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Abstract

Over the past few years, there has been a surge in the industrial production of
recombinant enzymes from microorganisms. This is due to their catalytic characteristics.
L-asparaginase is an enzyme belonging to the class of amidohydrolases that catalyzes
the hydrolysis of L-asparagine into L-aspartic acid and ammonia. It has been widely
investigated as a biologic for its antineoplastic properties in the treatment of acute
lymphoblastic leukemia. The demand for it is primarily fulfiled through recombinant
enzymes sourced from Escherichia coli and Erwinia chrysanthemi. However, the
presence of immunogenic proteins in L-asparaginase sourced from prokaryotes has been
known to result in adverse reactions in patients undergoing treatment. As a result, efforts
are being made to explore strategies that can help mitigate the immunogenicity of the
drug. Considering the pharmacological prominence of L-ASNase, this review provides a
general description of current biotechnological developments in enzyme engineering
strategies and tools adopted for the enhancement of anti-leukemic L-asparaginase.

Key words: L-asparaginase, strategies, immunogenicity, stability, rational design
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1. Introduction

Enzymes are highly efficient biocatalysts used commercially for various industrial
functions, from clinical approaches to biofuels [1]. Among these, L-asparaginase is a
significant enzyme belonging to the class of amidohydrolases (L-ASNase) (EC 3.5.1.1),
which accounts for 40% of the global demand for enzymes and one-third of the worldwide
requirement for anticancer agents, making it significantly more in demand than other
therapeutic enzymes. [2, 3]. It is projected that this growth will continue, with a compound
annual growth rate (CAGR) of 16.1% expected between 2022 and 2028.[4]. This enzyme
is an important biocatalyst: it catalyzes the hydrolysis of L-asparagine to L-aspartic acid

and ammonia [5] and can also hydrolyze glutamine with secondary L-glutaminase activity
[6].

Research work into L-ASNase dates back to the 1920s, when the potential of L-ASNase
in cancer treatment was first described [7]; however, the approach to L-ASNase can be
traced back mainly to the 1960s, when it was observed that guinea pig serum exhibited
antitumor activity against lymphoma, both in vitro and in vivo [8]. Years later, it was
established that this enzyme is the antitumor principle acting in the Guinea pig, and that
the purified L-ASNase derived from Escherichia coli exhibited antitumor activity similar to
that of guinea pig serum [8-14]. This discovery paved the way for the successful use of
bacterial-derived L-ASNase [12]. Currently, several sources of the enzyme have been

found, including bacteria, fungi, algae, birds, plants and animals, excluding humans [15].

L-ASNase is currently used in two main industrial applications which can be seen in

iError! No se encuentra el origen de la referencia.. The primary application of L-
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ASNase is as an antileukemic agent in the treatment of acute lymphoblastic leukemia
(ALL), which accounts for 80% of pediatric acute leukemias and 20% of leukemias in
adults. [16, 17]. There are four approved clinical-grade L-ASNases and correspond to
those of bacterial species like L-ASNase from Erwinia chrysanthemi (ErA), which is
marketed as Erwinase®, and L-ASNases from Escherichia coli (EcA), which are found in
three formats in their native form (Kidrolase®, Elspar® and Leunase®), as a conjugate
with polyethylene glycol (PEG) (Oncaspar® and Sprectrila®) and in their recombinant
form [15, 18]; In addition to its biopharmaceutical application, L-ASNase is also utilized in
the food industry as a mitigation agent for acrylamide (AA) [19], a potential carcinogen
(level 2A) [20]. AA is produced by thermal processing of carbohydrate-rich foods due to
the Maillard reaction [3], this occurs in foods such as french fries and roasted coffee beans

[21, 22]. A widely used source for food-grade L-ASNase is Aspergillus oryzae [15].

