therapies (HDT) have appeared as complementary treat-
ments for persistent infectious diseases such as TB. HDT is a treatment that uses specific
molecules that produce an antimicrobial or beneficial effect by: (a) interfering with the host
mechanisms used by the pathogen to persist or replicate in host tissues; (b) boosting the
host’s immune defenses against the pathogen; (c) targeting pathways that may contribute
to disease or immunopathology; (d) modulating host factors locally that are associated
with pathogenic responses (Figure 1). Therefore, the use of HDT is intended to improve the
prognosis of TB through immunomodulation [5].
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(TB) Treatment.

Furthermore, the therapeutic modulation of immunity through cytokines is a way of
supporting host defenses. Cytokines play a crucial role in immune cell function and, in
theory, may serve as promising candidates for inclusion in complementary immunother-
apies [6]. Thus, reducing excessive cytokine responses appears to be a promising HDT
strategy for people with TB.

TB is a chronic granulomatous infectious disease caused by M. tuberculosis in humans.
TB usually attacks the lungs, but it can affect any part of the body [7]. Infection occurs via
aerosol and inhalation of a few droplets containing M. tuberculosis bacilli [8]. After infection,
M. tuberculosis pathogenesis occurs in two stages. The first is an asymptomatic state that
can persist for many years in the host, called latent TB. People with latent TB cannot spread
the infection to other people [7].

However, when the tubercle bacilli overcome the immune system and multiply in the
host, latent TB progresses to active TB. People with active TB are usually infectious and can
expel the bacteria into the air, for example by coughing, and thereby infect other people [8].

Macrophages are responsible for the activation of protective immune responses to
control or eliminate infection. Macrophages are widely distributed and strategically placed
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in many tissues of the body not only to combat infection but also to perform a vast array of
other immunological, physiological and homeostatic functions, and therefore play impor-
tant roles in disease control and progression [9]. Autophagy, carried out by macrophages,
is a lysosomal degradative process that participates in cellular homeostasis by enabling the
removal of defective organelles, protein aggregates, or intracellular microorganisms [10].

Macrophages are the major host of M. tuberculosis in humans. M. tuberculosis has
evolved some strategies to counter autophagy defense and prompts the host to elicit
an immune response that favors its persistence [4,11,12]. Several proteins produced by
M. tuberculosis have been shown to modulate or inhibit macrophage autophagy and antimi-
crobial responses, enhancing the intracellular survival of M. tuberculosis in macrophages by
scavenging cellular reactive oxygen species and upregulating IL-10 [13].

1.1. TB Current Therapies

Active TB disease can be treated by taking several drugs for 6 to 9 months. Currently,
there are 10 drugs approved by the U.S. Food and Drug Administration (FDA) for treating
TB. Of the approved drugs, the first-line anti-TB agents that form the core of treatment
regimens are isoniazid, rifampin, ethambutol, and pyrazinamide [8,14]. However, the
number of cases with isoniazid- and rifampin- resistant M. tuberculosis, the two most potent
antituberculosis drugs, has increased in the last few years. In 2013, 480,000 new cases of
multidrug-resistant tuberculosis (MDR-TB) were reported in the world, and in 2018 around
half a million new cases of rifampicin-resistant TB were reported [15,16]. About 50% of
reported MDR-TB cases culminate in the death of the patient. According to the Global
Tuberculosis Report 2022, globally in 2021, 7.3% of people with rifampicin-resistant TB
(RR-TB) had extensively drug-resistant TB (XDR-TB), which is resistant to rifampicin and
isoniazid, as well as to any fluoroquinolone and at least one of three injectable second-
line drugs (amikacin, capreomycin, or kanamycin). In total, there were an estimated
465,000 cases of rifampicin-resistant TB (RR-TB) in 2021, of which 39% were reported to
have been tested for XDR-TB [2].

To address the challenges of TB, the World Health Organization (WHO) has released
the “Strategy to End TB”, indicating that the target for 2050 is to have less than one TB
patient per million people each year [17].

Thus, to overcome the global public health crisis of MDR-TB, several studies have
been conducted on gene therapy and immunotherapy in recent years, and the results from
these studies, at least in animal models, have been promising [17,18]. In this sense, different
studies have indicated that miRNAs may regulate host–pathogen interactions in bacterial
and viral infections, including M. tuberculosis infection [13].

1.2. miRNA Therapies

Gene therapy is a novel and promising tool for the treatment of many severe diseases,
and the silencing of proteins using gene therapy is the safest and most efficient tool to treat
diseases because it does not induce changes in the human genome [19].

