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ARTICLE INFO ABSTRACT

Handling Editor: Xavier Querol Introduction: Use of polluting cooking fuels generates household air pollution (HAP) containing health-damaging

levels of fine particulate matter (PMs s). Many global epidemiological studies rely on categorical HAP exposure

indicators, which are poor surrogates of measured PM; s levels. To quantitatively characterize HAP levels on a
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Methods: The Prospective Urban and Rural Epidemiology (PURE)-AIR study included 48-hour monitoring of
PMS, 5 kitchen concentrations (n = 2,365) and male and/or female PMz 5 exposure monitoring (n = 910) in a
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subset of households in Bangladesh, Chile, China, Colombia, India, Pakistan, Tanzania and Zimbabwe. PURE-AIR
measurements were combined with survey data on cooking environment characteristics in hierarchical Bayesian
log-linear regression models. Model performance was evaluated using leave-one-out cross validation. Predictive
models were applied to survey data from the larger PURE cohort (22,480 households; 33,554 individuals) to
quantitatively estimate PMjy 5 exposures.

Results: The final models explained half (R2 = 54%) of the variation in kitchen PMj 5 measurements (root mean
square error (RMSE) (log scale):2.22) and personal measurements (R? = 48%; RMSE (log scale):2.08). Primary
cooking fuel type, heating fuel type, country and season were highly predictive of PMj 5 kitchen concentrations.
Average national PM; 5 kitchen concentrations varied nearly 3-fold among households primarily cooking with
gas (20 pg/m° (Chile); 55 pg/m® (China)) and 12-fold among households primarily cooking with wood (36 pg/
m? (Chile)); 427 pg/m3 (Pakistan)). Average PMys kitchen concentration, heating fuel type, season and
secondhand smoke exposure were significant predictors of personal exposures. Modeled average PMy 5 female
exposures were lower than male exposures in upper-middle/high-income countries (India, China, Colombia,
Chile).

Conclusion: Using survey data to estimate PM3 5 exposures on a multinational scale can cost-effectively scale up
quantitative HAP measurements for disease burden assessments. The modeled PM; 5 exposures can be used in

future epidemiological studies and inform policies targeting HAP reduction.

1. Introduction

Approximately 3.8 billion people residing in low- and middle-income
countries (LMICs) use polluting cooking fuels (e.g. wood, charcoal, an-
imal dung, coal) in traditional stoves (e.g. open fires, mud stoves)
(Health Effects Institute, 2020). Exposure to household air pollution
(HAP) from incomplete combustion of polluting cooking fuels in inef-
ficient stoves has several adverse health and environmental conse-
quences. In epidemiological studies, exposure to elevated
concentrations of fine particulate matter (PM3 5), a pollutant of primary
health concern found in HAP, has been associated with respiratory in-
fections in children (Bates et al., 2013; Ezzati and Kammen, 2001;
Upadhyay et al., 2015), lung cancer (Kurmi et al., 2012), chronic
obstructive pulmonary disease (COPD) (Kurmi et al., 2010; Salvi and
Barnes, 2010), cataracts (Pokhrel, 2004), adverse pregnancy outcomes
(Amegah et al., 2014; Thompson et al., 2011; Alexander et al., 2018),
hypertension (Alexander et al., 2017; Arku et al., 2018; Baumgartner
et al., 2014; Baumgartner et al., 2011; Burroughs Pena et al., 2015; Clark
et al., 2013; Norris et al., 2016) and cardiovascular diseases (CVD)
including ischemic heart disease (IHD) and stroke (Kephart et al., 2020;
Alam et al., 2012; Yu et al., 2018). HAP contributes up to one-third of all
global anthropogenic emissions of black carbon (Rehman et al., 2011;
Bond et al., 2013; Grieshop et al., 2011), a component of PMj 5 that has
the second largest radiative forcing, behind only carbon dioxide (Grie-
shop et al., 2011; Ramanathan and Carmichael, 2008). HAP is also a
major source of ambient PMj 5 pollution (Liu et al., 2016; Chafe et al.,
2014).

1.1. Quantitative household AIR pollution exposure modeling

Quantitative PMy 5 exposure measurements are needed for more
accurate assessment of the health risks from cooking with polluting fuels
(Burnett and Cohen, 2020; Burnett et al., 2018), but require significant
resource, time and financial investment, precluding large-scale HAP
monitoring in many LMICs. Thus, there is substantial uncertainty in the
exposure-response relationship in the range of PMy 5 levels typically
found in HAP for various diseases. To reduce HAP exposure misclassi-
fication from use of categorical exposure indicators, such as primary
cooking fuel type or ‘clean versus polluting’ fuel (Smith et al., 2014),
quantitative exposure estimation of PM; 5 levels is needed to facilitate
larger-scale HAP exposure assessment with reduced air monitoring
(Balakrishnan et al., 2013;12(1):77.; Baumgartner et al., 2011). HAP
predictive models leverage the association of PM; 5 measurements with
household characteristics that are more easily characterized via surveys.
This requires strategically collecting survey data on factors that affect
household PM; 5 concentrations. Previous HAP predictive models have
linked survey data on the cooking environment (e.g. primary cooking

fuel type, heating fuel, ventilation) and socioeconomic status (SES) (e.g.
income, education) to PM, 5 measurements at a national level in several
countries, including India and China (Carter et al., 2016; Gurley et al.,
2013; Jin et al., 2005; Massey et al., 2012; Ni et al., 2016).

1.2. Modeling household AIR pollution levels on a global scale

With limited existing multinational HAP measurement studies,
global HAP risk assessments such as the Global Burden of Disease (GBD)
study have historically relied on a compilation of available PMs 5
exposure measurements from published studies within the WHO Global
HAP  database  (https://www.who.int/data/gho/data/themes/air-
pollution/hap-measurement-db) (Shupler et al., 2018). A previous
HAP modeling study aggregated PM; s kitchen concentration and female
exposure measurements, descriptive survey data (primary fuel type,
season (wet vs. dry)) and an index of country-level SES from 44 pub-
lished measurement studies conducted from 1996 to 2016 and available
data in the WHO database to predict country and primary fuel-specific
PMy s levels (Shupler et al, 2018). A constraint of this global
modeling study was the limited number of households (range: 2-470
households; median = 17) in each study and minimal predictors avail-
able for modeling due to differential reporting of population charac-
teristics in the publications. Studies included in the WHO database also
have diverse study designs, monitoring technology, analytic methods
and measurement periods, which introduced measurement bias into the
quantitative PM3 5 model estimates.