One particular drawback that limits the widespread of L-ASNase in therapeutic
applications and requires resolution is its high immunogenicity [23, 24]. In some cases,
its use creates silent hypersensitivity, which leads to the generation of antidrug antibodies
[25]. As a result, numerous strategies have been devised to enhance the efficacy of L-
ASNase, including biomolecular and biochemical techniques. For example, mutagenesis,
directed evolution, fusion proteins, conjugates with polymers, glycosylations and in silico
techniques [26, 27]. This review aims to discuss the enzyme engineering strategies and
tools utilized to enhance the anti-leukemic L-asparaginase in terms of minimizing
immunogenicity and increasing enzyme stability. The article also sheds light on recent
advancements in the production of less immunogenic biopharmaceuticals, such as the

incorporation of artificial intelligence, encapsulation, and molecular techniques.
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2. L-ASNase mechanisms

Unlike healthy cells, leukemia cells exhibit lower gene expression levels of asparagine
synthetase (ASNS), which can be attributed to epigenetic regulatory mechanisms such
as hypermethylation of the CpG islands of the promoter, or by histone methylation and
acetylation [28, 29]. ASNS is responsible for the synthesis of asparagine (ASN) from
aspartate [30, 31]. L-asparagine is an important non-essential amino acid for the growth
and development of healthy and neoplastic cells by acting on the biosynthesis of proteins.
If this amino acid is not available, cell proliferation becomes difficult [32] because cell
cycle arrest in the GO/G1 phase is induced. Which in due process, drives the induction of
caspase-dependent apoptosis or autophagy by depletion of L-ASN [31, 33]. As the
neoplastic cells are unable to synthesize L-ASN, they need an extracellular source of
asparagine [3, 5, 34]. Considering the absence of ASNS in certain cancers, such as
leukemia and lymphoma [35, 36]; and that depletes ASN from the extracellular medium,
leaving cancer cells unable to obtain this non-essential amino acid; is that L-ASNase has

emerged as a potential treatment for cancer.

3. Side effects related to L-asparaginase use

The administration of L-ASNase therapy is linked to the occurrence of unfavorable
responses in patients who receive the medication. A factor that triggers these drawbacks
is the dual activity of L-ASNase (asparaginase and glutaminase), as the starvation of
glutamine in the system can cause acute pancreatitis, thrombotic complications and
immunosuppression [32, 37, 38]. Glutamine starvation has been described to cause more

side effects than treatment as an anticancer [6]. In addition, it has been reported that the
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catalysis of ASN and its deficit in the body generate side effects, such as nausea, fatigue,
diarrhea, vomiting, headaches and abdominal pain [39-41]. These harmful effects arise
due to the disruption of protein synthesis [42], as asparagine plays a crucial role in
regulating this process by serving as a metabolic controller of the tricarboxylic acid (TCA)
cycle and cellular nitrogen supply, which are necessary for the synthesis of non-essential
amino acids [43, 44]. It has also been reported, that the deficiency of L-asparagine
combined with the accumulation of ammonia in the brain causes depression, anxiety,
lethargy, fatigue, etc. [45]. Another source of side effects is related to the prokaryotic
origin of the L-ASNases used for the treatment. Because when the enzyme is
administered, the body responds by producing antibodies that cause hypersensitivity to

the drug or even anaphylaxis [46, 47].

These hypersensitivity reactions can also be manifested by silent inactivation of L-
ASNase. This is due to the formation of anti-asparaginase antibodies, together with the
activity of native protease enzymes present in the blood system, which neutralize the L-
ASNase that has been injected into the bloodstream. Which, in due course, reduces
efficacy of the enzyme without causing an obvious allergic reaction [48-50]. Clinically, this
problem is addressed by changing the bacterial source of L-ASNase. L-ASNase extracted
from E. coli is considered the first-line therapy in most cases. If severe side effects or
hypersensitivity are experienced, the administered enzyme is changed to Erwinia-derived
L-ASNase [18], however this presents problems such as short half-life (0.65 days in the
body), leading to the need for multiple doses [51, 52]. Another solution to the
hypersensitivity problems, is to modify the treatment with the PEGylated form of E. coli-

L-ASNase [53], which compared to others found commercially, provides a half-life in
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blood serum 5 times longer than that of E. coli [54], which leads to incur in the use of
fewer doses. Thus, reducing the development of unwanted antibodies resulting from
multiple doses [55]. However, if antibodies to native L-ASNase have already been
induced, cross-reactivity with PEGylated L-ASNase may occur [56]. Thus, allergic

reactions and antibiotic resistance are increased.