In this context, miRNAs are small RNA molecules that are typically 21–23 nucleotides
in length. They are transcribed from endogenous genes and are processed by several
key proteins to form mature miRNAs. Mature miRNAs can then bind to messenger
RNA (mRNA) transcripts, leading to either mRNA degradation or translational repres-
sion (Figure 2). This process allows miRNAs to regulate gene expression at the post-
transcriptional level and play a critical role in various biological processes, including
development, differentiation, and homeostasis [20].

Remarkably, a single miRNA can regulate the expression of multiple mRNAs, thereby
modulating entire gene networks and pathways. This phenomenon is known as miRNA-
mediated gene regulation and highlights the versatility and specificity of miRNAs in
controlling gene expression. Moreover, an mRNA transcript can be targeted by many
different miRNAs, which can bind to various miRNA-binding sites within the mRNA
molecule. The presence of multiple miRNA-binding sites within an mRNA transcript
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allows for a complex and precise regulation of gene expression at the post-transcriptional
level [21].
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Furthermore, miRNAs have been shown to play a key role in the immune response
against infectious diseases. For example, during viral infections, miRNAs can modulate
the expression of viral genes to either suppress viral replication or facilitate the host
immune response. Similarly, miRNAs can regulate the expression of genes involved in
host–pathogen interactions, such as genes encoding cytokines and chemokines, to modulate
the host immune response and inflammation [23].

Many studies have characterized the function and regulatory mechanisms of miRNAs
in the intracellular and extracellular organelles, as well as their role in human diseases,
serving as a potential diagnostic and therapeutic target [13], and several miRNAs have
been identified as regulators that play important roles to up-regulate or down-regulate
innate immune response in the regulation of M. tuberculosis replication and infection [24].
The dysregulation of miRNA expression has also been implicated in TB pathogenesis,
with some miRNAs promoting bacterial replication and others enhancing host defense
mechanisms. This has led to the suggestion that miRNAs could be used as diagnostic
biomarkers or therapeutic targets for TB treatments [25].

The activation of innate immune cells is regulated by various miRNAs, among them
miRNA-155, miRNA-145, miRNA-146a, miRNA-21, and miRNA-26b [20]. These miR-
NAs play a key role in controlling both innate and adaptive immune responses against
M. tuberculosis by targeting IFN-γ, which has been suggested as a potential biomarker for
pulmonary TB due to its association with the clinical manifestation of the disease. A recent
study by Li et al. (2018) [24], found that miRNA-26b modulates inflammatory cytokine
expression, leading to the attenuation of the immune response. Specifically, overexpression
of miRNA-26b resulted in a reduction of inflammatory cytokine secretion in M. tuberculosis
infection such as IFN-γ, IL-1β, IL-6 and TNF-α [24]. Notably, IL-6 has been shown to be
crucial in the induction of protective memory response [26], and the absence of IFN-γ has
been linked to reduced phagocytosis in macrophages [27].

Direct delivery of miRNA is considered a promising method to boost the immune
response against TB by targeting specific miRNAs that are downregulated during infection,
such as miRNA-155 [20]. MiRNA-155 has a protective role against mycobacterial infections
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and its expression is induced in macrophages upon infection with mycobacteria. It acts as a
positive regulator of TLR signaling, inducing the production of type I IFN, which is crucial
for the immune response against TB [20]. Overexpression of miR-155 has been shown to
promote autophagy and the maturation of mycobacterial phagosomes in macrophages,
which facilitate the elimination of intracellular mycobacteria [28].

However, the efficacy of miRNA therapy is limited by poor targeting ability, short
circulation time and the off-target effects of naked miRNA-based agents [29]. Additionally,
miRNAs are highly hydrophilic and therefore unable to penetrate lipid cell membranes,
and can be degraded by nucleases in the blood [30]. Therefore, the successful delivery of
miRNA into the target cell should be achieved with the lowest toxicity and should provide
shielding, targeting, and cellular uptake [29]. In order to overcome these barriers, different
miRNA-loaded encapsulation platforms have been proposed including nanoparticles, lipo-
somes, and dendrimers [29–31]. Dendrimers have garnered attention due to their unique
physicochemical (such as solubility, specificity, stability, biodistribution and therapeutic
efficiency), biological (e.g., ability to overcome issues to reach the right target(s) through
first-pass effect, immune clearance, cell penetration, off-target interactions), and mechanical
properties [32]. In addition, improved pharmacokinetic and pharmacodynamic behaviors
demonstrate their strong potential in medicine as nanocarriers [33].