This study uses household survey data and personal and kitchen
PM, 5 measurements from a single study, the Prospective Urban and
Rural Epidemiology (PURE)-AIR study. PURE-AIR included 48-hour air
monitoring of kitchen concentrations among approximately 2,500
households and simultaneous male and/or female exposure monitoring
(among a subset of households; n ~ 1,000) across 120 rural communities
in eight countries (Shupler et al., 2020). The PURE-AIR measurements
presented in Shupler et al (Shupler et al., 2020) were leveraged in this
study to achieve several additional aims that were previously infeasible
due to logistical challenges associated with extensive HAP exposure
assessments. The specific aims of this analysis were: (1) to use machine
learning methods to understand the most important drivers of PM; 5
exposure variations due to HAP on a global scale and (2) to develop
multinational predictive models of PM; 5 kitchen concentrations and
personal exposure measurements from PURE-AIR (~2,500 households)
to scale up HAP exposures to the larger PURE cohort (~25,000 house-
holds). The results from objective 1 can inform data to be prioritized for
collection in future national global health surveys (e.g. WHO Harmo-
nized Survey, Demographic Health surveys) when aiming to explain
multinational variation in HAP exposures. The quantitative PM, 5 esti-
mates generated from objective 2 can uncover the quantitative effect
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(and the variability around the effect estimates) of different factors on
PM, 5 exposures and will have utility in future epidemiological studies
using health outcome data from the PURE cohort.

2. Methods
2.1. Study design

The PURE study, initiated in 2003, is a multinational cohort designed
to identify risk factors for cardiovascular disease across low-, middle-,
and high-income counties (LMICs). Approximately 190,000 participants
have been enrolled from around 800 rural and urban communities
within ‘sub-national regions’ (defined as urban centers around which
rural and urban communities were clustered) in 27 countries (Teo et al.,
2009). Communities represent neighborhoods in urban areas and vil-
lages in rural areas. Within PURE communities, participants are repre-
sentative of the age and sex distribution of adults aged 35-70 (Corsi
et al., 2013). At baseline, all households completed a PURE Household
questionnaire that contained questions related to household energy
usage, including primary cooking fuel type, cooking location (indoors/
outdoors), ventilation (presence of windows, chimney) and heating fuel
type. The male and female heads of household also completed PURE
individual questionnaires regarding their socioeconomic status (SES) (e.
g. education, occupation).

The PURE-AIR study, nested within the PURE cohort, integrated 48-
hour kitchen PMj 5 monitoring among a subset of 2,541 PURE house-
holds within 120 rural communities of eight LMICs (Bangladesh, Chile,
China, Colombia, India, Pakistan, Tanzania, Zimbabwe) where cooking
with polluting fuels exceeded 10% prevalence at baseline (Shupler et al.,
2020; Arku et al., 2018). In a subset of 20% of PURE-AIR households, 48-
hour male and/or female personal monitoring was conducted alongside
household monitoring among 951 participants. Stratified random sam-
pling was used to select PURE-AIR households within each rural com-
munity, proportional to baseline percentage of primary cooking fuel
type, with polluting fuels oversampled to capture a wide-ranging
exposure distribution (Shupler et al., 2020). Prior to and after moni-
toring, a PURE-AIR household survey was administered, which con-
tained cooking environment questions identical to a baseline PURE
household survey (see Supplement of Arku et al. 2018 for PURE baseline
survey), and additional questions on stove type, secondary cooking fuel
type, daily cooking time, time spent in the cooking area and years using
the current primary cooking fuel. Detailed information on the PURE-AIR
sampling strategy and measurement protocol is documented elsewhere
(Shupler et al., 2020; Arku et al., 2018).

2.2. Variable importance

Variables were selected from (1) the PURE-AIR survey and (2) the
PURE baseline household and individual surveys that were hypothesized
a priori to be associated with HAP kitchen concentrations and personal
exposures. A unique set of variables for kitchen concentration and per-
sonal exposure models were selected with two separate goals: (1) to use
PURE-AIR survey data to determine the maximum predictive power of
cooking environment variables and (2) to use cooking environment
variables available in PURE baseline surveys to develop the most ac-
curate quantitative exposure coefficients to apply to the PURE cohort
(for whom only PURE baseline survey was available).

To evaluate cooking environment characteristics that explained the
largest percent of between- and within-country variability in PMj 5
kitchen concentrations and personal exposure among rural PURE com-
munities, machine learning models, developed using random forests via
the randomForest package in R, were built for all measurements as well
as separate models for China, India, South America (Chile/Colombia),
other South Asia (Bangladesh/Pakistan) and Africa (Tanzania/
Zimbabwe). For each model, variable importance was evaluated using
the interpretable machine learning (iml) package in R (Molnar, 2021;
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Fisher et al., 2019), which ranked model variables according to the
lowest mean absolute error (MAE). Before running all models, contin-
uous variables were grouped into tertiles when possible to avoid bias in
variable importance calculations (see Table S3 for a list of variables); a
similar approach was followed in a previous modeling study of primary
cooking fuel switching in PURE (Shupler et al., 2019). Due to small size,
some heating fuel types were condensed to increase the power of the
analysis; heated coal beds (“kang”), commonly used as a heating fuel in
Northern China, were grouped with ‘coal open fires’, and households
reporting using animal dung and agricultural waste in open fires for
heating were grouped with wood to form a ‘biomass open fire’ heating
category.

2.3. Bayesian modeling

While machine learning methods are advantageous to this study in
their ability to find the best relationship between predictors and PMj 5
concentrations, they are limited by their lack of interpretability (Rudin,
2019). This is because machine learning models are a ‘black box’ of
complicated functions of variables, rendering it infeasible to understand
how the predictors are jointly related to each other. As such, machine
learning results cannot be easily applied to external datasets for pre-
diction. Therefore, Bayesian hierarchical models were built using the
PURE-AIR sample to generate quantitative PMjy 5 exposure coefficients
and variance around the estimates for predicting quantitative PMj 5
exposures for the entire PURE cohort.

A Bayesian approach also had the advantage of application of pri-
mary cooking fuel-specific ‘priors’ to the predictive models, using data
from a previous global WHO Global Database modeling study (Shupler
et al., 2018). The Bayesian log-linear regression models accounted for
the clustered sampling within PURE-AIR (households nested in com-
munities nested in sub-national regions), with fixed effects added in the
order of their importance determined from the random forest modeling.
Households (n = 19, 0.8% of sample) and participants (n = 9, 1% of
sample) sampled in Tanzania were excluded from Bayesian modeling of
PM, 5 kitchen concentrations due to low sample size that precluded
model convergence. Separate Bayesian models were built for PM; 5
kitchen concentrations (n = 2,384 out of 2,541 (6% missing data) and
PM,, 5 personal exposures (n = 910 out of 951 (4% missing)) using only
variables available in PURE baseline surveys.

Using the brms package in R (Biirkner, 2017), Bayesian models were
run with two chains and model convergence was monitored via visual
chain inspection. A total of 8,000 posterior estimates were retained for
use in variance calculations for the modeled exposures. Model selection
was based on simultaneously optimizing the coefficient of determination
(R?) and reducing the leave-one-out information criterion (LOOIC)
(Gelman et al., 2017). Given differences in sex-specific average 48-hour
PM, 5 exposures between countries detected descriptively from PURE-
AIR measurements (Shupler et al., 2020), a sex*country interaction
was evaluated in the personal exposure model. Bayesian model valida-
tion was conducted using leave-one-out (LOO) cross validation via an
approximation technique (Pareto smoothed importance sampling)
(Vehtari et al., 2016).