4. Enzyme engineering in L-asparaginase

Recombinant DNA technology is an important strategy to improve protein yield [57].
Recombinant protein production has a significant impact on enzyme commercialization,
as all microbial enzymes used are expressed in efficient heterologous expression
systems [15]. E. coli has become the most preferred host, due to its extensively studied

genetic composition, high cell density and simple culture conditions [58].

The most sought-after goal in the production of L-ASNase is to engineer an enzyme with
diminished glutaminase activity, reduced immunogenicity, and enhanced stability for use
as a biopharmaceutical. The optimization of biological stability is often coupled with the
development of enzyme engineering tools based, with focus on strategies for the rational
redesign of enzymes, becoming one of the most promising tools to obtain improved
enzymes with the desired physical and catalytic properties [59]. Rational redesign is
based on providing precise modifications to the amino acid sequence, using detailed
knowledge of the structure, function and mechanism of the protein. These modifications
are driven by mutagenesis [60], with the aim of de-immunizing the enzyme. Other
technique for reducing immunogenicity is the conjugation of the enzyme at exposed sites

to prevent antibody formation. Another approach is based on enzyme re-engineering to
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overcome the short half-life of L-ASNase by improving its structural stability [61]. This will

be discussed in more detail below.

4.1.Site-directed mutagenesis

Site-directed mutagenesis is a technique that falls under the umbrella of "homology-
based engineering", which studies the influence of the structure-function relationship,
using techniques such as PCR to generate substitutions, deletions and/or point insertions
in DNA, in order to design novel, optimized catalytic activities and improved biophysical
properties in proteins [62, 63]. It is possible to perform site-directed mutagenesis on
enzymes that have a known sequence, obtaining a recombinant protein with improved

specificity, stability, activity, solubility [64] and improved L-ASNase properties [15].

Commercially available L-ASNases are not free of glutaminase activity, and may
hydrolyze up to 9% of the total enzyme activity [26], which contributes to some of the side
effects in the treatment of ALL [65, 66]. Thus, this technique is commonly used to achieve
L-ASNases free of glutaminase activity [67, 68]. Table 1 shows some studies where
targeted modifications were made in one or more amino acids of the genes encoding L-
ASNases from different sources to reduce glutaminase activity and/or increased affinity
to ASNs. The targets of these site-directed mutations are conserved residues that interact
with glutamine, but are not essential for the asparaginase activity of L-ASNase [6, 59, 69-

75].

Eliminating the glutaminase activity of L-ASNase has not been the solely goal of
researchers. They have also sought to increase resistance to the medium, either by

providing modifications to deliver a longer half-life in the bloodstream or by reducing their
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antigenicity. In the study by Sannikova et al. (2016), L-ASNase (WsA) was obtained. Site-
directed mutagenesis was performed on V23Q and K24T to attain an enzyme that was
stable as well as resistant to trypsin-like proteases. Jianhua, Yujun [76] mutated an amino
acid triplet 195RKH197 to 195AAA197 to decrease the major immunogenicity responses
caused by L-ASNase obtained from Wolinella succinogenes (WsA). After mutation, an

asparaginase with lower antigenicity was obtained (see Table 1).

With site-directed mutagenesis, a promising L-ASNase enzyme can be obtained for
biopharmaceutical use, since these mutations contribute to decreased glutaminase
activity, thereby decreasing immunogenicity when administered in blood serum.
However, these mutations need to be complemented with bioinformatics analysis to find
the conserved sites of the mutations, as well as further analysis to verify that these

mutations do not alter the stability and activity of the enzyme.

