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Abstract
It is known that every finite group can be represented as the full group of automorphisms of
a suitable compact dessin d’enfant. In this paper, we give a constructive and easy proof that
the same holds for any countable group by considering non-compact dessins. Moreover, we
show that any tame action of a countable group is so realisable.
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1 Introduction

In this paper, all surfaces are assumed to be orientable, connected, Hausdorff, second count-
able and without boundary. If X is a surface, then we denote by Hom+(X) the group of its
orientation-preserving self-homeomorphisms. A topological action (or just an action) of an
abstract group G on a surface X is an injective homomorphism θ : G → Hom+(X) such
that θ(G) acts tame on X (see Sect. 2).

Every surface admits a Riemann surface structure and, if S is a Riemann surface different
from the Riemann sphere, the complex plane, the punctured plane, a torus, an annulus, the
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hyperbolic plane or the punctured hyperbolic plane, then its group Aut(S) of conformal
automorphisms is a countable group. Conversely, in [8], Greenberg proved that for every
countable (finite or infinite) group G there is a Riemann surface S (which can be assumed
to be compact if G is finite) and an injective homomorphism θ : G → Aut(S). Moreover, θ
may be assumed to be an isomorphism (by using maximal Fuchsian groups). A short proof
of the previous fact has been given by Allcock in [1] (see also [15]). In the case that S
is hyperbolic, its universal cover is the hyperbolic plane H

2. The hyperbolic metric of H
2

induces a complete Riemannian metric of constant negative curvature on S and it holds that
its group Isom+(S) of orientation-preserving isometries coincides with Aut(S).

A dessin d’enfant (or just a dessin) is a pair D = (X ,G), where X is a surface (either
compact or not), G ⊂ X is a bipartite graph (vertices are either black or white and adjacent
ones have different colors)where each vertex has finite degree and each connected component
of X � G, called a face, is homeomorphic to an open disc and bounded by a finite set of
edges (an edge might be internal to a face). Each dessin d’enfant on X induces a unique
(up to biholomorphisms) Riemann surface structure on it [5, 12]. Dessins, on a compact
surface X , were first introduced by Grothendieck in his Esquisse d’un Programme (1984)
[9] (we call these dessins as Grothendieck’s dessins). In this case, such a Riemann surface
structure can be described by an algebraic curve defined over the field of algebraic numbers
Q and Grothendieck’s idea was to use such a combinatorial tool to obtain information on
the structure of the absolute Galois group Gal(Q/Q). Generalities on Grothendieck’s dessins
can be found, for instance, in [5–7, 9, 12].

Themapping class group associated to X is defined tobeMap(X) = Hom+(X)/Hom0(X),
where Hom0(X) is the subgroup of homeomorphisms which are isotopic to the identity. Let
θ : Hom+(X) → Map(X) denote the quotient group projection. The automorphisms of the
bipartite graph G, denoted by Autbip(G), is the group consisting of automorphisms of the
graph that keep invariant black (respectively, white) vertices (called automorphisms of the
bipartite graph).

Let ˜Aut(D) be the subgroup of Hom+(X) consisting of those φ ∈ Hom+(X) keeping
invariant G and inducing an element of Autbip(G). Note that, by performing any isotopy
of φ ∈ ˜Aut(D) relative the vertices and keeping invariant the edges, we obtain the same
automorphism of the bipartite graph; so this group is always uncountable.

The group Aut(D) := θ(˜Aut(D)) is called the group of automorphisms of the dessin D
(this permits us to talk about the topological action of this group on X ). There is a natural
injective homomorphism ρ : Aut(D) → Autbip(G), so this provides a natural copy of
Aut(D) inside Autbip(G) (i.e., we can see Aut(D) as those bipartite graph automorphisms
of G that can be extended to an element of Hom+(X)). As previously said, the dessin D
induces a (unique up to biholomorphisms) Riemann surface structure S on X . In this case,
there is a subgroup of Aut(S) which is isomorphic (by θ ) to Aut(D), that is, we may see
Aut(D) ≤ Aut(S) = Isom+(S). Now, as such a subgroup keeps invariant a non-empty
discrete set of points (the black vertices), it is always a countable group.