Bayesian models included ‘power priors’ of cooking fuel-specific
PM, 5 concentrations and exposures from the WHO Global Database
modeling (Shupler et al., 2018). Priors were normally distributed and
centered at the mean PMj 5 level obtained from the previous global HAP
models (see Table 1 in Shupler et al., 2018). Power priors (Table 1)
accounted for the different study designs of publications included in the
WHO Global Database modeling and PURE-AIR by employing a hyper-
parameter to quantify the heterogeneity (Ibrahim and Chen, 2000).

2.4. Predicting fine particulate matter exposures for PURE cohort

We applied coefficients from the final Bayesian models to PURE
baseline survey data to quantitatively estimate baseline PMj 5 kitchen
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Table 1
Power priors used in Bayesian hierarchical models of PURE-AIR measurements.

Model type Cooking fuel Mean PM, 5 Power prior (log scale)
type estimate (pg/ (mean, standard
m3)! deviation)?
Kitchen Gas 104 ~Normal(4.65, 0.48)
concentration Electricity 104 ~Normal(4.65, 0.48)
Wood 395 ~Normal(5.98, 0.48)
Coal 319 ~Normal(5.77, 0.48)
Animal dung 958 ~Normal(6.87, 0.48)
Personal Gas 42 ~Normal(3.75, 0.48)
exposure Electricity 42 ~Normal(3.75, 0.48)
Wood 161 ~Normal(5.08, 0.48)
Coal 130 ~Normal(4.87, 0.48)

Animal dung 391 ~Normal(5.97, 0.48)

1. Estimates obtained from Table 1 of WHO Global Database modeling study
(Shupler et al., 2018).

2. Standard deviation of 0.48 is a power prior obtained by multiplying largest
fuel-specific standard deviation from WHO Global Database modeling study
(0.06) by ‘fudge factor’ of 8 to account for heterogeneity in study design between
WHO Global Database measurements and PURE-AIR measurements.

and personal exposures in the PURE cohort. We restricted prediction to
22,480 households and 33,554 individuals in rural communities of eight
PURE countries with > 20% polluting cooking fuel use at baseline (see
Fig. 2 in Arku et al. 2018 for baseline prevalence of primary cooking fuel
use in each country).

To estimate average annual PM; 5 concentrations based on a single
48-hour HAP measurement, all countries were assumed to have equal
(50/50) wet (April-September; summer in northern hemisphere coun-
tries) and dry (October-March; winter) seasons, as done in the previous
WHO global HAP modeling study (Shupler et al., 2018). ‘Prediction
intervals’ around point estimates were calculated using the posterior
distribution from the Bayesian models.

2.5. Comparing PURE-AIR measurements to ambient air pollution
concentrations

Due to lower anticipated PMjy 5 emissions from clean fuels (Shen
et al., 2018) and the infiltration of outdoor air pollution to the indoor
environment (Krebs et al., 2021), the utility of using average 48-hour
PM, 5 kitchen concentrations in households cooking exclusively with
clean fuels as a surrogate measure of ambient air pollution concentra-
tions was assessed. Spearman correlation coefficients (r) were calculated
to quantify the relationship between modeled average annual ambient
PM; 5 levels (at 0.1°x0.1° resolution; approximately 11 x 11 km reso-
lution at the equator) in 2018 (spanning the time of PURE-AIR sam-
pling). The ambient air pollution estimates were derived from a
Bayesian modeling study that incorporated satellite and ground PMs 5
measurements (Shaddick et al., 2018). These estimates were map-
matched (via GPS coordinates) at a sub-national regional level to
average kitchen and personal exposure measurements from PURE-AIR.
Due to a lack of PURE-AIR measurements among households using
electric stoves in most countries, only kitchen measurements from
households cooking with gas were compared to modeled average annual
ambient PMj; 5 concentrations. Due to a focus on cooking environmental
predictors of PMy 5 concentrations, a lack of resolution in average
annual ambient air pollution concentrations at a household-level within
PURE-AIR communities precluded its inclusion as a predictor in PURE-
AIR modeling.

All statistical analyses were conducted in R version 3.5.1 (R Core
Team. R, 2017). Initial and ongoing ethics approvals for the PURE
cohort were obtained from the Institutional Review Board at McMaster
University, Hamilton, Ontario and from each PURE study country using
local Institutional Review Boards. Ethics approval for the PURE-AIR
study was obtained from the University of British Columbia’s Behav-
ioral Research Ethics Board.
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3. Results
3.1. Characteristics of PURE baseline sample

Due to recruitment of PURE households in different waves, 16% (n =
4,932) of households recruited in the first wave in India did not have
information on heating fuel type. Due to the importance of heating fuel
type as a PMy 5 concentration determinant, these households were
excluded from the modeling to ensure maximum predictive accuracy.
Additionally, PURE households using kerosene as their primary cooking
fuel at baseline (n = 363, 1% of total sample) were excluded as PURE-
AIR did not include monitoring of households cooking with kerosene.
The final analytic sample was comprised of 22,480 rural households and
33,554 individuals living in the households. A sensitivity analysis that
examined characteristics between the full and analytic baseline sample
revealed that households in India with missing data on heating fuel type
at baseline tended to be lower SES (lower income tertile, higher percent
of income spent on food) than the average household in India
(Table S10). Thus, predicted average PMjs kitchen concentrations
among rural communities in India at PURE baseline may be slightly
attenuated due to an inverse association between higher household SES
and lower average PM5 5 kitchen concentrations found among PURE-
AIR households (Shupler et al., 2020).

PURE baseline households were predominantly from China (49%; n
= 15,163) and India (29%; n = 9,051). The most frequently used pri-
mary cooking fuels at PURE baseline were wood (37%; n = 11,334) and
gas (24%; n = 7,385) (Table S1). Coal (19%; n = 5,722) was almost
exclusively used for cooking in China. Approximately two-thirds of
households heated their homes during the cold season; a biomass open
fire was the most common heating method (outside of China) (27%; n =
8,351). A coal open fire was used by 31% (n = 9,686) of the PURE
sample at baseline, with nearly all coal heating occurring in China (97%;
n = 9,382). Less than 10% of rural PURE households heated their homes
with clean fuels (electricity (7%; n = 2,119), central heating (1%; n =
454), gas furnace (1%; n = 350)).

Approximately half (49%) of households had 3-7 rooms; the pro-
portion of households in Bangladesh (52%; n = 487) and Pakistan (46%;
n = 398) with only 1-2 rooms was over twice the overall average (18%;
n = 5,521) (Table S1). The proportion of households with natural roof
materials (e.g. thatch, wood) in Pakistan (32%; 270) and Zimbabwe
(29%; n = 186) was four times the average of the PURE sample (8%; n =
2,401). Nearly half (48%; n = 9,618) of female study participants
indicated their primary occupation as a homemaker, compared with less
than 10% (n = 1,326) of males (Table S2). Approximately half (48%) of
male study participants earned a secondary or university/trade school
degree, compared with only one-third (34%) of female participants.
Over half of rural PURE participants were ranked in the lowest one-third
of household income in their country. Characteristics of the sub-sample
of households and individuals selected to receive HAP monitoring as
part of the PURE-AIR study are described elsewhere (Shupler et al.,
2020; Arku et al., 2018).