2. Dendrimers as Carriers

Dendrimers are well-defined artificial polymers and consist of a central core molecule
that acts as the root from which a number of highly branched, tree-like arms sprout in an
ordered and symmetrical fashion (Figure 3) [31–34]. Dendrimers possess several functional
groups responsible for high solubility and reactivity, and have empty internal cavities,
making them suitable to act as carriers for drugs and nucleic acids [35]. The high water-
solubility of cationic dendrimers positions them as efficacious nanocarriers for nucleic acids
in biological applications [36]. Nucleic acids can be loaded by surface absorption or interior
encapsulation to avoid degradation and immune responses [37].Pharmaceuticals 2023, 16, x FOR PEER REVIEW 6 of 17 
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Dendrimer synthesis offers the possibility of generating monodisperse macromolecular
structures. Generally, they are prepared using a divergent or a convergent method. In both
methods, the dendrimer grows outward from a multifunctional core molecule. First, the
core molecule reacts with monomer molecules containing one reactive and two inactive
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groups, creating the first generation dendrimer. Then, the new periphery of the molecule is
activated for reactions with more monomers to form new generations of dendrimers [38].
The voids inside dendrimers can accommodate ions and molecules in their structures
depending on the void size and the chemical nature of each group. The accommodated
particles are kept inside the dendrimers by different forces including electrostatic and
hydrophobic forces, formation of complexes, van der Waals, and hydrogen bonds [39].

The essential feature of dendrimers is their generation, defined as the number of layers
attached to the core [40]. More layers attached to the core implies both a greater size and
ionic charge. For instance, dendrimers of third generation poly(amidoamine) (PAMAM)
(G3.0) have a diameter of 3 nm, similar to insulin, and fourth generation PAMAM (G4.0)
have a diameter of 4 nm similar to cytochrome C. Fifth (G5.0) and sixth (G6.0) generations
possess diameters equivalent to the thickness of lipid bilayer membranes of biological
cells [40]. Figures 3 and 4 show the structural arrangement of PAMAM dendrimers from
G3.0 to G5.0 and how as they change generation, they increase their size and their amount
of terminal amino groups in a relation of 2(2+G), where G corresponds to the generation
number for PAMAM dendrimers.
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Modified dendrimers possess a high density of ionic charges on their surfaces, offering
multiple attachment sites, which makes them attractive for the delivery of plasmid DNA,
antisense oligonucleotides, and siRNA/dsRNA [41]. Moreover, the high density of charges
contributes to the surface characteristics of the molecules and determines the molecular
volume, which is important for the ability to separate other molecules within the den-
drimer [34]. However, dendrimers that end in a cationic charge may present cytotoxicity
and hemolytic properties [42] produced by an excess of positive charge, which can be toxic
for cells, and this represents the major challenge in their clinical use. The dendrimers’
cytotoxicity may be associated with their size, charge and surface functionalization. The
positive charge can react with the cell membrane, resulting in the creation of nanopores,
subsequent leakage of cellular content, and eventually cell death. However, this can be
reduced by protecting their charge through surface chemical modifications, such as func-
tionalization with polyethylene glycol (PEG), pyrrolidone, acetyl groups, carbohydrates,
and other moieties [40]. Bhadra et al. (2003) [43] found that PEGylation of G4.0 PAMAM
dendrimers resulted in a significant reduction in the hemolytic and hematological toxicity
of uncoated PAMAM dendrimers, with an improvement in drug loading capacity and a
reduction in drug leakage.

Regarding clinical trials of dendrimers, in 2012, the formulation VivaGel® was ap-
proved in Australia. This formulation consists of a dendrimer-based formulation that has
been used for the treatment and prevention of sexually transmitted infections. This mile-
stone underscores the immense potential of dendrimers as versatile drug delivery systems
and therapeutic agents. The approval of VivaGel® not only reflects the increasing interest
in dendrimers as promising platforms for pharmaceutical development but also validates
their potential to advance from technology to effective therapies for individuals [44–46].



