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A B S T R A C T   

Introduction: Use of polluting cooking fuels generates household air pollution (HAP) containing health-damaging 
levels of fine particulate matter (PM2.5). Many global epidemiological studies rely on categorical HAP exposure 
indicators, which are poor surrogates of measured PM2.5 levels. To quantitatively characterize HAP levels on a 
large scale, a multinational measurement campaign was leveraged to develop household and personal PM2.5 
exposure models. 
Methods: The Prospective Urban and Rural Epidemiology (PURE)-AIR study included 48-hour monitoring of 
PM2.5 kitchen concentrations (n = 2,365) and male and/or female PM2.5 exposure monitoring (n = 910) in a 

* Corresponding author. 
E-mail address: mshupler@mail.ubc.ca (M. Shupler).  

Contents lists available at ScienceDirect 

Environment International 

journal homepage: www.elsevier.com/locate/envint 

https://doi.org/10.1016/j.envint.2021.107021 
Received 23 August 2021; Received in revised form 30 November 2021; Accepted 2 December 2021   

mailto:mshupler@mail.ubc.ca
www.sciencedirect.com/science/journal/01604120
https://www.elsevier.com/locate/envint
https://doi.org/10.1016/j.envint.2021.107021
https://doi.org/10.1016/j.envint.2021.107021
https://doi.org/10.1016/j.envint.2021.107021
http://crossmark.crossref.org/dialog/?doi=10.1016/j.envint.2021.107021&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Environment International 159 (2022) 107021

2

Predictive modeling 
Bayesian hierarchical modeling 

subset of households in Bangladesh, Chile, China, Colombia, India, Pakistan, Tanzania and Zimbabwe. PURE-AIR 
measurements were combined with survey data on cooking environment characteristics in hierarchical Bayesian 
log-linear regression models. Model performance was evaluated using leave-one-out cross validation. Predictive 
models were applied to survey data from the larger PURE cohort (22,480 households; 33,554 individuals) to 
quantitatively estimate PM2.5 exposures. 
Results: The final models explained half (R2 = 54%) of the variation in kitchen PM2.5 measurements (root mean 
square error (RMSE) (log scale):2.22) and personal measurements (R2 = 48%; RMSE (log scale):2.08). Primary 
cooking fuel type, heating fuel type, country and season were highly predictive of PM2.5 kitchen concentrations. 
Average national PM2.5 kitchen concentrations varied nearly 3-fold among households primarily cooking with 
gas (20 μg/m3 (Chile); 55 μg/m3 (China)) and 12-fold among households primarily cooking with wood (36 μg/ 
m3 (Chile)); 427 μg/m3 (Pakistan)). Average PM2.5 kitchen concentration, heating fuel type, season and 
secondhand smoke exposure were significant predictors of personal exposures. Modeled average PM2.5 female 
exposures were lower than male exposures in upper-middle/high-income countries (India, China, Colombia, 
Chile). 
Conclusion: Using survey data to estimate PM2.5 exposures on a multinational scale can cost-effectively scale up 
quantitative HAP measurements for disease burden assessments. The modeled PM2.5 exposures can be used in 
future epidemiological studies and inform policies targeting HAP reduction.   

1. Introduction 

Approximately 3.8 billion people residing in low- and middle-income 
countries (LMICs) use polluting cooking fuels (e.g. wood, charcoal, an
imal dung, coal) in traditional stoves (e.g. open fires, mud stoves) 
(Health Effects Institute, 2020). Exposure to household air pollution 
(HAP) from incomplete combustion of polluting cooking fuels in inef
ficient stoves has several adverse health and environmental conse
quences. In epidemiological studies, exposure to elevated 
concentrations of fine particulate matter (PM2.5), a pollutant of primary 
health concern found in HAP, has been associated with respiratory in
fections in children (Bates et al., 2013; Ezzati and Kammen, 2001; 
Upadhyay et al., 2015), lung cancer (Kurmi et al., 2012), chronic 
obstructive pulmonary disease (COPD) (Kurmi et al., 2010; Salvi and 
Barnes, 2010), cataracts (Pokhrel, 2004), adverse pregnancy outcomes 
(Amegah et al., 2014; Thompson et al., 2011; Alexander et al., 2018), 
hypertension (Alexander et al., 2017; Arku et al., 2018; Baumgartner 
et al., 2014; Baumgartner et al., 2011; Burroughs Pena et al., 2015; Clark 
et al., 2013; Norris et al., 2016) and cardiovascular diseases (CVD) 
including ischemic heart disease (IHD) and stroke (Kephart et al., 2020; 
Alam et al., 2012; Yu et al., 2018). HAP contributes up to one-third of all 
global anthropogenic emissions of black carbon (Rehman et al., 2011; 
Bond et al., 2013; Grieshop et al., 2011), a component of PM2.5 that has 
the second largest radiative forcing, behind only carbon dioxide (Grie
shop et al., 2011; Ramanathan and Carmichael, 2008). HAP is also a 
major source of ambient PM2.5 pollution (Liu et al., 2016; Chafe et al., 
2014). 