3.2. Predictors of PM 5 kitchen concentrations

The PURE-AIR PM,s kitchen concentration model performed
slightly better (R? = 0.45) than the kitchen concentration model using
only PURE baseline survey data (R> = 0.37), which did not include in-
formation on stove type and secondary cooking fuel (Table 2). The
decrease in R? in the PURE baseline model was largely due to the
absence of stove type, which was the most important variable for
characterizing the variability in PM5 5 concentrations across countries
(Fig. 1). PURE baseline models explained three times as much of the
variability in kitchen concentrations in India (R? = 0.31) and Chile/
Colombia (R? = 0.32), compared with China ®R?=0.1 1), Bangladesh/
Pakistan (R? = 0.05) and Tanzania/Zimbabwe (R? = 0.13) (Table S7).

Country, primary cooking fuel type, heating fuel type and season
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Table 2
Machine learning model performance for predicting average 48-hour PM, s kitchen concentrations and personal exposures among PURE-AIR participants.
Model N R? RMSE! NormalizedRMSE?(%) Important variables (1-5)
Kitchen concentrations (PURE-AIR survey variables)® 2,384  0.45 130 18% (1) stove type (2) country (3) heating fuel (4) winter/summer season

(5) number of household members

Kitchen concentrations (PURE baseline survey 2,384 037 172 23% (1) country (2) primary cooking fuel (3) heating fuel (4) winter/
variables only)* summer season (5) household income

Personal exposures (PURE-AIR survey variables)® 910 0.33 83 13% (1) PM, 5 kitchen concentration (2) stove type (3) winter/summer

season (4) heating fuel (5) time spent in kitchen

Personal exposures (PURE-AIR survey variables 910 0.23 92 14% (1) stove type (2) winter/summer season (3) country (4) heating fuel
without kitchen PM, 5 concentration)® (5) secondhand smoke exposure

Personal exposures (PURE baseline survey variables 910 0.20 99 15% (1) roof material (2) primary cooking fuel (3) country (4) heating
only)4 fuel (5) winter/summer season

1. RMSE = root mean squared error.

2. Normalized RMSE = normalized root mean squared error (obtained by dividing the RSME by the range of PM, 5 concentrations in each region or country).

3. PURE-AIR survey variables = variables available in PURE-AIR survey, including: primary cooking fuel type, secondary cooking fuel type, stove type, heating fuel
type, hours spent cooking during monitoring, roof material, number of household members, highest household level of education, household income, percent of
income spent on food, season, country, hours spent in kitchen during monitoring, indoor/outdoor kitchen, chimney in the kitchen, window in the kitchen, smoking

inside the home, years using current fuel.

4. PURE Baseline only = variables only present in PURE baseline survey, including: primary cooking fuel type, heating fuel type, roof material, number of household
members, highest household level of education, household income, percent of income spent on food, season, country, indoor/outdoor kitchen, chimney in the kitchen,

window in the kitchen.
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. Fig. 1. Variable importance of PURE-AIR survey data
for average PMys kitchen concentration among all
study households. Note: Used Another Fuel = house-
hold previously used a different primary cooking fuel
(yes/no). Yrs Using Fuel Cat = self-reported number
of years using current primary fuel. See Table S3 in
Supplement for all variable categories. Note: stove
type excluded from India model due to all cooking
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from China model due to nearly all households having
windows and located indoors. Presence of chimney
excluded from Africa and Other South Asia models
due to all households not having a chimney.
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(winter/summer) were the most significant determinants of PMj s
kitchen concentrations in the model using only PURE baseline variables
(Table 2). The importance of heating fuel type in the overall model is
partially attributed to its significance as a determinant of PMy 5 kitchen
concentrations in China (which makes up 50% of the PURE sample)
(Fig. S1). In China and India, sub-national region was the second most
important predictor of PMs 5 kitchen concentrations (Table S7).

3.3. Predictors of PM3 5 personal exposures

The explained variability of the overall PURE-AIR PM; 5 personal
exposure model (R? = 0.33) was lower than that of the kitchen con-
centration model (R? = 0.45). Average 48-hour PM; 5 kitchen concen-
tration was the best predictor of average male and female PM, 5
exposures (Table 1); removal of average 48-hour PMys kitchen
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concentration from the overall PMs 5 personal exposure model reduced
the coefficient of determination by 30% (R? = 0.23). Similar to the PMy 5
kitchen concentration model, stove type, season and heating fuel type
were significant drivers of PM; 5 exposure differences (Fig. 2). Kitchen
ventilation characteristics, including presence of a chimney and location
(indoor versus indoor) were stronger predictors of variations in PMs 5
kitchen concentrations (Fig. 1) than personal exposures. However, time
spent in the kitchen was highly predictive of average 48-hour PMj 5
personal exposure among PURE-AIR participants. Notably, exposure to
secondhand smoke was a slightly more important predictor of average
PM, 5 personal exposures than primary cooking fuel type.

Secondhand smoke was the second most important predictor of
PM, 5 personal exposures in South American and African PURE coun-
tries (Fig. S2), and less important in South Asian countries. In
Bangladesh, Pakistan, Tanzania and Zimbabwe, average PM, 5 kitchen
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Fig. 2. Variable importance of PURE-AIR survey data for average PM, 5 personal exposures. Note: PM, s kitchen concentration not shown on this figure to improve
figure scale/visibility. Used Another Fuel = household previously used a different primary cooking fuel (yes/no). Yrs Using Fuel Cat = self-reported number of years

using current primary fuel. See Table S3 in Supplement for all variable categories.
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concentration was less important in explaining variation in average
PM; 5 personal exposures than in China, India and South American
countries (Fig. S2).

3.4. Modeled PMy 5 kitchen concentrations from the PURE-AIR sample

Among 2,384 PURE-AIR households, the model with the best fit
(Bayesian R? = 0.53) (Table S8) included primary cooking fuel type,
primary heating fuel type, roof material, season, age group, household
income tertile, presence of a chimney in the kitchen and country
(Equation (1)). Random intercepts were included for sub-national region
(intraclass correlation coefficient (ICC) = 0.01) and community (ICC =
0.24), along with a random slope for wet versus dry season to account
for different meteorological effects on HAP concentrations between
study countries (Table S8).

Eq. (1): Kitchen concentration model

log(PM5) 3. =(Bo + Bo; + Bo) + (Brxseason + Byj + Bri) *season; + f,(Gas),
+ B, (Electricity); + p;(Wood),; + B, (Coal); 4 f5(Charcoal);
+p(Ag/crop residue); + p,(Animal dung);
+ P (Shrubs /grass); + p(Heating fuel),
+po(Roof material), +p,,(Season); + p,,(Age group);
+p,;(Household income tertile); + f,,(Chimney);
+Pys(Country); + e

@

log(PM3>.5)jj is natural logarithm of mean 48-hour PM, 5 kitchen con-
centration of ith household in community j in sub-national region k. fy is
overall intercept, Byj is random intercept for the jth community in sub-
national region k, By is random intercept for the kth sub-national re-
gion. (B1season + P1j + Pia)* season; represents the random slope for
season in community j within sub-national region k. e is the leftover
error.