Pharmaceuticals 2023, 16, 1428 7 of 16

2.1. Current Studies Using Dendrimers in TB

Research in the field of drug-loaded dendrimers for TB treatment has brought attention
to the utilization of rifampicin and isoniazid as primary therapeutic agents. These two
substances play a critical role in tuberculosis therapy and have garnered significant interest
in studies aimed at enhancing their effectiveness and delivery via dendrimer encapsulation.
Kumar et al. [47], Rajabnezhad et al. [48], and Ahmed et al. [49] reported on the prolonged
release of rifampicin from poly(amidoamine) Pegylated dendrimers (PAMAM). Concur-
rently, Bellini et al. [50] demonstrated the remarkable stability of the rifampicin–PAMAM
complex under physiological pH conditions and the rapid release of rifampicin in acidic
environments, resembling the acidic niches within macrophages where M. tuberculosis
resides. In addition, Rodrigues and Shende [51] employed the same PAMAM dendrimers
for the delivery of isoniazid and copper. Furthermore, Mignani et al. [52] described the
development of innovative, non-cytotoxic polycationic phosphorus dendrimers as potent
anti-TB agents with inherent activity.

Table 1 provides a summary of research conducted on drug-loaded dendrimers for TB
and their key findings.

Table 1. Ongoing research investigates the utilization of dendrimers for encapsulating antibiotics in
the treatment of tuberculosis (TB).

Anti-TB Target Polymers Generation Key Findings Ref.

R
if

am
pi

ci
n

Vero cells
(ATCC-CCL-81e)

ethylene diamine,
acrylonitrile

(mannosylated
dendrimer)

G5.0

The rifampicin-loaded mannosylated dendrimer reduced the drug
release rate at pH 7.4, hemolytic toxicity, and cytotoxicity. Conversely,
increased drug release at pH 5.0 and alveolar macrophages absorption

were observed.

[47]

R
if

am
pi

ci
n

- Poly(amidoamine)
PAMAM G4.0

The results demonstrated the remarkable stability of the
rifampicin–PAMAM complex at physiological pH, as well as the rapid
release of rifampicin molecules in an acidic environment. This release

pattern closely resembles the acidic domains found within
macrophages, which are the host cells where

Mycobacterium tuberculosis resides.

[50]

R
if

am
pi

ci
n Wister rats

(male)—in vivo
pulmonary drug

absorption

Poly(amidoamine)
PAMAM G1.0-G3.0

The lower generation PAMAM microspheres were found to have a
significant impact on the pharmacokinetic parameters of rifampicin,

ultimately affecting the bioavailability of the drug. This study
identified PAMAM G3 dendritic microspheres as suitable carriers for

the pulmonary delivery of rifampicin to lung tissues.

[48]

Is
on

ia
zi

d
an

d
co

pp
er

M. tuberculosis H37Ra
(ATCC25177) cells

Poly(amidoamine)
PAMAM

Methylmethacrylate
G4.0

The combination of copper and isoniazid showed a synergistic effect
against M. tuberculosis H37Ra, resulting in a high inhibition rate of 96%

and a significant dose reduction of up to 85 µg/mL. Copper
nanoclusters containing isoniazid, synthesized using G4 PAMAM

dendrimers, exhibited a controlled release profile with a cumulative
drug release of 75% over 24 h.

[51]

R
if

am
pi

ci
n

Raw 264.7 macrophage
cells

Poly(amidoamine)
PAMAM

Poly(ethylene glycol)
(PEG)

G4.0
The PEGylated G4 PAMAM dendrimers developed in this study are

proposed as an ideal drug carrier for rifampicin, offering minimal
cytotoxicity, high loading capacity, and extendedrelease characteristics.

[49]

A
ct

iv
e

pe
r

se

M. tuberculosis H37Ra
M. tuberculosis H37Rv

M. bovis BCG
Balb/C mice

Polycationic
phosphorus G0.0–G4.0

The 2G0HCl polycationic phosphorus dendrimer, has shown promise
for treating TB based on in vitro and in vitro studies. It is a safe and
chemically stable compound that remains intact in aerated aqueous
solutions for up to 9 months, which is crucial for its potential use in
clinical development. Notably, 2G0HCl exhibits impressive efficacy

against single drug-resistant strains of M. tuberculosis H37Rv that are
resistant to rifampicin, isoniazid, ethambutol, or streptomycin. In vivo
experiments using infected Balb/C mice have demonstrated significant

effectiveness in reducing bacterial counts in the lungs when
administered orally at a dose of 50 mg/kg once a day for 2 weeks,

surpassing the efficacy of ethambutol and rifampicin.

[52]

A
ct

iv
e

pe
r

se

M. tuberculosis H37Rv

Glycoconjugated
amine-terminated
poly(ether imine)

(PETIM)

G0.0 to G3.0

The Glyco-conjugated dendrimers PETIM possess antibacterial activity
against M. tuberculosis by inhibiting its growth. The selectivity of the

dendrimers towards mycobacterial growth inhibition was attributed to
their glycosil moieties. The MIC values for M. tuberculosis H37Rv were

found to be 100 mg/mL and 200 mg/mL, for both glycoconjugated
G1.0 and G2.0, respectively.