If Aut(D) acts transitively on the set of edges of the graph, then the dessin is called regular
(in this case, Aut(D) is necessarily generated by two elements) [5, 12]. If X is compact,
then Aut(D) is necessarily finite. If X is non-compact, then Aut(D) might be infinite (but
countable).

In [10, 11] it was observed that every finite group G is isomorphic to the group of auto-
morphisms of some Grothendieck’s dessin (moreover, if G is generated by two elements,
then the dessin can be chosen to be regular). In [10], it was also proved the existence for G
infinite, but assuming it was finitely generated.
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Our first result is the following, which extends the above for any countable group. More-
over, we build a surface in which we realize any given group together with its subgroup
lattice.

Theorem 1 Let G be a countable (finite or infinite)group. Then, there is a hyperbolic Riemann
surface X and a family of dessins {(X ,DH )}H≤G such that,

(i) Isom+(X) ∼= G,
(ii) Aut(X ,DH ) = {

h ∈ Isom+(X) | h(DH ) = DH
} ∼= H,

(iii) H1 ≤ H2 �⇒ DH1 ≤ DH2 .

Furthermore, if G is finite, then X can be chosen compact so obtaining a family of
Grothendieck dessins.

In [10], it was observed that, given a topological action of a finite group G on a compact
surface X , there is a Grothendieck’s dessin D = (X ,G) such that G induces Aut(D). This
result states that not only there is a dessin with a given group of automorphisms, but also
that the given topological action is preserved by the automorphism group. In particular, the
strong symmetric genus of a finite group is also the minimal genus action at the level of
Grothendieck’s dessins. The proof of such result was done in terms of Riemann surfaces,
Fuchsian groups and quasiconformal deformation theory. In this paper, we provide a simple
and short argument to the above realisation that also works for any countable group.

Theorem 2 Let X be a surface and fix a topologically tame action θ : G → Hom+(X),
where G is a countable (finite or infinite) group. Then there is a dessin D = (X ,G) with
Aut(D) isomorphic to G and induced by the topological action of θ(G).

Let G be any countable group and let X be any surface of infinity type such that all of
its ends are non-planar and its ends space is self-similar (see [2] for details). An example of
such type of surfaces is, for instance, the Loch Ness monster (the unique, up to orientation-
preserving homeomorphisms, infinite genus surface with exactly one end). In [2], Aougab-
Patel-Vlamis proved that one can find a Riemann surface structure S on X such that Aut(S)

is isomorphic to G. So, the above theorem asserts the following existence fact (as already
stated before).

Corollary 1 Let X be a surface of infinite type, where all of its ends are non-planar and its
ends space is self-similar. If G is a countable group, then there is a dessin D = (X ,G) such
that Aut(D) isomorphic to G. In fact, such a dessin can be given in the Loch Ness monster.

2 Preliminaries

2.1 Locally finite branched coverings

A surjective continuous map Q : X → Y , where X and Y are surfaces, is called a locally
finite branched cover if:

(1) the locus of branched values BQ ⊂ Y of Q (it might be empty) is a discrete set;
(2) Q : X � Q−1(BQ) → Y � BQ is a covering map; and
(3) each point q ∈ BQ has an open connected neighbourhoodU such that Q−1(U ) consists

of a collection {Vj } j∈I of pairwise disjoint connected open sets such that each of the
restrictions Q|Vj : Vj → U is a finite degree branched cover (i.e., it is topologically
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equivalent to a branched cover of the form z ∈ D 	→ zd j ∈ D, where D denotes the
unit disc).

If X is a compact surface, then a branched covering is always locally finite. But, in the
case that X is non-compact, a branched covering might not be locally finite.

2.2 Topologically tame actions

Let G be a group, X be a surface and θ : G → Hom+(X) be an injective homomorphism.
We say that the action of θ(G) is tame on X if there is a Galois locally finite branched cover
Q : X → Y with deck group θ(G) (in particular, G is countable).