Primary cooking fuel, heating fuel, having a chimney in the kitchen
and country were statistically evident in the final kitchen concentration
model (i.e. the 95% credible interval excluded a null value) (Table 3);
households cooking primarily with polluting cooking fuels had signifi-
cantly higher average 48-hour PM, 5 kitchen concentrations compared
to households cooking with gas or electricity. Households cooking with
wood in China had 32 pg/m® (95 %CI: [25,40] higher average PMy 5
kitchen concentrations (75 pg/ms; 95 %CI:[68,83]) than households
cooking with gas (43 ug/m?; 95 %CI: [31,60]).

Households in China using gas for cooking and coal for heating their
homes had a significantly (14 pg/m>) higher average PMys kitchen
concentration (57 pg/mg; 95 %CI:[45,74]) than households cooking
with gas and not using any heating fuel (43 pg/m?%; 95 %CI: [31,60]).
Families in China cooking with wood in a kitchen with a chimney (66
pg/m; 95 %CL:[61,72]) had 15 pg/m® lower average kitchen concen-
trations than those cooking with wood in a kitchen without a chimney
(81 pg/m>; 95 %CI:[73,90]).

3.5. Predicting household concentrations for the PURE baseline cohort

Modeled average annual kitchen concentrations among all PURE
participants varied four-fold among primary cooking fuel types, ranging
from 47 ug/m3 (95 %CI: [47,47] (gas) to 204 pg/m3 (95 %CI:[195,213])
(animal dung) (Fig. 3).

Only 4% (n = 1,000) of average PMj 5 kitchen concentrations at
PURE baseline were below the WHO Interim-1 Target (35 ug/m3).
Nearly 90% of the households in compliance with the WHO target were
using clean cooking fuels (gas: 85%; electricity: 2%); only 2% of
households using wood (all using improved chimney stoves in Chile)
met the WHO target (Table 4). With the exception of 2% (n = 70) of
households cooking with gas in China, South America was the only
continent in which modeled PMy 5 kitchen concentrations among PURE
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Table 3
Fixed effect coefficients from final Bayesian hierarchical model of PM, s kitchen
concentrations.

Variable Mean Std. Dev Stat. Sig. (p < 0.05)
Primary cooking fuel

Intercept (gas) 3.84 0.18
Electricity —0.04 0.07

Ag/crop residue 0.37 0.10 *
Charcoal 0.61 0.31
Coal 0.51 0.10 *
Wood 0.55 0.05 *
Shrub/grass 0.79 0.17
Animal dung 0.81 0.16 *
Heating fuel type

No heating REF

Gas/electric 0.24 0.10

Wood (open fire or chimney stove) 0.12 0.06 *
Coal open fire 0.28 0.12 *
Season

Wet (summer) REF

Dry (winter) 0.14 0.11

Roof material

Concrete REF

Tile 0.01 0.04
Wood/thatch 0.10 0.07
Zinc/iron/asbestos 0.11 0.08

Other 0.0 0.08

Age group

35-54 REF

55-64 —0.02 0.04

65-85 —0.02 0.04
Chimney in kitchen

Yes —0.20 0.05
Household income tertile

Lowest REF

Middle —0.04 0.04

Highest —0.01 0.05
Country/Region

China REF

India -1.13 0.40 *
Zimbabwe 1.12 0.49 *
South America (Chile, Colombia) —0.85 0.36 *
South Asia (Bangladesh, Pakistan) 1.30 0.36

Stat. sig. = statistically significant at alpha = 0.95 level
REF = reference group.
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Fig. 3. Modeled average PM, s kitchen concentrations (pg/m3) (95% CI) in
rural PURE communities at baseline by primary cooking fuel type.
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Table 4
Average PM, 5 kitchen concentrations (ug/m®) by primary cooking fuel type
from PURE modeling.

Primary Summer Winter Annual Mean % under
cooking fuel Mean (95% Mean (95% (95% CI) WHO

(@] (@] interim-1
Gas 44 (44, 45) 50 (50, 50) 47 (46, 48) 14
Electricity 59 (58, 60) 67 (66, 68) 61 (62, 64) 4
Charcoal 83 (81, 86) 88 (85, 91) 86 (83, 88) 0
Ag/crop 84 (83, 84) 92 (91, 92) 88 (87, 88) 0
Coal 86 (86, 86) 101 (100, 93 (93, 93) 0

101)

Wood 106 (105, 122 (121, 114(113,115) 2

107) 124)
Shrubs/grass 148 (146, 160 (157, 154 (151, 0

151) 163) 157)
Animal dung 195 (186, 214 (205, 204 (195, 0

203) 223) 213)

households met the WHO Interim-1 target. Average modeled PMj; 5
kitchen concentrations during summer months (wet season) were
consistently 5-15 pg/m> lower than average winter PMs 5 kitchen con-
centrations across all cooking fuel types (Table 4). At a country level, the
difference in average PMy 5 kitchen concentrations between wet and dry
seasons varied, with the largest seasonal disparity in South Asian
countries (Fig. S3). Seasonal PM; 5 concentration differences remained
in some countries (e.g. India) among households not using any heating
fuels during the winter (Fig. S4).

There was substantial within-country variation in PMys levels
among households using the same primary cooking fuel type. Among the
PURE baseline sample, the distribution of predicted average annual
PMS 5 kitchen concentrations spanned >100 pg/m® among households
using gas for cooking in China and India (41-148 pg/m® and 51-171 pg/
m®, respectively) (Fig. 4). Among households predominantly cooking
with wood, average 48-hour PMj 5 kitchen concentrations also differed
by up to 100 pg/m? in China (50 to 149 pg/m®) and Pakistan (403 to
501 pg/m>) and over 75 pg/m° in India (77 to 159 pg/m>) (Fig. 5).

Country-level modeled average PMj 5 kitchen concentrations varied
by a factor of 2.5 among households primarily cooking with gas (20 pg/
m? (95 %CIL: [20,20]) in Chile to 55 pg/m> (95 %CI: [55,55]) in China)
and 12-fold among households primarily cooking with wood (36 pg/m®
(95 %CIL: [36,36]) in Chile to 427 pg/l‘n3 (95 %CI:[425,429]) in
Pakistan) (Table S4).

In China, the average modeled 48-hour PM, 5 kitchen concentration
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was approximately 30% higher (72 pg/m> (95 %CI:[72,73])) among
households cooking with wood (chimney stoves were predominantly
used), compared with those using gas (55 pg/m3 (95 %CI: [55,55])) or
electricity (58 pg/m3 (95 %CI: [58,59])) (Fig. 6). In India, average
concentrations among households cooking with wood (primarily mud
stoves) (89 pg/m3 (95 %CI:[88,90])) were over double that of house-
holds cooking primarily with gas (41 pg/m® (95 %CI: [40,41])).

The average PM s kitchen concentration among households cooking
with gas in Jaipur, India (79 pg/m®) were approximately 50 pg/m3
higher than average kitchen concentration among households using gas
in Trivandrum (30 pg/m3) (Table S6). In China, modeled average PMj 5
kitchen concentrations among households cooking with gas varied by
approximately 35 pg/m> across sub-national regions (40 pg/m° in
Jiangxi to 76 pg/m® in Shaanxi) (Table S6). At the sub-national regional
level, average PM; 5 kitchen concentrations among households cooking
primarily with gas were highly correlated with average annual outdoor
PM, 5 concentrations (Fig. S5).