[53]
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2.2. Dendrimers for Gene Therapy

Dendrimers have proven to be effective gene delivery vectors, as they can form
condensed complexes that are easily taken up by cells [54,55]. Commercial transfection
reagents, such as Superfect and Priofect, can be used to create stable dendrimer/nucleic acid
polyplexes. These complexes can buffer endosomes and prevent endolysosomal damage
to nucleic acid through a proton sponge effect. The transfection and cytotoxic abilities of
PAMAM dendrimers vary depending on their generation; lower generations (1–3) have
lower transfection efficiency and cytotoxicity, while higher generations (4–8) have higher
transfection efficiency and higher cytotoxicity, as the larger size and higher positive charge
of the dendrimer can disrupt cell membranes and cause cellular damage [40]. Regarding
cytotoxicity, it has been reported that dendrimers of a generation below G5.0 are less
toxic than their higher-generation counterparts and adhere to genetic material with equal
efficiency on their surface. The efficacy and effectiveness of genetic material delivery by
PAMAM dendrimers have been well characterized in both in vitro and in vivo studies [56].

Furthermore, several studies have investigated the modification of dendrimers through
PEG functionalization to enhance their hydrophilicity. This characteristic enables water
molecules to establish hydrogen bonds with oxygen molecules within the PEG, resulting in
the formation of a hydrated coating around the dendrimers. Consequently, this process
aids in reducing the dendrimers’ immunogenicity and cytotoxicity [56,57].

Sharma et al. (2016) showed that PAMAM dendrimers of G1.0 are capable of delivering
plasmids and siRNA in human cells, with an efficiency similar to Lipofectamine 2000, and
proved that PAMAM dendrimers of G1 are less cytotoxic than Lipofectamine 2000 [54].

Polycationic dendrimers such as PAMAM and poly(propylenimine) (PPI) dendrimers
have recently been used for RNA delivery. PAMAM dendrimers are widely employed for
gene delivery because of their ease of synthesis and commercial availability [58]. The core
of PAMAM is most commonly ethylenediamine, although more hydrophobic molecules—
including diaminododecane, diaminohexane and diaminobutane—can also be used. Their
branching units are based on methyl acrylate and ethylenediamine [42]. These have primary
amine terminals, which are positively charged at physiological pH; thus, they can form
stable complexes with negatively charged miRNA through electrostatic attractions with
phosphate groups (Figure 5). Furthermore, as illustrated in Figure 5, PAMAM dendrimers
demonstrate the capability to interact with phosphates, pentoses or nucleotides even
when they are not linked to their nitrogenous base pairs. These efficient and biocompatible
polymers could protect nucleic acids from degradation mediated by cytosolic nucleases [59].
Moreover, the complex dendrimers DNA or RNA are positively charged, which allows them
to interact with negatively charged cell membranes and enter cells via endocytosis [60].

Inapagolla et al. (2010) [61] studied G4.0 PAMAM dendrimers for pulmonary de-
livery of methylprednisolone (MP). They observed that the daily intranasal administra-
tion in mice for 5 days of G4.0 PAMAM functionalized with MP at 5 mg/kg did not
cause any observable nonspecific inflammatory reactions within the lung. On the other
hand, Dong et al. (2011) [62] studied the therapeutic effect of calcitonin and insulin ad-
ministration loaded into PAMAM dendrimers of different generations (from G0.0 to
G3.0). They found that the drugs loaded into higher PAMAM generations produce
a higher therapeutic effect, especially G3.0 PAMAM dendrimers, which effectively in-
creased the pulmonary absorption of insulin and calcitonin without any pulmonary dam-
age. Royo-Rubio et al. (2021) [63] developed PEGylated carbosilane dendrimers to deliver
miRNA as therapy against HIV-1 infection. They found that miRNA loaded dendrimers
deliver the miRNA into the target cells and significantly inhibit HIV-1 infection in human
peripheral blood mononuclear cells. Figure 6 presents a mechanistic illustration of the
interactions between a G3.0 PAMAM dendrimer and an miRNA sequence. As depicted,
dendrimers exhibit the capacity to interact not only with the miRNA but also to engage in
dendrimer–dendrimer interactions through the interaction of amines with carbonyl groups
within the dendrimer’s branches.