2.3 Belyi pairs and dessins

Let S2 be the standard 2-dimensional sphere and fix three different points p0, p1, p∞ ∈ S2.
A dessin D = (X ,G) defines a (unique up to isotopy) locally finite branched cover Q :
X → S2 with BQ ⊆ {p0, p1, p∞}, where Q−1(p0) (respectively, Q−1(p1)) are the black
(respectively, white) vertices of G and there is an arc δ = [p0, p1] ⊂ S2

� {p∞}, such that
that Q−1(δ) = G. Moreover, Aut(D) = Aut(X , Q) = {φ ∈ Hom+(X) : Q ◦ φ = Q}. Note
that, for X either of genus g ≥ 1 or of infinite type, then #BQ = 3. We say that the pair
(X , Q), as above, is a Belyi pair. Conversely, given a Belyi pair (X , Q), where Q : X → S2

is a locally finite branched cover with BQ ⊆ {p0, p1, p∞}, then it induces a dessin D as
above.

Remark 1 Let (X , Q) be a Belyi pair. If ϕ : S2 → ̂C is an orientation-preserving homeo-
morphism, where ̂C denotes the Riemann sphere, with ϕ(BQ) ⊆ {∞, 0, 1}, then we may
pull-back the Riemann surface structure of ̂C, under ϕ ◦ Q, in order to provide a Riemann
surface structure S on X such that ϕ ◦ Q : S → ̂C is a non-constant meromorphic map with
branch value set contained inside {∞, 0, 1}. In this case, Aut(D) is a subgroup of Aut(S)

(the deck group of ϕ ◦ Q). If X is compact, then Belyi’s theorem [3] asserts that the Riemann
surface S can be represented by an algebraic curve over Q. Giving an equivalent property in
the case X is non-compact is still an open problem.

2.4 Realisation of group actions on cubic simple graphs

We refer to [4] for the basic facts in Graph Theory.

Theorem 3 Let G be a non-trivial countable group. There exists a connected cubic simple
graph G and a proper 3-labelling of its edges such that AutLGraph(G) ∼= G. Furthermore,
there exist infinitely many such graphs, and if G is finite, these graphs can be chosen to be
finite as well.

Proof Let S ⊂ G be a set of generators of G, we rule out the possibility of e ∈ S. Also, if S
is finite we will assume that |S| > 3. If this is not the case, replace S = {si }|S|

i=1 with the list
{

s1, s1, s1, s1, s2, . . . s|S|
}

.
Consider C = Cay(G, S) the associated Cayley graph. This is the directed graph with

G as the set of vertices and with set of edges �n
i=1 {(g, gsi ) ∈ G × Glabeled si }. It is well

known that AutLGraph(C) ∼= G.
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We will now proceed to replace the vertices and edges of C with fixed configurations of
vertices and edges allowing us to create the desired graph without modifying its automor-
phisms.

For each vertex g, there are |S| edges arriving at it and |S| edges coming from it. We
replace g with the following configuration of 2|S| vertices:

�⇒
g

s1

s2

sn

s1

s2

sn

...
...

gin
1

gin
2

gin
n

gout
1

gout
2

gout
n

s1

s2

sn

s1

s2

sn

1

2 2

...
...

The edge connecting gin
n and gout

n only appears if n = |S| < ∞, and in that case its
labeled 1 or 2 depending on the parity of n (no consecutive edges can share labels).

Define N = |S| + 2 if S is finite, and N = 0 if |S| = ℵ0, and consider an edge labeled si .
We replace this edge with the following construction:

⇒gout
i (gsi )

in
i

si

1

2

1

2

gout
i (gsi )

in
i

3 3 3
N + i

· · ·

· · ·

The resulting graph G is a cubic connected graph with properly 3-labeled edges. Let
us see that, indeed AutLGraph(G) ∼= G. By construction, 3-cycles only appear inside the
configuration used to replace the edges of C. We will always find four of these for each edge.
Two of them share 2 vertices and codifies the orientation of the original the edge in C. The
other two are joined by a “ladder” of (N + i) steps, consisting in 4-cycles, which allows
us to recover the label si . In order to recover the vertices of C, remove all 3-cycles from G
and look at the connected components that remain. If S is infinite, finite order connected
components come from replacing edges, so each other connected component gives a vertex.
If S is finite, notice that connected components coming from edges must have order strictly
greater than 2|S|, so connected components of order 2|S| all come from a vertex. Finally
note that the configuration used to replace edges is rigid, meaning it has no non-trivial
automorphisms. This, together with the fact that C is completely determined by G, gives
AutLGraph(G) ∼= AutLGraph(C) ∼= G. ��
Lemma 1 Let G be a cubic connected graph with properly 3-labeled edges. Then, every
G ≤ AutLGraph(G) acts freely on the vertices of G.