4.2.Directed evolution

“Directed evolution” is a strategy, where information concerning the structure and function
of the enzyme is not required [77, 78]. It is based on the Darwinian principle of natural
selection and performs advanced engineering on the enzymes to adapt and recombine
with improved properties at a faster rate [79]. It is based on a random process that takes
advantage of the repair limitations of the DNA and polymerases. A polymerase chain
reaction (PCR) with an error-prone polymerase, mutated strains or chemical mutagens
can be used to create a library of random mutagenic genes to later identify the mutants

with improved properties [60, 80]. The process is repeated several times until the desired
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trait is achieved. The mutant gene will be cloned in a compatible plasmid and transformed

into a strain for the functional expression of the recombinant protein [64].

Libraries of mutant genes have been created for the production of L-ASNase from
different sources, where the goal is to improve the enzymatic activity for L-asparagine by
changing specific amino acids that intervene in the enzymatic activity and the enzyme
substrate bond [81-83]. Table 2 displayes several examples of the directed evolution
strategy. Heat-stable proteins have also been designed, since their body-residence time
improves and minimizes the immunosuppressant effect. Thus, reducing the therapeutic
dose required. It has been observed that in L-ASNase from Erwinia chrysanthemi (ErA),
by means of the stepwise extension process (StEP), a technique for the formation of
mutagenic libraries, a heat-stable mutant enzyme was achieved that had a mean
inactivation temperature of 55.8°C and a half-life of 159.7 hours, being approximately 60
times higher than the half-life of the native enzyme. [84]. Although this is a strategy used
to obtain L-ASNase mutants, it takes time to test whether the mutations have the desired
effects on the enzyme, so it would be more appropriate to work with strategies based on
the rational design of enzymes with site-directed mutations, where the characteristics of

the enzyme are taken into consideration.

4.3.Fusion protein linkers

As stated, a problem associated with the use of bacterial proteins for biopharmaceutical
purposes, is their short half-life in blood serum. The primary reason for this is that their
small size and cargo make them highly vulnerable to removal through renal filtration. This

can be overcome by fusing the enzyme with proteins or domains that have a longer half-
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life, such as crystallizable fragment (Fc), transfer fusion (Tf) or albumin fusion protein [15].
Research has already been conducted on the coupling of fusion proteins with L-ASNase.
In a study by Guo, Wang [85], a fusion protein composed of ECA and a single-chain
variable fragment (scFv). The antibody fraction of the fusion protein was fused to the N-
terminus of the enzyme via a linker peptide. This protein had approximately 82% of the
enzymatic activity of the native L-ASNase and presented increased stability. Sannikova,
Bulushova [86] conducted a study in which they constructed a recombinant variant of was
L-ASNase obtained from Wolinella succinogenes, which was then fused with heparin to
enhance the therapeutic effectiveness of the enzyme. This fusion aimed to increase the
biological activation, stabilization, and half-life of the enzyme, with the goal of comparing
the efficacy of protein fusion. Tests in mice revealed that the heparin-fused protein had
greater therapeutic efficacy than the unfused recombinant enzyme. Thus, fusion protein
linkers provide a suitable mean for increasing half-life. Nevertheless, the process of
enzyme re-engineering can sometimes lead to a reduction in enzyme activity, as the
complex structure of L-ASNase can pose challenges. Successful fusion requires a deep
understanding of the three-dimensional structure of the fused protein, as well as
bioinformatics analysis for predicting enzyme activity and producing enzymes that are

both more stable and therapeutically effective.

4.4.Conjugation with polymers

Another strategy to prolong the half-life of a biological product is PEGylation, which is
based on the covalent bonding of bioactive molecules to a poly(ethylene glycol) (PEG)
chain [87]. PEG is a polymer formed by ethylene glycol (EG) subunits bound to water