Pharmaceuticals 2023, 16, 1428 9 of 16

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 9 of 17 
 

 

Sharma et al. (2016) showed that PAMAM dendrimers of G1.0 are capable of deliver-
ing plasmids and siRNA in human cells, with an efficiency similar to Lipofectamine 2000, 
and proved that PAMAM dendrimers of G1 are less cytotoxic than Lipofectamine 2000 
[54]. 

Polycationic dendrimers such as PAMAM and poly(propylenimine) (PPI) den-
drimers have recently been used for RNA delivery. PAMAM dendrimers are widely em-
ployed for gene delivery because of their ease of synthesis and commercial availability 
[58]. The core of PAMAM is most commonly ethylenediamine, although more hydropho-
bic molecules—including diaminododecane, diaminohexane and diaminobutane—can 
also be used. Their branching units are based on methyl acrylate and ethylenediamine 
[42]. These have primary amine terminals, which are positively charged at physiological 
pH; thus, they can form stable complexes with negatively charged miRNA through elec-
trostatic aĴractions with phosphate groups (Figure 5). Furthermore, as illustrated in Fig-
ure 5, PAMAM dendrimers demonstrate the capability to interact with phosphates, pen-
toses or nucleotides even when they are not linked to their nitrogenous base pairs. These 
efficient and biocompatible polymers could protect nucleic acids from degradation medi-
ated by cytosolic nucleases [59]. Moreover, the complex dendrimers DNA or RNA are 
positively charged, which allows them to interact with negatively charged cell membranes 
and enter cells via endocytosis [60]. 

 
Figure 5. Exploration of intermolecular interactions between dendrimers and nucleic acids is illus-
trated in the diagram with purple lines indicating potential interactions between different functional 
groups present. For instance, one example is the interaction between the phosphate group of the 
nucleotide (in orange) and the amines of the dendrimer, or the interaction between the carbonyl 
group (in red) of the nitrogenous base and the hydrogen of the amine. Additionally, interactions can 
occur between a carbonyl group of the dendrimer and a nitrogen atom of the nitrogenous base. 
These interactions play a crucial role in understanding the binding and compatibility between den-
drimers and nucleic acids, which can have implications in various applications such as drug deliv-
ery and gene therapy. 

Inapagolla et al. (2010) [61] studied G4.0 PAMAM dendrimers for pulmonary deli-
very of methylprednisolone (MP). They observed that the daily intranasal administration 
in mice for 5 days of G4.0 PAMAM functionalized with MP at 5 mg/kg did not cause any 
observable nonspecific inflammatory reactions within the lung. On the other hand, Dong 
et al. (2011) [62] studied the therapeutic effect of calcitonin and insulin administration 
loaded into PAMAM dendrimers of different generations (from G0.0 to G3.0). They found 
that the drugs loaded into higher PAMAM generations produce a higher therapeutic ef-
fect, especially G3.0 PAMAM dendrimers, which effectively increased the pulmonary ab-
sorption of insulin and calcitonin without any pulmonary damage. Royo-Rubio et al. 
(2021) [63] developed PEGylated carbosilane dendrimers to deliver miRNA as therapy 

Figure 5. Exploration of intermolecular interactions between dendrimers and nucleic acids is illus-
trated in the diagram with purple lines indicating potential interactions between different functional
groups present. For instance, one example is the interaction between the phosphate group of the
nucleotide (in orange) and the amines of the dendrimer, or the interaction between the carbonyl
group (in red) of the nitrogenous base and the hydrogen of the amine. Additionally, interactions can
occur between a carbonyl group of the dendrimer and a nitrogen atom of the nitrogenous base. These
interactions play a crucial role in understanding the binding and compatibility between dendrimers
and nucleic acids, which can have implications in various applications such as drug delivery and
gene therapy.
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Figure 6. Visual representation of dynamic interactions, depicting the evolving interaction dynamics
between three G3.0 PAMAM dendrimer molecules and miRNA over a dynamic simulation of 100 ns.
t0 to t3 are different times during the molecular dynamic between miRNA and dendrimers.

