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Abstract

Chronic wounds are defined as wounds that fail to proceed through the normal phases of wound

healing in an orderly and timely manner. The most common and inevitable impairment to wound

healing is the installation of an infection, usually in the case of chronic wounds. Therefore, the

objective of the present review was to identify the importance of copper nanoparticles in dressings

for wound healing. Nanoparticles such as silver, gold and copper combat infectious processes

through the inhibition of protein synthesis, peroxidation of the cell membrane and destroying the

nucleic acids of bacteria and viruses. Among bioactive nanoparticles, copper plays a complex role

in various cells, it modulates several cytokines and growth factor mechanisms of action and is

essentially involved in all stages of the wound healing process. More importantly, copper plays

a key role in skin regeneration and angiogenesis and accelerates the healing process through

induction of vascular endothelial growth factor (VEGF) and angiogenesis by hypoxia-induced factor-

1-alpha (HIF-1α) action where copper enhances HIF-1α expression and HIF-1α binding to the critical

motifs in the promoter and putative enhancer regions of HIF-1-regulated genes.
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Highlights

• In this article, we review the physiology of wound healing and its relationship with epigenetics.
• The role of nanomaterials in the chronic wound healing process is discussed.
• The clinical evidence for the use of copper in treating chronic wound healing is reviewed.

Background

A chronic wound can be defined as one that has been unsuc-
cessful in proceeding through a well-ordered and oppor-
tune reparative process to generate anatomic and functional
integrity within a period of 3 months or that has continued
through the repair process without achieving a sustained,

anatomic and functional result [1,2]. Based on the causative
etiologies, chronic wounds are classified into four categories:
pressure ulcers, diabetic ulcers, venous ulcers and arterial
insufficiency ulcers [3]. These chronic wounds are important
in the health care system due to their increasing prevalence
and their treatment costs. In effect, a retrospective analysis
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Figure 1. Flow diagram for the review process

of impact, cost and medicare policy implications of chronic
nonhealing wounds concludes that they impact about 8.2
million Medicare beneficiaries in the United States [4]. In
addition, often disguised as a comorbid condition, chronic
wounds represent a silent epidemic that affects a large fraction
of the world population [5], where the dramatic increase in
the aging population will increase these numbers as wound
closure is negatively associated with age [6,7]. Addition-
ally, nowadays wound dressings have been enhanced using
impregnated dressings for wound closure in animal and cell
culture models [8–10]. Also, interest has grown in the use of
metal nanoparticles (NPs) such as silver, gold and copper to
combat infectious processes through the inhibition of protein
synthesis, peroxidation of the cell membrane and destroying
the nucleic acids of bacteria and viruses [11,12]. Figure 1
illustrates the flow chart for the study selection process.

Review

Physiologic wound healing

Physiologic wound healing is a highly organized process initi-
ated by tissue injury and resolved by the restoration of tissue
integrity. This process involves several overlapping phases,
such as hemostasis, inflammation, proliferation and remod-
eling [13]. Hemostasis occurs immediately after injury to
prevent exsanguination, where vasoconstriction takes place

with platelet activation, adhesion and aggregation at the
site of injury. Platelets become activated when exposed to
extravascular collagen (such as type I collagen), which they
detect via specific integrin receptors. Once in contact with
collagen, platelets release soluble mediators (growth factors
and cyclic adenosine monophosphate) and adhesive glycopro-
teins. These glycoproteins released from platelet alpha gran-
ules include fibrinogen, fibronectin, thrombospondin and von
Willebrand factor. As platelet aggregation proceeds, clotting
factors are released resulting in the deposition of a fibrin clot
at the site of injury. The fibrin clot serves as a provisional
matrix and the aggregated platelets become trapped in the
fibrin web and provide the bulk of the clot [14]. Therefore,
their matrix provides a surface on which inactive clotting
enzyme proteases are bound, become activated and accelerate
the clotting cascade [15].

The inflammatory phase involves activation of the innate
immune system; neutrophils and monocytes are the major
cells that migrate rapidly into the wound site upon injury. In
this phase, the recruited neutrophils begin the phagocytosis of
infectious agents by releasing a large variety of highly active
antimicrobial substances like reactive oxygen species (ROS),
cationic peptides, eicosanoids, proteases and myeloperoxi-
dase [16], which also lead to the debridement of devitalized
tissue by secreting enzymes such as matrix metalloproteinases
(MMPs). Approximately after 3 days of injury, monocytes
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differentiate into macrophages and they infiltrate into the
wound site regulated by gradients of chemotactic factors,
including growth factors, proinflammatory cytokines and
chemokines [17]. In the normal wound healing process the
inflammation phase usually lasts for 2–5 days.