molecules. Due to this feature, peptides or proteins conjugated with this polymer display
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improved solubility and stability [87]. Oncaspar® is a commercially available example of
such enzyme; it uses the method of PEG conjugation with free amines, normally in the
lysine residues and the N-terminal end. A limitation of this technique is that proteins
usually present many lysine residues and, therefore, PEGylation occurs randomly. Which
leads to a high degree of polydispersity in the resulting preparations. Thus, producing
enzymes with different pharmacokinetic profiles and possibly different intrinsic biological
activities [88, 89]. To tackle with these limitations, studies have been designed to improve
PEGylation protocols. One such strategy, has focused on site-specific PEGylation,
seeking for the production of controlled and standardized PEGylated enzymes. The work
by Ramirez-Paz, Saxena [90] was the first to report site-specific PEGylation and the
intramolecular cross-linking of L-ASNase subunits in preselected canonical cysteines
introduced by mutagenesis in the sites A38 and T263. The advantage of this method is
that it keeps the modifications to a minimum, offering the opportunity to direct the
immunogenic and potentially proteolytic epitopes in order to conserve the catalytic
activity. This PEGylated L-ASNase provided a catalytic activity greater than the native
one (210 + 11 vs. 161 + 9 U/mg respectively). These results were unexpected as PEG
reduces the potency of the drug by restricting the interaction between it and its target [91].
Meneguetti, Santos [92] designed an optimized N-terminal PEGylation protocol with
monoPEG-ASNase. Their efforts produced an enzyme that was stable for a longer period,
than the non-PEGylated enzyme, that displayed resistance plasma proteases and with
activity against leukemic cell lines in in vitro models. Torres-Obreque, Meneguetti [93]
obtained L-ASNase produced by N-terminal PEGylated Erwinia chrysanthemi that was

more stable at high temperatures and for a more prolonged period. They also compared
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it to the Erwinase commercial enzyme that lost 93% of its specific activity at two weeks,
whereas the PEGylated enzyme remained stable for 20 days. While PEG has been
considered a non-immunogenic material with a proven history of safety in humans, it is
not free of Hurdles. Recently, anti-PEG antibodies have been foun in both, patients who
take PEG conjugates and in healthy individuals [94]. Risk factors of PEG-ASNase
reactions have been identified and the effect that it has on the development of antibodies
and adverse responses. Reaching the conclusion that 81.5% of patients with an allergic
reaction, display antibodies against PEG-ASNase, with anti-PEG being the main antigen

[95].

Polymers with greater biocompatibility have been sought to reduce antibody
development. One of these is carboxymethyl cextran (CMD), a polymer with biological
compatibility. Chahardahcherik, Ashrafi [96] made a conjugate of CMD-L-ASNase, and it
was found that the modification increased the specific activity and efficiency of the
enzyme. It also showed an increase in half-life and greater resistance to digestion with
trypsin. However, further studies in protein engineering and chemical modification with
carbohydrate polymers are required because it is a strategy that is being developed to

overcome side effects [97-100].

4.5.Glycosylation

Glycosylation is typically accomplished via post-translational modification through an
enzymatic process that enables the attachment of glycans to side chains of asparagine
(N-glycosylation), serine, or threonine (O-glycosylation) [101]. The production of

glycosylated recombinant proteins could improve the effectiveness in vivo, optimizing the
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biological stability and minimizing hepatic clearance; thus, improving the pharmacokinetic
and pharmacodynamic properties of the drug [102]. Protein glycosylation largely depends
on the expression system used, since it induces variations in nature and number of
glycans added, which can affect the biodistribution of the protein [101]. The glycosylated
products are generally produced in mammalian cell lines, which can correctly make
complex modifications after the translation into the final bioproduct. In a study by Dantas,
Caetano [103], they produced recombinant E. coli L-ASNase in mammalian cells in order
to produce the glycosylated enzyme. A L-ASNase with a greater molecular weight was
obtained by informatic analysis predicted 6 potential glycosylated sites. The data
suggests that the L-ASNase obtained in the HEK-293 cell line had optimum relative
activity at different pHs and temperatures. However, expression systems based on
mammalian cell lines have significant disadvantages. Such as, low protein secretion, easy

contamination by viruses, high batch variability, and expensive industrial processes [104].