The cellular uptake of dendrimers is a complex process that is influenced by factors
such as their size, surface charge, and shape. Various pathways can be involved, including
phagocytosis, adsorption endocytosis, pinocytosis, or clathrin- and caveolin-mediated
endocytosis. Once inside the cell, dendrimers are often located in endosomes, which are
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membrane-bound compartments that play a crucial role in the sorting and trafficking
of cellular molecules. To achieve their desired therapeutic effect, it is important that
dendrimers are able to escape from the endosome and deliver their cargo to the cytosol.
This process is referred to as endosomal escape, and it can be a major bottleneck for the
effectiveness of dendrimer-based delivery systems [64]. One way that dendrimers can
achieve endosomal escape is through disintegration and release of their cargo into the
cytosol. This can occur spontaneously during dendrimer swelling, which is a process
that can be influenced by factors such as pH, temperature, and ionic strength. Once the
dendrimer has disintegrated, the nucleic acid cargo is released and can exert its biological
effects within the cell.

One of the key advantages of PAMAM dendrimers is their aqueous solubility and
biocompatibility, which make them well-suited for use in biological applications and to
carry RNA, siRNA or miRNA [65]. A study conducted by Bohr et al. [66] in the field
of chronic lung inflammation revealed that PAMAM dendrimers loaded with siRNA
can enhance cellular uptake in macrophages and reduce the expression of TNF-α, as
demonstrated in an in vivo study.

2.3. Targeting Dendrimers to Alveolar Macrophages

The targeting of alveolar macrophages is controlled by the physicochemical parameters
of particles such as size, shape, and surface characteristics. Peptide and small molecule-
targeting ligands can be attached to dendrimers to improve cell-specific targeting [67]. In
this sense macrophages are characterized by high expression of receptors for mannose,
PPI, glycine, and tuftsin on the cell membrane. Therefore, our focus lies on functionalizing
dendrimers with mannose and tuftsin, both of which are depicted below.

2.3.1. Mannose Functionalization

Mannose is a common monosaccharide presented on pathogens’ surface and is com-
monly used to functionalize nanoparticles to target them to alveolar macrophages. Mannose
receptor is involved in the recognition of pathogens, and in antigen processing and pre-
sentation [68]. The cell membrane mannose receptor is one of several types of recognition
receptors that have evolved to exploit some of the essential surface structural features of
related, common pathogens, such as the mannose-containing proteins or internal collagen
sequences [69]. Mannose can direct proteins and peptides to macrophages in a receptor-
mediated fashion, with resulting cellular activation. Thus, dendrimer functionalization
with mannose may be used as a target to aim dendrimers to macrophages and release
miRNA within the cell of interest.

Research conducted by Costa et al. (2018) [68] studied mannose-functionalized
solid lipid nanoparticles loaded with isoniazid, an anti-tuberculosis agent, for targeting
macrophages in vitro. They observed a much higher cellular uptake of isoniazid from
the mannose-functionalized solid lipid nanoparticles compared to the non-functionalized
nanoparticles in macrophages.

Sharma et al. (2021) [70] developed hydroxyl-terminated PAMAM dendrimers func-
tionalized with different sugars (mannose, glucose and galactose) to target dendrimers to
tumor-associated macrophages (TAM). The functionalization was developed through click
reactions with sugar-azides modified with a short PEG linker to reduce steric hindrance
to receptor interactions (β-D-Glucose-PEG4-azide, β-D-Galactose-PEG4-azide, and α-D-
Mannose-PEG4-azide). The authors realized that the mannose- and glucose-functionalized
dendrimers surprisingly produced the same TAMs, and microglia-targeted signal- and
galactose-functionalized dendrimers exhibited highly distinct signal patterns due to the
interaction with galectins which are highly overexpressed in different cancers. Compared
with liposomal-functionalized structures, the glucose-functionalized dendrimers produced
an internalization 100-fold higher than the non-functionalized dendrimers; meanwhile,
the mannose- and galactose-functionalized dendrimers produced an internalization of
8-fold [70,71].
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In this review, we performed a dynamic simulation on a G3.0 PAMAM dendrimer
functionalized with mannose to evaluate the structural conformation of PAMAM func-
tionalized with mannose and the availability of mannose groups on the surface of G3.0
PAMAM. Figure 7 illustrates the tri-dimensional structure of the functionalized polymer.
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2.3.2. Tuftsin Functionalization