3.6. Modeled PM; 5 personal exposures from the PURE-AIR sample

Among 903 participants (499 females; 404 males), the best fitting
PM, 5 personal exposure model (Bayesian R? = 0.48) included modeled
average 48-hour kitchen concentration (dependent variable from
Equation (1)), primary cooking fuel type, primary heating fuel type, roof
material, summer/winter season, sex, age group, exposure to second-
hand smoke, country and a sex*country interaction term (Equation (2)).
In a sensitivity analysis, excluding average 48-hour kitchen concentra-
tion from the personal modeling, the explained variability of PMjy 5
personal exposures decreased by 9% (R? = 0.39). A random intercept
was included for sub-national region (ICC = 0.23) (the personal expo-
sure model did not converge with a community-level random intercept)
(Table S9).

Eq. (2): Personal exposure model

log(PM>s); =(By + Byy) + B, (Gas); + B, (Electricity); + p;(Wood),

+p,(Coal), + p;(Charcoal), + f(Ag/crop residue);
+p,(Animal dung);+ f;(Shrubs/grass); + f,(Age);
+p,,(average 48 — hour PM,s kitchen concentration);
+p,,(Roof material); + f,(Secondhand smoke exposure);
+ P13 (Season); + p,(Sex); + B,5(Country),
+ o (Sex*Country); + e;;

(2)
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Fig. 4. Distribution of modeled baseline PM, s kitchen concentrations (jig/m>) among households cooking primarily with gas in rural PURE communities by country.
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Fig. 6. Modeled PURE baseline average PM, 5 kitchen concentrations (ug/m>) (95% CI) in rural communities by country and primary cooking fuel type (only fuel

types with n > 30 in a country shown).

log(PM2.5);; is natural logarithm of mean 48-hour PM> 5 personal expo-
sure of ith individual in sub-national region j. fo is overall intercept, By; is
random intercept for the jth sub-national region. e; is the leftover error
after accounting for all fixed and random effects.

Average 48-hour kitchen concentration, season (summer/winter),
exposure to secondhand smoke, and the interaction between sex and
country were statistically evident in the final model (Table 5). A 1 ug/m®
increase in average 48-hour PMs 5 kitchen concentration was associated
with a 0.54 ug/m3 (95 %CI:[0.51,0.58]) increase in average 48-hour
personal exposure. Individuals cooking with gas in China and exposed
to secondhand smoke in their home had an average 48-hour PMj; 5
exposure (46 ug/m> 95 %CIL: [42,50]) that was 5 ug/m°> higher than
individuals cooking with gas and not exposed to secondhand smoke (41
ug/m°> 95 %CI: [37,45]).

In sensitivity analyses that included occupation as a predictor among
a subset of 912 participants with available data, occupation type was not

strongly associated with variations in average PMj 5 personal exposures
(Fig. S7). When stratifying by sex, occupation was a slightly more
important predictor of PMjy 5 exposure differences among PURE male
participants than female participants (Fig. S8).

While ambient PM, 5 levels were not examined at an individual level,
precluding their inclusion in the modeling, measured personal expo-
sures among PURE-AIR participants primarily cooking with gas were
compared to average annual outdoor PM; 5 concentrations in each sub-
national region (Fig. S6). A high correlation was found between average
annual outdoor PMj 5 concentrations and average male (r = 0.78) and
female (r = 0.68) PM; 5 exposures.

3.7. Predicting personal exposures for the PURE baseline cohort

Among the PURE baseline sample, the distribution of predicted
average annual PM; 5 personal exposures spanned approximately 70 pg/
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Table 5
Fixed effect coefficients from final Bayesian hierarchical model of PM, 5 per-
sonal exposures.

Variable Mean Std. Dev Stat. Sig. (p < 0.05)
Primary cooking fuel

Intercept (gas) 2.05 0.18
Electricity 0.01 0.09

Ag/crop residue 0.22 0.13

Charcoal N/A

Coal 0.05 0.15

Wood —0.03 0.07
Shrub/grass —0.03 0.17

Animal dung 0.01 0.14

Heating fuel type

No heating REF

Gas/electric 0.10 0.10

Wood (open fire or chimney stove) 0.23 0.08 *
Coal open fire N/A

Season

Wet (summer) REF

Dry (winter) 0.22 0.08

Roof material

Concrete REF

Tile 0.03 0.06
Wood/thatch 0.06 0.09
Zinc/iron/asbestos 0.03 0.11

Other 0.12 0.11

Age group

35-54 REF

55-64 0.07 0.05

65-85 —0.03 0.06

PM, 5 kitchen conc (log) 0.39 0.03

Sex

Female REF

Male —0.02 0.04
Secondhand smoke exposure

Yes 0.11 0.05 *
Country

China REF

Bangladesh 0.46 0.40

Chile —0.26 0.45
Colombia —0.19 0.38

India 0.16 0.21

Pakistan 0.32 0.41
Zimbabwe 0.56 0.39
Country*Sex

China*Male REF

Bangladesh*Male —0.29 0.21
Chile*Male 0.37 0.34
Colombia*Male 0.22 0.19
India*Male 0.04 0.10
Pakistan*Male —0.56 0.24 *
Zimbabwe*Male —0.44 0.20 *

Stat. sig. = statistically significant at alpha = 0.95 level.
REF = reference group.

m® among individuals using gas for cooking in China and India (25-88
pg/m> and 29-97 pg/m>, respectively) (Fig. 7). Among households
predominantly cooking with wood, average 48-hour PMjy s kitchen
concentrations differed by 100 pg/m? in China (40 to 139 pg/m%), 120
pg/m? in India (50-169 pg/m®) and 200 pg/m? in Pakistan (353-568
ng/m?) (Fig. 8).

Modeled average male PM; 5 exposures were higher than female
exposures among households primarily cooking with gas and charcoal
(Fig. 9); average male exposures were significantly lower than female
exposures among the majority of polluting fuels (wood, crop waste,
shrubs, animal dung). On a country-level, male participants had
approximately 50% lower exposures than that of females across all
primary cooking fuel types in Pakistan and Zimbabwe (Fig. 10).
Although there was not a significant difference in PMy 5 exposures
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between sexes in other countries, modeled PM, 5 male exposures were
higher than females across all primary fuel types in South American
countries (Chile, Colombia) and India (Fig. 10).

4. Discussion

The quantitative PMy 5 models developed in this study, based on
measurements obtained under a single study protocol across a variety of
cooking environments and socioeconomic conditions in seven countries,
represent one of the largest multinational HAP exposure assessments
conducted to-date. The PURE-AIR models uncovered a gradient of
increasing average 48-hour PM, 5 kitchen concentrations (Fig. 3) and
personal exposures (Fig. 9) when moving from clean to polluting pri-
mary cooking fuels. Aside from primary cooking fuel type, stove type,
heating fuel type, and presence of a chimney in the kitchen significantly
contributed to variation in PMj s kitchen concentrations across rural
PURE communities of LMICs (Table 3). The PURE-AIR quantitative
exposure estimates also revealed that average PMj s male exposures
were as high as, or greater than, that of females in some countries (e.g.
Chile, Colombia, China, Chile) (Fig. 10), despite females spending an
average of nearly thrice as much time in the cooking area (1.9 versus 0.7
h) during the 48-hour monitoring (Shupler et al., 2020).