As the inflammatory phase finishes angiogenesis starts,
which includes endothelial cell proliferation, migration and
branching to produce new blood vessels. Simultaneous with
the proliferation of endothelial cells (ECs), pericytes attach to
the basal membrane are activated [18], and supplies structural
integrity to the ECs [19]. In addition to the local cells,
circulating progenitor cells from the bone marrow are also
found to support new blood vessel formation during wound
healing [20–23].

The remodeling phase restores the morphology and the
function of the tissue [24]. This is tightly connected with
the inflammatory response and plays an important role in
resolving inflammation. As the inflammation subsides, pro-
liferation focuses on the re-epithelialization process, restoring
the vascular network and forming granulation tissue. The
remodeling phase starts at the end of the granulation tissue
development, where mechanical tension and cytokines drive
fibroblasts to differentiate into myofibroblasts, which express
α-smooth muscle actin and contract the wound [25]. In this
phase, the quickly produced collagen III in the extracellular
matrix is replaced by collagen I, the number of new blood
vessels and the blood flow decline and a mature avascular and
acellular environment is formed [26,27]. Some skin compo-
nents cannot be recovered after serious injury and the healed
skin can only achieve a maximum of ∼80% of the original
tensile strength [28,29].

An inadequate repair process can cause severe damage,
like the loss of skin or the beginning of an infection, with
consequent injuries to the subjacent tissues and even systemic
effects [30]. The most common and inevitable impairment to
wound healing is the installation of an infection, as regularly
occurs in the case of chronic wounds.

Epigenetic mechanisms

Epigenetics studies heritable gene expression changes, result-
ing in phenotype changes without modifications of the orig-
inal DNA sequence [31]. Epigenetic regulatory mechanisms
are fundamental to epidermic homeostasis and the patho-
genesis of several skin illnesses, including skin cancer and
psoriasis [31–33]. In effect, epigenetics plays an important
role in the behavior and activity of different cell types during
skin repair.

Wound healing is a complex process being divided into
four distinct phases: hemostasis, inflammation, proliferation
and remodeling [13]. These phases are not simple linear
events but are overlapping and involve the transient activa-
tion and repression of up to a 1000 genes to achieve skin
closure [34].

Previous studies have demonstrated that epigenetic mod-
ulators show contrasting expression patterns in intact and
healing skin, where gene silencing is done by Polycomb group

(PcG) proteins and involves the sequential action of two
repressor complexes, PRC2 and PRC1 that function through
modification of histones to change chromatin structure and
modulate gene expression and cell behavior [35]. It is interest-
ing that three major components of the PRC2 complex, Eed,
Ezh2 and Suz12, are reduced in the epidermis during wound
healing [36].

The PcG proteins’ reexpression may be implicated in
silencing the repair genes after completion of the healing
process. Here, PcG protein loss is related to reduced levels
of Lys27 of histone H3 (H3K27me3) in the wound healing
of epidermis [36], due to trimethylation of H3K27me3 by
Ezh2. Then, the PRC1 complex binds to H3K27me3 through
CBX protein of to anchor the PRC1 complex at this site, while
the PRC1 Ring1B protein catalyzes ubiquitylation of histone
H2A at lysine K119 [37,38]. These events lead to chromatin
compaction which subsequently leads to suppression of tran-
scription. The transcription repression mechanism is not well
defined, but the chromatin compaction could inhibit tran-
script elongation. In effect, previous findings suggest that inhi-
bition of transcript elongation may be a crucial mechanism
[39,40]. The combination of PRC2/PRC1 action results in
the constant suppression of gene expression and the resulting
gene silencing is linked with increased cell proliferation/sur-
vival and decreased senescence and differentiation [41,42].

Additionally, immunohistochemical expression patterns
have shown a paucity of Eed and Ezh2 at the wound margin,
while it was abundant further away from the wound [36].
In contrast, the expression of H3K27 histone demethylases
JMJD3 and Utx was upregulated. However, levels of both
Eed and Ezh2 were restored once re-epithelialization was
complete, suggesting that there is a transient activation of
repair genes via loss of PcG-protein-mediated silencing to
permit epithelial closure, which indicates their significant
involvement during skin regeneration.