Tuftsin is a tetrapeptide that consists of L-threonine, L-lysine, L-proline, and L-arginine
and which corresponds to the 289–292 amino acid sequence of the Fc portion of IgG [72].
This peptide has been shown to enhance the immune function of various cells, including
macrophages, neutrophils, and monocytes via a specific receptor called CD11b/CD18.
Tuftsin can increase macrophage-mediated phagocytosis, migration rate, splenocyte prolif-
eration, and bactericidal and tumoricidal activities [73]. Furthermore, tuftsin binds to the
transmembrane receptor neuropilin-1 (Nrp1), which is known to play critical roles in im-
munity and in cancer development [74]. Research has shown that there are approximately
72,000 binding sites for tuftsin on the surfaces of macrophages [75]. In a receptor-mediated
manner, tuftsin can direct proteins and peptides to macrophages and activate the cells [76].
A number of different studies have been conducted using tuftsin as a targeting group,
primarily in the field of liposome encapsulation to carry rifampicin or isoniazid, aiming to
enhance macrophage uptake [72,77–79]. These studies have demonstrated that liposomes
containing tuftsin are more efficiently internalized by macrophages compared with non-
functionalized liposomes. Therefore, functionalizing dendrimers with tuftsin may serve to
target dendrimers to macrophages and release miRNA within the cells of interest. Such an
approach has the potential to revolutionize the treatment of diseases such as TB that rely
on macrophage-mediated immune responses for successful treatment [72,80,81].

To react tuftsin with dendrimers, the amino group needs to be protected so that
it does not react with the dendrimer’s functional groups before the desired reaction
takes place. One common method of protecting the amino group is to use Fmoc (9-
fluorenylmethyloxycarbonyl) chemistry. This involves adding an Fmoc group to the amino
group, which temporarily blocks it from reacting with other molecules. The Fmoc group
can be removed later using a deprotection step, which frees up the amino group for further
reaction with the dendrimer [75].

In 2008, Dutta et al. [75] conducted a study to investigate the potential of tuftsin-
conjugated PPI dendrimers loaded with efavirenz, an antiretroviral drug, to target HIV-
infected macrophages in vitro. The results showed a significantly higher uptake of efavirenz
by HIV-infected fresh human mononuclear cells with tuftsin-conjugated dendrimers, com-
pared with the free drug.

Another study reported on the functionalization of dendrimers with tuftsin for targeted
delivery of siRNA to macrophages. The study demonstrated that the tuftsin-functionalized
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dendrimers exhibited improved uptake and silencing efficiency in macrophages compared
with non-functionalized dendrimers.

However, to date, no studies have been conducted on the use of functionalized den-
drimers with tuftsin to target miRNA for potential treatment of TB in macrophages. Given
the challenges associated with targeted drug delivery to specific cell types, further research
is necessary to determine the feasibility of this approach. Nonetheless, investigating new
therapeutic strategies for TB remains critical, as it continues to be a significant public
health concern.

3. General Outlooks and Future Perspectives

This paper investigated the potential role of dendrimers in TB treatment as delivery
systems for miRNA-based therapeutic treatments (Figure 8). This ground-breaking strategy
shows promise for boosting immune responses against Mycobacterium tuberculosis infection
and avoiding the troubling problems posed by drug-resistant TB strains. By harnessing
the unique attributes of dendrimers and designing them to mitigate cytotoxicity through
different methods of functionalization or the addition of low molecular weight polymers,
this innovative approach aspires to usher in a new era of sophisticated treatment paradigms,
with the potential to be safely applied to individuals.
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Central to the success of this approach is the functionalization of dendrimers with
tailored ligands, such as mannose and tuftsin. These ligands, proficient in recognizing
macrophage receptors, offer a precisely targeted delivery conduit that heightens therapy
precision and efficiency [82]. This strategic ligand integration allows them to reinforce their
capacity to engage with cells of pivotal relevance in the TB context.

However, to date, no studies have been conducted on the use of dendrimers functional-
ized with tuftsin or mannose to target miRNA for potential treatment of TB in macrophages.
Given the challenges associated with targeted drug delivery to specific cell types, further
research is necessary to determine the feasibility of this approach. Nonetheless, investi-
gating new therapeutic strategies for TB remains critical, as it continues to be a significant
public health concern.

In conclusion, investigating functionalized dendrimers targeted to macrophages as
carriers for miRNA-based therapies represents a creative avenue in the search for ground-
breaking TB treatment options. By designing these dendrimers to minimize cytotoxicity, we
can enhance their safety for potential application in patients. This convergence of targeted
medication delivery, immunology, and nanotechnology has the potential to fundamentally
transform the landscape of TB intervention.

The development of sophisticated host-directed therapeutics utilizing dendrimers not
only holds the promise of making TB treatment more effective but also more adaptable,
addressing the challenges and uncertainties that currently exist in TB research. This
innovative approach underscores the potential to trigger robust and adaptive immune
responses, addressing pressing concerns related to drug resistance. It offers hope and the
potential for success in the ongoing battle against tuberculosis.
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