Another alternative is to use yeast cells for the expression of recombinant glycosylated
bioproducts, since they are highly productive and less costly fermentation processes.
Nonetheless, the glycosylation pattern is significantly different from the humanized profile
obtained from mammalian cells. There is a yeast Pichia pastoris which has been modified
with genetic engineering techniques in the N-glycosylation pathway allowing the
expression of recombinant proteins with mammalian glycosylation [105]. In the study by
Lima, Effer [106], a homogenously glycosylated L-ASNase was obtained from Pichia
pastoris with MansGIcNAc2 glucan residues in five potential glycosylation sites.
Nevertheless, the glycosylation process hindered the enzymatic activity of recombinant

L-ASNase, reaching a value of 3 U/mg, almost 30 times lower than the native enzyme.
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Effer, Kleingesinds [107] expressed three recombinant enzymes from D. chriysanthemi
Erwinase expressed in P. pastoris. All were enzymatically active and glycosylated, which
were able to retain the enzymatic activity of native Erwinase by 3.56%, 68.5% and 11%;
they also presented a reduction in the recognition of L-ASNase by anti-Erwinase
antibodies. Extracellular expression of L-ASNase was also evaluated with two
constructions of the asnB gene (with and without His-tag). It was noted that when the His-
Tag was absent, protein expression and processes improved, this is due to the His-Tag

tail being able to affect the native folding from L-ASNase [108].

4.6.In silico techniques

Protein engineering based on analysis of structures and sequences has led to
improvements in the properties of enzymes [109], which has increased with the arrival of
computational biology and bioinformatics in computer-assisted enzyme modification.
Computational protein design has gradually formed a set of systematic methods and their
viability has been verified experimentally [110]. Easy access has been granted to predict
the effects of the mutations, which facilitates the identification of positive variants [111].
Studies on L-ASNase are not exempt from bioinformatics-based tools. It can be seen in
the design of L-ASNase to reduce immunogenicity and increase the retention time in
circulation, by mapping epitopes and avoiding their recognition of the protein by the
immune system [80]. Belén, Lissabet [112] use an in silico immune-informatics tool for
the prediction of epitopes that contribute to the immunogenicity and allergenicity of E. coli
(EcA) and Erwinia carotovora (EwA) L-ASNase. It was found that the allele HLA-
DRB1*07:01 is associated with a high risk of hypersensitivity and that ECA presents a

greater number of epitopes than EwA. In addition, Pokrovsky, Kazanov [113] endeavored
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to find presumed epitopic regions using a structural and sequential analysis with
bioinformatics, comparing five L-ASNases produced by different sources: W.
succinogenes type Il (WsA), Yersinia pseudotubercolosis type 1l (YpA), Erwinia
carotovora type Il (EwA), Rhodospirillum rubrum type | (RrA) and EcA. Their results
revealed nine regions of the enzyme as putative epitopes, where five of these, represent
active site loops among the experimentally verified epitopes, the two most reliable
contributing to the immunogenicity of L-ASNase are the active site regions, as one is
located in the longer N-terminal loop and protrudes far, and the second is located in the
C-terminal helix near the loop involved in the active. In the study by Yari, Eslami [114],
the conformational B-cell epitopes of Erwinasa were obtained from its three-dimensional
structure; two mutants H240A and Q239A were obtained that presented a significant
reduction in immunogenicity. Nevertheless, H240A vyielded the best result in
hydrophobicity, stability and accessibility to the active site. The ASNase enzyme
produced by Pectobacterium carotovorum (PecA) sought to reduce its immunogenicity by
identifying and mutating epitopic regions of B and T CD4+ cells of the enzyme; making
the mutations of the epitope peptides produced a 50% reduction in immunogenicity,

maintaining their stability in terms of structure and the asparaginase activity [115].

Strategies to reduce glutaminase activity focus on performing in silico mutagenesis by
means of molecular dynamics, substituting amino acids near the ligand binding site. It
was observed that when amino acid ASP96 was replaced by alanine, the glutaminase
activity dropped by 30% and also increased the asparaginase activity by 40% in
Pectobacterium carotovorum [116]. In addition, a model was made of L-ASNase bonded

with asparagine or glutamine, where it was detected that the difference between the
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interactions occurs with Q59L, which coordinates the main groups but not the side chains
of either substrate [6]. A similar strategy was performed on EcA, where it was found that
mutant V27T is a good candidate to reduce glutaminase activity without affecting the

stability of the enzyme [117].