Wound infections

Injuries that have not improved through the normal process
of recovery and are exposed for more than 1 month are
classified as chronic wounds [43]. Notwithstanding etiology,
chronic wounds have high levels of ROS, proinflammatory
cytokines, proteases and senescent cells, as well as the exis-
tence of stubborn infection and decreased levels of stem
cells [44,45]. Although wound evaluation begins with wound
appearance, morbid obesity or a very thin patient is a clue to
the nutritional status that will have a bearing on treatment
protocols as well as possibly on outcomes [46]. A visual
examination is important for any type of chronic wound and
it should considerer the depth, extent (size), location, general
appearance, odor and notation of exudates since the baseline
[47]. In addition, visual inspection of the wound looking
for important features such as necrosis, gangrene, erythema
or granular appearance will guide ulterior assessment and
management [48].

While microorganisms are a common part of the intact
skin microbiota and wounds, a critical onset of existing
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bacteria and the formation of a biofilm may impede wound
recovery [49]. Nevertheless, despite recent advances in the
management of wounds, bacterial infections as Staphylococ-
cus aureus, methicillin-resistant S. aureus and Pseudomonas
aeruginosa are still diagnosed and considered as painful states
in patients with infected wounds [50].

Due to wound have a non-sterile environment, effective
treatments are still needed. Therefore, current research is
looking for more efficient therapeutics for wound infections
[51]. In chronic wounds, a fully dissolvable, non-replaceable
or non-adherent wound dressing that distributes treatment
to the wound site in a precise manner should be used to
improve therapeutic and drug responses [52]. Dressings are
used to remove excess fluid from the wound and protect it
from infection, and they are usually left on the wound for sev-
eral days. Antibiotic-embedded wound dressings can be used
which are valuable in the management of infections where
high concentrations of antibiotics are needed [53]. However,
antibiotic-resistant bacteria have considerably increased due,
among other reasons, to the overuse and misuse of antibiotics
[54]. Given current problems posed by these infections, non-
antibiotic treatments have been investigated, such as essential
oils [55,56] and honey [27,57], in wound-healing. Nowadays,
nanotechnology represents an emerging therapy for wound
treatment through materials in nanometer size, displaying
new applications in regenerative medicine and preventing
various diseases [58].

Zhou et al. [59], indicated that copper sulfide NPs-
incorporated hyaluronic acid hydrogel (CuS/HA) upregulated
the expression of vascular endothelial growth factor (VEGF)
in the wound area at the incipient stage of healing to promote
angiogenesis. In addition, increased collagen deposition was
observed.

The Cu ions interact with the carrier hydrogel by elec-
trostatic or Van der Waals forces. When the volume of the
hydrogel shrinks, electrostatic repulsion between ions encour-
ages ion release and so there is evidence that shrinkage of
the hydrogel increases Cu ion release [60]. Moreover, the
temperature increased with near-infrared (NIR) light irra-
diation gradually makes the hydrogel a special carrier in
drug delivery systems [59,60]. Therefore, Cu ions released
from hydrogels stimulate proliferation and angiogenesis of
cells to accelerate wound healing [59–62]. The NP-hydrogel
is demonstrated to have the ability to kill bacteria while
promoting healing of wounds. The excellent performance
stems from the combined effects of hyperthermia, radical
oxygen species and released copper ions produced during
NIR irradiation of nanocomposite hydrogels (NP-hydrogels),
where NP-hydrogel has been demonstrated to have the ability
to kill bacteria while promoting healing of wounds. This
excellent performance stems from the combined effects of
hyperthermia, radical oxygen species and released copper ions
produced during NIR irradiation of NP-hydrogels [59–62].

Likewise, hydrogels have been used on diabetic ulcer
treatment, a type of chronic wound. In this process, a smart
black phosphorus-based gel which serves for chronic wounds,

impaired angiogenesis, persistent pain and bacterial infec-
tion, and exacerbated inflammation, suggesting the poten-
tial for significant improvements to the treatment of dia-
betic patients with ulcers. Superior bacterial inhibition of
germanene-based hydrogel was also confirmed in antibac-
terial ring tests [63]. Moreover, these studies also allow the
development of nanotechnology in medical applications and
greatly expand research areas for hydrogel-based materials
[63–66].