4.1. Contextual factors

The statistical significance of the country indicator in the final PURE-
AIR kitchen concentration model (Table 3) demonstrates that HAP
personal exposures and kitchen concentrations are greatly impacted by
location-specific factors. This is evidenced by the distribution of PMj 5
kitchen concentrations (Figs. 4 and 5) and personal exposures (Figs. 7
and 8) varying substantially by country among households cooking with
the same primary cooking fuel; for instance, average 48-hour PMj 5
kitchen concentrations ranged from 20 pg/m® in Chile to 55 pg/m® in
China among households primarily using gas and from 36 pg/m? in
Chile to 427 pg/m® in Pakistan among households primarily cooking
with wood.

Moreover, the significant interaction between country and sex in the
personal exposure model (Table 5) signals that the impact of contextual
factors on PM; 5 exposures varies between males and females. In ma-
chine learning models stratified by sex, occupation was more predictive
of average 48-hour PMj s male exposures than female exposures
(Fig. S8), which echoes findings from peri-urban India (Sanchez et al.,
2020). In addition, ambient PM, 5 modeled estimates from Shaddick et
al (Shaddick et al., 2018) were more highly correlated with average
male PM, s exposures (r = 0.78) than female exposures (r = 0.68)
(Fig. S6), signaling that outdoor sources of PM, including occupational
exposures, may have a disproportionate impact on male exposure levels
due to more time spent outside the home.

Some PM 5 exposure variation can also likely be attributed to other
indoor sources of PM; 5 including secondhand smoke and kerosene
lighting. While PURE surveys did not contain information on primary
lighting source, precluding its inclusion in the modeling, kerosene
lighting has been shown to increase indoor PMy s concentrations
(Muyanja et al., 2017; Lam et al., 2012). Additionally, other factors
including SES characteristics (e.g. roof material, education) were more
predictive of personal exposures than cooking environment character-
istics in PMy 5 exposure models for Tanzania/Zimbabwe, Bangladesh/
Pakistan and Chile/Colombia (Table S7).

Sub-national region explained more variation in average PMay s
kitchen concentration in China than primary cooking fuel type
(Table S6). Additionally, there was a high correlation (r = 0.79) between
average annual outdoor PMj 5 concentrations and PURE-AIR average
PM, 5 kitchen measurements among households cooking primarily with
gas at a regional-level (Fig. S5). These results suggest that regional dif-
ferences in ambient air pollution (due to emissions from agricultural
burning, traffic, industry) (Zhang et al., 2016; Zhuang et al., 2013;
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Conibear et al., 2021) are greatly affecting indoor PMj 5 levels. A HAP
measurement study in rural China similarly found that distance to the
highway, a proxy for the level of exposure to vehicular emissions,
significantly impacted participants’ average PM, 5 exposures, additional
to residential exposure from cooking with polluting fuels (Baumgartner
et al., 2014). The large range (35 pg/m>) of modeled average PMj 5
kitchen concentrations among households cooking with gas across sub-
national regions in China, from an average of 40 pg/ m®in J iangxi to 76
pg/m3 in Shaanxi) (Table S5) further indicates the probable existence of
other PMj 5 sources. Hence, ambient air pollution is likely a key factor in
the WHO Interim-1 target (35 pg/m>) being exceeded by 98% of
modeled average 48-hour kitchen concentrations among rural PURE
households cooking with clean fuels in India and China. Accordingly, a
transition to clean cooking fuels alone in these two rapidly developing
countries is likely not sufficient to reach PM; 5 concentrations that meet
the WHO Interim-1 target.
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4.2. Comparing male and female household air pollution exposures

Minor differences between modeled average 48-hour PMj 5 male and
female exposures across primary cooking fuel types in rural PURE
communities of China, India, Chile and Colombia (Fig. 10) may be due to
greater exposure to ambient sources of pollution among males, as

China, India and Temuco, Chile have some of the highest levels of
outdoor pollution globally (Conibear et al., 2021; Archer-Nicholls et al.,
2016; Diaz-Robles et al., 2008). The higher correlation of average 48-
hour PM; 5 male exposure measurements (r = 0.78) with kitchen con-
centrations compared with female exposures (r = 0.68) (Fig. S6) and the
significance of exposure to ambient PM; 5 pollution while traveling to
work in the predictive model for PURE communities in Chile/Colombia
(Table S7) indicates that male participants likely had higher ambient
PM, 5 exposures than females in these areas. It is feasible that males in
PURE communities were more highly exposed to ambient air pollution
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since they were more likely to travel outside the home to their place of
employment (Shupler et al., 2020). With cooking emissions possibly
playing a less important role in overall PM; 5 exposures in these rapidly
developing countries, where industrial air pollution sources may
dominate, these modeling results are contrary to previous studies that

12

suggest that women have disproportionately higher PM, 5 exposures in
LMICs where HAP is common. The swiftly changing environmental
landscape in several urbanizing LMICs requires that increased attention
be placed on mitigating exposure to industrial pollution alongside res-
idential emissions to improve public health.
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Contrastingly, female participants in Pakistan, Bangladesh and
Zimbabwe had 100-200 pg/m?® higher modeled average 48-hour PMa 5
exposure than males (significant interaction term in personal exposure
model (Table 5). Additionally, hours spent in the kitchen during the 48-
hour monitoring was an important determinant of average PM; 5 ex-
posures in Tanzania/Zimbabwe and Bangladesh/Pakistan (Table S7),
indicating that HAP was possibly a more dominant PM; 5 exposure
source in these settings. Consequently, policies that increase use of clean
cooking fuels may achieve greater health benefits from higher re-
ductions in female PMy 5 exposures in rural communities in these
countries, compared with China, India and South American countries
(Shupler et al., 2021; Gould and Urpelainen, 2018; Astuti et al., 2019).
As the proportion of households in Bangladesh (52%) and Pakistan
(46%) with only 1-2 rooms was more than twice the overall average
(18%) (Table S1), higher female PM, 5 exposures in these locations may
partially be due to lower dispersion rates because of smaller household
size.

The findings of similar male and female exposures are consistent
with other studies from China (Lee et al., 2021) and peri-urban India
(Sanchez et al., 2020) that also showed minimal differences in PMy g
exposures between sexes. Both studies also found smoking status to be a
significant driver of personal exposures, which is consistent with our
finding of secondhand smoke being positively associated with PMy 5
personal exposures (Table 5).

As HAP measurement studies have historically prioritized collection
of kitchen and living room concentrations or female (main cook) per-
sonal measurements, the variation in the difference between modeled
average 48-hour PM; 5 male and female exposures at a country-level
emphasizes the need for additional monitoring of male PMj 5 expo-
sures in future HAP measurement studies. Direct PM; 5 male exposure
measurements will prevent the need for use of personal:kitchen expo-
sure ratios from external studies, thereby reducing biases in male PM5 5
exposure estimation in risk assessments.