The resistance to proteases bound to amino acid Asn 24 can also be studied. With
computational protein engineering tools using a genetic algorithm in combination with
molecular dynamics, it was predicted that the mutants in N24T and N24A of L-ASNase
had greater activity than the native one and that mutant N24A/R195S had reduced its

glutaminase activity [68].

The in silico design of proteins allows obtaining potential therapeutic proteins, while aiding
to reduce experiments, since the analyzes are carried out previously. Contributing

positively to the rational design of enzymes.

5. Conclusions and future prospects

L-ASNase is an important industrial enzyme responsible for the hydrolysis of L-
asparagine, a non-essential amino acid crucial for the development of neoplastic cells.
This enzyme is produced naturally by a large number of microorganisms and species;
those currently used in the pharmaceutical industry are produced by E. coli and E.
chrysanthemi. However, both enzymes face the challenge of immunogenicity and
resistance due to the development of antibodies, which makes their application difficult.
Due to this fact, protein engineering strategies have been designed that contribute to the
reduction of their side effects and increase their stability for use as a biopharmaceutical

(such as those discussed in this review article). However, there are still challenges to
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overcome fthat require further research in the field of protein engineering, such as further
enhancing in silico analyses. Which are promising tools for predicting epitope regions and
modelling enzyme structure, allowing enzyme stability to be predicted, optimizing the time

and costs associated with in vivo analyses.

The trend in enzyme de-immunization is towards the development of increasingly
sophisticated algorithms and programs that help to reliably-predict epitopes and suggest
possible mutations that are not detrimental to enzyme activity. The use of artificial
intelligence is the gateway to efficient enzyme de-immunisation, such as ABCPred which
uses recurrent neural networks for B-cell epitope identification and achieves 67%
sensitivity, 65% specificity and 66% prediction [118], or ElliPro, a web-based tool for
antibody epitope prediction and visualization [119]. And the development of more
sophisticated methods using neural networks for improved prediction of epitopes and
other similar surface patches, by exploiting features derived from antigens and their
related antibody structures, combined with statistical and machine learning algorithms
[120]. While these strategies are innovative, they are not yet perfect in prediction, as these

lack extensive training data.

Another predominant approach in cancer drug development is the use of encapsulation
technologies. This field seeks "smart" delivery, where drugs can be delivered with
precision, control and stability. In addition, the use of nanotechnology has been observed
to provide improvements in drug immunogenicity [121]. Erythrocytes have been used for
ASNase encapsulation because they are completely biodegradable and provide
protection for the enzyme by preventing an immune response [122, 123]. Encapsulation

techniques that do not alter the membrane and structure of red blood cells so that they
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cannot be recognized and eliminated by the immune system, are currently being used
[123, 124]. In the study [122] a new method of protein encapsulation in red blood cells by
cell penetrating peptide (CPP) was presented, where L-ASNase was conjugated to CPP
by disulfide bonding and showed an improvement in survival of 44% compared to
standard hypotonic loaded red blood cells with a survival of 16.7%, this is a promising
method for reducing immunogenicity. However, it still has limitations due to the lack of
knowledge and experience in the clinical setting to handle the RBC loading procedure. In
addition, these red cells are not yet suitable for clinical use. Another proposed drug
delivery alternative is the use of exosomes, which are nanometer-sized vesicles used in
drug delivery for various types of treatments. However, there are still limitations in the use
of this type of delivery due to difficulties in isolation, efficient drug loading approaches and

the regulations that must be met for them to be approved for clinical use [125].