Nanomaterials in wound healing

The most usual preventable challenge to wound healing is an
infection, where antimicrobials have been empirically used in
topical form to attempt to prevent wound infection. Topical
treatments are the classic procedure for wound management.
This technique uses antiseptics, antibacterial and/or colloidal
agents to prevent infections. However, to meet the chal-
lenges of infection, scientists are looking for new strategies
of wound care. Nanotechnology, through the application of
nanomaterials, has opened a new chapter in wound treat-
ment, proposing solutions for the acceleration of healing
as well as presenting distinctive properties as bactericidal
agents [67,68]. Among nanomaterials, bioactive NPs have
been considered for the clinic because of their low cost,
high surface-to-volume ratio, high stability and safety. In
effect, scientists have recently investigated several types of
procedures to produce organic NPs or to synthesise inorganic
NPs [68,69]. Due to their antibacterial properties and low
toxicity profile, metal NPs such as copper, silver, gold and zinc
represent ideal candidates for integration in wound dressings
[70]. Among bioactive NPs, copper (Cu) plays a complex role
in various cells, it modulates several cytokines and growth
factor mechanisms of action and is essentially involved in all
stages of the wound healing process [71].

Copper is an essential metal and is required in small
quantities in many metabolic processes [8,72]. In fact, under
controlled conditions, copper plays an important role in
healing by enhancing the expression of extracellular matrix
molecules such as fibrinogen, collagen formation and inte-
grins, the main mediators of cell attachment to the extracel-
lular matrix [8,72–74]. However, excessive use of copper is
toxic, as it generates free radicals, which may lead to lipid
peroxidation and cell death [75,76]. For example, in breast
epithelial cells cultured with doses of 10 mg of copper in
nanofiber, only 3% survived, which suggests the levels of
copper released from the nanofibers are highly toxic to cells
in tissue culture [77]. However, other studies have shown
that copper concentrations at these levels cause no adverse
reaction when applied to human skin [78].

Under physiological conditions, the level of intracellular
free copper is regulated by its uptake, transport and excretion
[79–81]. This uptake is primarily mediated by the CTR1
copper importer [82,83]. When copper drives into the cell via
CTR1, it can be transported into various cellular compart-
ments via the ATP7A copper transporting ATPase through
the Atox1 copper chaperone [84,85].
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Figure 2. Copper nanoparticles action in wound healing. NPs nanoparticles, TGF transforming growth factor, VEGF vascular endothelial growth factor, PDGF

platelet derived growth factor

Copper-transporting ATPases, such as ATP7A and ATP7B,
maintain homeostasis and copper excretion across the intes-
tine, liver and mammary glands [86]. However, deactivation
of their transport activity is linked with reduced copper
outflow from cells and, in some tissues, substantial copper
excess [86,87].

The ATPase transporter ATP7A is a crucial regulator of
secretory enzymes and of intracellular levels of Cu [85,88].
At basal conditions, ATP7A is localized at the trans-Golgi
network (TGN), where ATP7A carries Cu to the secretory Cu
enzymes, such as extracellular superoxide dismutase (SOD3)
or proenzyme of lysyl oxidase (Pro-LOX), required for lysyl
oxidase (LOX) activation [85,88], which stimulates tumori-
genesis and metastasis [89]. In addition, ATP7A is partly
implicated in VEGF- or ischemia-induced angiogenesis in
ECs [80,90]. In pathological conditions, where cellular Cu
is elevated, ATP7A is translocated from the TGN to the
plasma membrane to export excess Cu. Also, it has been
shown that relocalization of ATP7A from the TGN is trig-
gered not just by increased cytoplasmic Cu but also by non-
metal stimulants such as insulin, N-methyl-D-aspartic acid
or N-methyl-D-aspartate, platelet-derived growth factor and
hypoxia [84,91]. Today, the use of copper-based antimicrobial
wound dressings is increasing. In effect, they are widely
displacing silver-containing dressings for wound healing due
to cellular silver toxicity [92]. Copper toxicity has been
attributed to the Fenton-like reaction, which results in ROS
formation in close spatial proximity to copper ions [93],
which are responsible for both lipid and protein damage [93].
Moreover, sustained copper activity has been also observed
in anoxic conditions in a ROS-independent process, which

is sufficient to competitively disrupt cytoplasmic iron–sulfur
enzymes (e.g. intracellular dehydratases) [65,94,95]. How-
ever, mammalian cells are partially protected by cytoplasmic
metallothioneins, glutathione and Cu/Zn superoxide dismu-
tase [96,97]. Figure 2 shows Cu sulfide NPs’ (Cu NPs) action
in wound healing.