4.3. Seasonal variation in household air pollution levels

Use of heating fuels was a statistically significant driver of PMjy 5
kitchen concentrations (Table 3) and personal exposures (Table 5)
among PURE communities. However, heating fuel type only partially
explained the higher average PM> 5 kitchen concentrations in winter, as
elevated average winter concentrations (~15 pg/m® higher) remained
in India among households that reported no use of heating fuels
(Fig. S4). Thus, temporal HAP exposure assessment is warranted to
minimize misclassification of average annual PM; 5 concentrations that
can occur when using a 24-hour or 48-hour measurement in a single
season.

As studies have shown large within-individual variability in average
PM; 5 personal exposures in similar peri-urban settings (Sanchez et al.,
2020; Lee et al., 2021), the single 48-hour exposure measurements in
this study may not reflect average annual PM, 5 levels. However, the
PURE study provides a large, geographically diverse sample, and
included collection of measurements across different seasons in some
communities. Therefore, season-specific and annual PM; 5 levels were
derived from the modeling as they may be useful for post-hoc adjust-
ment of short-term HAP measurements in other studies that similarly do
not collect seasonal measurements. Using the season-specific estimates
presented in this study or others (Shupler et al., 2018) may potentially
allow other researchers to more accurately estimate annual PMy 5 ex-
posures by factoring in the effects of seasonality, in the absence of other
reference data.

4.4. Evaluating model performance
The overall kitchen concentration (Bayesian R?= 0.54) and personal

exposure (Bayesian R? = 0.48) models moderately explained the large
variation in PMy 5 levels among rural PURE communities in the seven

13

Environment International 159 (2022) 107021

study countries, and were similar to the performance in other peri-urban
settings in India (Sanchez et al., 2020) and Kenya (Johnson et al., 2021).
Taken together, these studies demonstrate the utility of using quanti-
tative exposure estimation (e.g. PMy s levels) as opposed to categorical
indicators (e.g. primary cooking fuel type) to more accurately capture
the range of PM, s exposures for use in national and multinational
models. Similar studies that conduct limited HAP monitoring alongside
larger-scale survey collection in the future can generate improved
quantitative PMj 5 exposure datasets for spatially resolved, large-scale
exposure assessment, with HAP sampling becoming increasingly less
expensive and resource intensive with the advancement of air moni-
toring technology (Piedrahita et al., 2014; Amegah, 2018).

Among rural PURE-AIR households in African countries (Tanzania/
Zimbabwe) and Bangladesh/Pakistan, a smaller sample size and more
polluted kitchen environments in Tanzania/Zimbabwe and Bangladesh/
Pakistan led to increased variability in PMy 5 concentrations, which
lessened the predictive power of the corresponding models (Table S6).
This finding is partially due to minimal variation in primary cooking fuel
used (nearly all households cooked with wood at baseline) and rare use
of heating fuels; in a previous HAP predictive modeling study conducted
in peri-urban Kenya among households cooking with gas and polluting
fuels, primary cooking fuel type was the most important exposure pre-
dictor (Johnson et al., 2021).

4.5. Strengths and limitations

Exposure determinants included in the PURE-AIR modeling study
were not constrained by data reported in publications, and therefore
minimized bias that occurs when combining PM; 5 measurements across
studies with different equipment, measurement techniques and moni-
toring periods. As ‘rural’ households recruited into the PURE cohort
were typically within a 45-minute drive of urban centers for biological
sample storage, the modeled PM; 5 estimates in this study may not be
nationally representative (Corsi et al., 2013). Nonetheless, as HAP
measurement studies typically recruit households in rural communities
that have the highest prevalence of polluting cooking fuel use, PURE-
AIR modeling was conducted among a unique demographic of com-
munities. The predictive models developed in this study were thus able
to examine PM; 5 exposure differences in rapidly changing communities,
as evidenced by the high rate of primary cooking fuel switching among
PURE households over the last two decades (Shupler et al., 2019).

Although PURE-AIR households may not be representative of the full
PURE baseline sample, the main goal of the predictive modeling was to
establish a diverse PM, 5 exposure profile, across a range of primary
cooking fuel types, to enable a sufficient sample size for assigning PMj 5
exposures to all individuals and households cooking with various
cooking technologies. The modeling was able to achieve this goal due to
use of a stratified sampling design for HAP monitoring in the PURE-AIR
study.

This modeling study did not include direct measurement of ambient
air pollution levels in each community. Therefore, while we conclude
that air pollution is likely affecting HAP exposures, the relative effect of
localized ambient air pollution as opposed to other region-specific fac-
tors (e.g. housing type, food choices, time-activity patterns) cannot be
quantified. Future multinational studies should aim to collect informa-
tion on these characteristics to better assess how factors aside from
cooking and heating fuel type can alter average PMj 5 exposures. These
studies can uncover additional changes, beyond a transition to clean
cooking fuels, that will be needed in order to meet WHO-interim target
levels, which were only achieved by 14% of households cooking pri-
marily with gas at PURE baseline (Table 4).

Because PM; 5 measurements and survey data collected in the PURE-
AIR study in 2017-2019 were used to assign kitchen and personal levels
to PURE participants at baseline (~2005-2010), this modeling study
assumed the relationship among the household environment, external
factors (e.g. ambient air pollution) and HAP exposures were not
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substantially altered over the follow up period. As ambient pollution
levels and cooking environments may have changed during PURE follow
up, particularly in rapidly developing countries like China, applying
measurements from 2017 to 2019 to estimate HAP levels a decade prior
may have introduced bias in predicted baseline PM,s exposures.
Nevertheless, the quantitative PMy5 exposure estimates obtained in
PURE remain the most accurate for a multinational study of this size due
to the detailed household-level information included in the predictive
modeling.

4.6. Conclusion

Cooking environment characteristics (e.g. stove type, heating fuel
and presence of a chimney) partially explained the variation of PMj 5
kitchen concentrations and personal exposures among PURE households
cooking with the same primary cooking fuel in different countries.
Collecting this information in global health surveys (e.g. National Cen-
suses, WHO Harmonized Survey, Demographic Health surveys) can
therefore be useful to reasonably quantifying global variations in PM3 5
concentrations and exposures due to HAP. Integration of ambient air
pollution measurements into PMy 5 exposure models may further in-
crease their accuracy.

The heterogenous modeled PM; 5 exposures derived in the PURE
study can be combined with longitudinal and cross-sectional health data
collected among the PURE cohort in epidemiological models. These
multinational models will elucidate the shape of PMys exposur-
e-response for several respiratory and cardiovascular health outcomes
(Burnett and Cohen, 2020; Burnett et al., 2018). Improved estimation of
global HAP-related morbidity and mortality obtained using the exposure
assessment conducted in PURE can affect how HAP is prioritized, rela-
tive to other environmental risk factors, on the global health agenda.
This modeling study can therefore benefit policymakers tasked with
allocation of finite resources and funding to efficiently alleviate pressing
global health problems.
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