The use of genetic engineering techniques has allowed the development of several
modified versions of L-asparaginases that display improved pharmaceutical properties in
comparison to the original enzymes. The latest progress in programmable nucleases
such as Zinc Finger Nucleases (ZFNs), Transcription Activator-Like Effector Nucleases
(TALENS), and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-
Cas have made gene editing a practical reality in clinical applications. These techniques
have demonstrated success in decreasing the immune system response to certain
enzymes, enhancing their target specificity and stability [126]. Recently, the use of
CRISPR-Cas9 for the maodification of humanized n-glycosylation of recombinant proteins
using microalgae has been reported, with the aim of reducing immunological effects [127,

128].
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To conclude, in order to advance in the efficient de-immunization of L-asparaginase
without affecting its stability and enzymatic activity, advances in epitope recognition and
epitope coating tools are required. The trend is towards the development of more robust
algorithms, less immunogenic L-ASNase encapsulation strategies and the

implementation of new advances in genetic engineering.
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806 Figure 1. L-ASNase mechanism used at industrial level as biopharmaceutical and
807 acrylamide mitigation agent.
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Host Gene Mutation Results Reference
E. coli ansB Q59L 80% asparaginase activity and 0% glutaminase activity [6]
Bacillus ansA3 G238N, It was observed that the mutations in G238N, E232A and [59]
licheniformis E232A, Q112H showed a loss of activity whereas D103V has
Q112H and greater activity and affinity for asparagine.
D103V
E. coli ansB Y176F, They exhibit much lower glutaminase activity than the [69]
Y176S native one
E. coli ansB Y176F, Y176F and Y176S showed reduced glutaminase [70]
Y176S, activity, K288S/Y176F reduced antigenicity in
K288S, comparison with the wild one.
K288S/Y176F
, K288R,
K288R/Y176F
Pyrococcus PfA K274E, T53Q, No mutant enzyme presented glutaminase activity with [71]
furiosus T53Q/K274E  greater cytotoxic activity in human cells compared to the
native one.
Wolinella WsA V23Q and With resistance to trypsin-like proteases [86]
succinogenes K24T
Erwinia ErA N41D, N41D and N281D conserve their specific activity and the [72]
chrysanthemi N281D, double mutant increases its specific activity towards
N41D/N281D asparagine.
Helicobacter HpA T16D, T95E, T16D and T95E inactivate the glutaminase and [73]
pylor M121C, asparaginase activity of the enzyme. M121C and T169M
T169M, present reduced catalytic activities. M121C/T169M does
M121C/T169 not generate cytotoxic effects and does not present
M glutaminase activity.
Erwinia ErA E63Q It makes the correct positioning of L-glutamine difficult, [74, 75]
chrysanthemi but not of L-asparagine, given a 25-fold reduction in

glutaminase activity
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E. coli EcA 195RKH197  Antigenicity was reduced because the mutated residues [76]
changed for contributed strongly to the antigenicity
195AAA197
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Table 2. L-ASNases modified by directed evolution
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Host Gene Technique Mutation Results Reference
Bacillus ansA Error-prone X3D12, X4E7, They showed enzymatic activity [81]
megaterium polymerase X5G11, D9B, towards improved L-asparagine,

H-1 chain reaction DD12G where X2E7, D9B and DD12G
(EP-PCR) exhibited an increase of 8.75, 20.22
and 21.33 times more than the native
one.
Erwinia ErA Stepwise D133V A more heat-stable mutant enzyme [84]
chrysanthe extension was obtained, reaching a mean
mi process (StEP) inactivation temperature (Tm) of
55.8°C with a half-life of 159.7 h
Erwinia EcA StEP L711 Lack of glutaminase activity and its [82]
carotovora activity  for  asparaginase is
duplicated, the changes in the amino
acid can alter the conformation of the
residues of the active site
Bacillus - EP-PCR Promotor P43 L-ASNase activity increased up to [83]
subtilis 168 pP43NMK 51.13 U/ml.
Human hASNase EP-PCR and M22/R23, D84/S86, Active variants were not selected [99]
1 combinatorial H114/G115, using this method
active-site Al142/Q143/V144,
saturation test A191/R192,
(CAST) T118/F121,
A91/C95/T99,
R23/E25/L26