All forms of copper may cause biotoxicity at high exposure
concentrations [98]. Here, Cu NPs have shown cytotoxic
and genotoxic effects on human skin epidermal cells, which
were mediated by mitochondrial pathways triggered by ROS
[99]. However, different concentrations (200, 100, 50, 20 and
10 μg/mL) of Cu NPs showed hardly any toxicity to the cells
and in fact promoted the proliferation of cells [59], which
could be due to the size of Cu NPs, where the colon removes
most of the unabsorbed particles [62]. In effect, high levels of
Cu in feces indicated that unabsorbed Cu NPs or absorbed
Cu ions were predominantly eliminated through liver/feces
[62]. In addition, cell viability assays have shown significant
Cu NP concentration dependency, e.g. with a higher NP con-
centration, an increased response in growth factor stimulus
to promote the proliferation of the cells has been shown [61].

In addition, copper has potent biocidal properties, but in
contrast to silver, copper is well metabolized by the human
body [100]. More importantly, copper plays a key role in
skin regeneration and angiogenesis [101,102] and has been
described to accelerate the healing process in animal mod-
els through induction of VEGF and angiogenesis [103] by
hypoxia-induced factor-1-alpha (HIF-1α) action where cop-
per enhances HIF-1α expression [8]. Also, HIF-1α binding
to the critical motifs in the promoter and putative enhancer
regions of HIF-1 regulated genes [104].
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HIF-1 has been recognized as a critical helper factor in
wound healing [105] induced by copper. Its action is impor-
tant in wound healing because individuals with compromised
peripheral blood supply (e.g. with vascular diseases or dia-
betes) do not have the ability to heal effectively due to low
levels of copper in the wound site [106]. Several case reports
described by Melamed et al. [107] have shown that copper
oxide-containing wound dressings not only confer protection
to the wound and the dressing from microbial contamination
but in addition, and more importantly, stimulate skin regen-
eration and wound healing. In addition, sleeping on a copper
oxide-impregnated pillowcase has resulted in a significant
reduction of wrinkles and crow’s-feet and resulted in an
overall improved facial appearance compared to sleeping on
a normal pillowcase [108,109].

MMPs and serine proteases are the major groups of pro-
teases involved in the wound healing process [110,111].
Low copper concentrations (0.3–3 μM) have been found to
stimulate the activity of MMPs, whereas high concentrations
(1–100 μM) stimulate the expression of MMPs in fibroblasts
[112]. Other studies have reported that both MMP2 and
MMP3 can be upregulated by copper, although excess free
metal can also inhibit MMP activity [112,113]. In effect, cop-
per ions could stimulate angiogenesis by secretion of VEGF
and thus promote wound healing. Nano-formed copper such
as CuS NPs may also be capable of photothermal therapy
induced by NIR light irradiation which would be effective
in killing bacteria in a non-resistant and minimally invasive
process [114,115]. As a result, CuS NPs may offer both
angiogenesis and antibacterial ability, both of which are ben-
eficial to accelerate wound healing [95,116,117]. Moreover,
NPs with a concentration of 200 μg/ml could significantly
promote cell proliferation in in vitro and in vivo models [59].

Limitations

The goal of this study was to identify the importance of cop-
per NPs in dressings for wound healing. However, the lack of
data linking wound infection and wound healing with Cu NPs
remains a limitation of this study and needs to be addressed in
future original studies. Unfortunately, the results provide little
support for this notion. At best, we could only discern a trend
towards enhanced skin regeneration and angiogenesis in most
of the studies, with significant improvement in those who
had copper NP exposure. However considering these data, it
appears that copper exposure did significantly improve VEGF
and HIF-1α expression, and HIF-1 binding to the critical
motifs in the promoter and putative enhancer regions of HIF-
1 regulated genes.

Conclusions

Copper is an essential mineral that plays a significant role
in various physiological and metabolic processes, including
angiogenesis, skin generation and expression and stabiliza-
tion of extracellular skin proteins; and it also has potent

antimicrobial properties. The combination of these two qual-
ities makes copper an attractive material for the improve-
ment of skin wellness. In addition, it has been demonstrated
that pillowcases containing copper oxide reduce fine lines
and wrinkles. Our review suggests that wound dressings
containing copper oxide enhance wound healing through
their angiogenesis, regeneration and antimicrobial properties.
Thus, the introduction of copper oxide into regular products
transforms them into enhanced products.
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