Proof TakeG ≤ AutLGraphG and g ∈ G. Suppose g(v) = v for some vertex v ofG. For every
other vertex w, consider a path from v to w. Since g is an automorphism of labeled graphs it
must preserve the labelling of the path v → w. Suppose this path is v = v0, v1, . . . vn = w,
and suppose the edges of G are labeled with {1, 2, 3}. We know that the edge between g(v0)

123



160 Page 6 of 9 A. Cañas et al.

and g(v1) has the same label as the edge between v0 and v1. However, g(v0) = v0 and at any
vertex of G, there is only one adjacent edge for each label. This means the edge is the same
and thus, g(v1) = v1. Clearly, by finite induction we arrive at g(w) = w. And since w was
arbitrary, g = id . Hence, G acts freely on G. ��

2.5 Certain hyperbolic right-angle hexagons

Our proof of Theorem 2 is built upon the existence of hyperbolic pants, that is hyperbolic
hexagons, whose side lenghts are different enough. The next result shows these hexagons do
exist.

Lemma 2 There exists a hyperbolic right-angled hexagon with edges of length a1, b1, a2, b2,
a3, b3, such that all lengths are different and ai < 1 < bi for i = 1, 2, 3.

Proof For any l, ε > 0, there exists a hyperbolic right-angled hexagon such that three non-
consecutive edges have lengths l, l + ε and l − ε [13]. Let α, β, and γ be the lengths of the
edges opposing the edges of length l, l + ε, and l − ε respectively. It is known that [14],

α = cosh−1
(

cosh(l + ε) cosh(l − ε) + cosh(l)

sinh(l + ε) sinh(l − ε)

)

.

By taking limits when l → ∞ and ε → 0, α goes to 0, and this is also true for β and γ .
Therefore, by taking l big enough and ε small enough we can have 0 < α, β, γ < 1 <

l − ε < l < l + ε. Finally, it can be also shown that [14],

sinh l

sinh α
= sinh(l + ε)

sinh β
= sinh(l − ε)

sinh γ
.

And since sinh is a strictly increasing function, we deduce that α, β, γ are all different. ��

3 Proof of Theorem 1

Proof The result is already known for the trivial group [10, 11] so we may assume G is not
trivial.

Choose a1, a2, a3, b1, b2, b3 as in Lemma 2. Denote as P the pair of hyperbolic pants
obtained fromglueing two copies of the hexagon given by the lemma along the edges of length
b1, b2, b3. The surface P has three closed geodesics of length 2a1, 2a2, 2a3 as boundary. We
will label them with 1, 2, 3 respectively.
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Now, we build X as follows. Consider G the graph associated to G given by Theorem 3.
For each vertex v of G, consider an isometric copy Pv of P . And, for every edge labeled
i ∈ {1, 2, 3} between vertices v andw, glue the pants Pv and Pw by isometrically identifying
the geodesics with said label (thus without creating any twists).

Since the set of vertices of G is countable, we get an hyperbolic orientable surface X . If G
is finite, the set of vertices of G is also finite, so X would be closed. Also note that G permutes
vertices in G, that is it permutes pants, thus Isom+(X) ∼= G. Indeed, an isometry maps closed
geodesics into closed geodesics. The closed geodesics in X are those from the boundary of
each pair of pants, of lengths 2a1, 2a2, 2a3 < 2, and those that appear after joining at least
three pants together, these ones have at least three geodesic segments of length bi > 1, so
their length is at least 3. Thus, the isometry must send the boundary of each pair of pants into
another boundary. Therefore, isometries map pants into pants, allowing to translate them as
automorphisms of G. Also, the geodesics from the boundaries map to a geodesic of the same
length, thus, it preserves the labelling of edges in G. This proves i).

Let us now build the dessin DG . For each vertex v of G, consider the following graph on
Pv:

v· · · · · ·

· · ·

On the 3 edges connecting two black vertices we place an alternating sequence of white-
black vertices so that the resulting graph is bipartite. Each of these sequences has different
length and all of them have length greater than the cycles on the boundary of P . Note that the
surface obtained by removing this graph from Pv is homeomorphic to the disjoint union of
two open disks. By repeating the same pattern on all the pants, we obtain a graph DG which
makes (X ,DG) a dessin.

Finally, given a subgroup H ≤ G we defineDH as follows: Fix some v0 ∈ G and remove
fromDG the vertices from the G-orbit of v0 that are not in its H -orbit. This givesDH ≤ DG

which makes (X ,DH ) a dessin. And it is clear that this definition satisfies i i i).
Take an automorphism f ∈ Aut(X ,DH ). On each pair of pants Pv , f preserves cycles on

the boundary and thus, also the geodesics, so it must be induced by an element of Isom+(X).
This shows Aut(X ,DH ) = {

h ∈ Isom+(X) | h(DH ) = DH
}

. Thus, f ≡ h|DH with h ∈
Isom+(X) and h(DH ) = DH . We know that h maps pants into pants, but it has to also map
DH into itself. Hence, by construction, the pant Pv0 will only map to another pant Pw with
w ∈ Hv0. Lemma 1 shows that this completely determines an element of the action of H on
DH , and thus, Aut(X ,DH ) ∼= H , proving i i). ��
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4 Proof of Theorem 2

Proof Let us consider a topologically tame action θ : G → Hom+(X) and let π : X → Y
be a Galois cover with deck group θ(G). We may consider a dessin D0 = (Y ,G) such that:
(i) Bπ is contained in the set of white vertices of G and (ii) there is exactly one black vertice
of degree one. This dessin induces a locally finite branched cover Q : Y → S2 such that

(1) the locus of branched values of Q is BQ ⊆ {p0, p1, p∞} ⊂ S2;
(2) Q : Y � Q−1(BQ) → S2

� BQ is a covering map;
(3) Q−1(p0) (respectively, Q−1(p1)) are the black (respectively,white) vertices ofG, while

there is a bijective correspondence between the points in Q−1(p∞) and the connected
components of Y � G;

(4) Q−1(p0) ∩ Bπ = ∅; and
(5) in Q−1(p0) there is exactly one non-critical point x0.

The dessin D = (X , π−1(G)) satisfies that θ(G) ≤ A = Aut(D). We claim that A =
θ(G). Let us assume, by the contrary, that θ(G) �= A. In this case:

(i) there is a Galois (possible branched) cover πA : X → R, with deck group A,
(ii) there is a locally finite branched cover P : Y → R, degree at least two (it could be of

infinite degree) such that P ◦ π = πA, and
(iii) there is a locally finite branched cover L : R → S2 such that L ◦ P = Q.

Set r0 = P(x0) and let d ≥ 1 be the branched order of πA at r0 (i.e., each point in the
fiber π−1

A (r0) has A-stabilizer a cyclic group of order d .
As Bπ ∩ Q−1(p0) = ∅, it follows that, at each point in the fiber of P−1(r0), the local

degree of P is the same d . But this means that, at each of these points, the local degree of
Q = L ◦ P must be the same. This is a contradiction to condition (5) of Q. ��

Remark 2 (Another proof of Theorem 1) Let H be a subgroup of G and consider a locally
finite branched Galois cover U : X → R induced by the action of H . Take a locally finite
branched cover T : R → Y such that π = T ◦ U . Consider the preimage, under T , of the
bipartite graph G (in the above proof) to obtain a bipartite graph ˜G ⊂ R. In that case, all
branch values of U are contained in the white vertices and there is a non-empty collection of
degree one black vertices. By removing all the degree one black vertices (with the exception
of one of them) and the adjacent edges, then we obtain a new bipartite graph H ⊂ ˜G. Such
a bipartite graph satisfies the same conditions for R and U as G did for Y and π . So, the
same proof, permits to obtain a new dessin on X (whose bipartite graph is contained in the
bipartite graph π−1(G)) and whose automorphism group is H .
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