1.1. Quantitative household AIR pollution exposure modeling 

Quantitative PM2.5 exposure measurements are needed for more 
accurate assessment of the health risks from cooking with polluting fuels 
(Burnett and Cohen, 2020; Burnett et al., 2018), but require significant 
resource, time and financial investment, precluding large-scale HAP 
monitoring in many LMICs. Thus, there is substantial uncertainty in the 
exposure–response relationship in the range of PM2.5 levels typically 
found in HAP for various diseases. To reduce HAP exposure misclassi
fication from use of categorical exposure indicators, such as primary 
cooking fuel type or ‘clean versus polluting’ fuel (Smith et al., 2014), 
quantitative exposure estimation of PM2.5 levels is needed to facilitate 
larger-scale HAP exposure assessment with reduced air monitoring 
(Balakrishnan et al., 2013;12(1):77.; Baumgartner et al., 2011). HAP 
predictive models leverage the association of PM2.5 measurements with 
household characteristics that are more easily characterized via surveys. 
This requires strategically collecting survey data on factors that affect 
household PM2.5 concentrations. Previous HAP predictive models have 
linked survey data on the cooking environment (e.g. primary cooking 

fuel type, heating fuel, ventilation) and socioeconomic status (SES) (e.g. 
income, education) to PM2.5 measurements at a national level in several 
countries, including India and China (Carter et al., 2016; Gurley et al., 
2013; Jin et al., 2005; Massey et al., 2012; Ni et al., 2016). 

1.2. Modeling household AIR pollution levels on a global scale 

With limited existing multinational HAP measurement studies, 
global HAP risk assessments such as the Global Burden of Disease (GBD) 
study have historically relied on a compilation of available PM2.5 
exposure measurements from published studies within the WHO Global 
HAP database (https://www.who.int/data/gho/data/themes/air- 
pollution/hap-measurement-db) (Shupler et al., 2018). A previous 
HAP modeling study aggregated PM2.5 kitchen concentration and female 
exposure measurements, descriptive survey data (primary fuel type, 
season (wet vs. dry)) and an index of country-level SES from 44 pub
lished measurement studies conducted from 1996 to 2016 and available 
data in the WHO database to predict country and primary fuel-specific 
PM2.5 levels (Shupler et al., 2018). A constraint of this global 
modeling study was the limited number of households (range: 2–470 
households; median = 17) in each study and minimal predictors avail
able for modeling due to differential reporting of population charac
teristics in the publications. Studies included in the WHO database also 
have diverse study designs, monitoring technology, analytic methods 
and measurement periods, which introduced measurement bias into the 
quantitative PM2.5 model estimates. 

This study uses household survey data and personal and kitchen 
PM2.5 measurements from a single study, the Prospective Urban and 
Rural Epidemiology (PURE)-AIR study. PURE-AIR included 48-hour air 
monitoring of kitchen concentrations among approximately 2,500 
households and simultaneous male and/or female exposure monitoring 
(among a subset of households; n ~ 1,000) across 120 rural communities 
in eight countries (Shupler et al., 2020). The PURE-AIR measurements 
presented in Shupler et al (Shupler et al., 2020) were leveraged in this 
study to achieve several additional aims that were previously infeasible 
due to logistical challenges associated with extensive HAP exposure 
assessments. The specific aims of this analysis were: (1) to use machine 
learning methods to understand the most important drivers of PM2.5 
exposure variations due to HAP on a global scale and (2) to develop 
multinational predictive models of PM2.5 kitchen concentrations and 
personal exposure measurements from PURE-AIR (~2,500 households) 
to scale up HAP exposures to the larger PURE cohort (~25,000 house
holds). The results from objective 1 can inform data to be prioritized for 
collection in future national global health surveys (e.g. WHO Harmo
nized Survey, Demographic Health surveys) when aiming to explain 
multinational variation in HAP exposures. The quantitative PM2.5 esti
mates generated from objective 2 can uncover the quantitative effect 
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(and the variability around the effect estimates) of different factors on 
PM2.5 exposures and will have utility in future epidemiological studies 
using health outcome data from the PURE cohort. 

2. Methods 

2.1. Study design 

The PURE study, initiated in 2003, is a multinational cohort designed 
to identify risk factors for cardiovascular disease across low-, middle-, 
and high-income counties (LMICs). Approximately 190,000 participants 
have been enrolled from around 800 rural and urban communities 
within ‘sub-national regions’ (defined as urban centers around which 
rural and urban communities were clustered) in 27 countries (Teo et al., 
2009). Communities represent neighborhoods in urban areas and vil
lages in rural areas. Within PURE communities, participants are repre
sentative of the age and sex distribution of adults aged 35–70 (Corsi 
et al., 2013). At baseline, all households completed a PURE Household 
questionnaire that contained questions related to household energy 
usage, including primary cooking fuel type, cooking location (indoors/ 
outdoors), ventilation (presence of windows, chimney) and heating fuel 
type. The male and female heads of household also completed PURE 
individual questionnaires regarding their socioeconomic status (SES) (e. 
g. education, occupation). 

The PURE-AIR study, nested within the PURE cohort, integrated 48- 
hour kitchen PM2.5 monitoring among a subset of 2,541 PURE house
holds within 120 rural communities of eight LMICs (Bangladesh, Chile, 
China, Colombia, India, Pakistan, Tanzania, Zimbabwe) where cooking 
with polluting fuels exceeded 10% prevalence at baseline (Shupler et al., 
2020; Arku et al., 2018). In a subset of 20% of PURE-AIR households, 48- 
hour male and/or female personal monitoring was conducted alongside 
household monitoring among 951 participants. Stratified random sam
pling was used to select PURE-AIR households within each rural com
munity, proportional to baseline percentage of primary cooking fuel 
type, with polluting fuels oversampled to capture a wide-ranging 
exposure distribution (Shupler et al., 2020). Prior to and after moni
toring, a PURE-AIR household survey was administered, which con
tained cooking environment questions identical to a baseline PURE 
household survey (see Supplement of Arku et al. 2018 for PURE baseline 
survey), and additional questions on stove type, secondary cooking fuel 
type, daily cooking time, time spent in the cooking area and years using 
the current primary cooking fuel. Detailed information on the PURE-AIR 
sampling strategy and measurement protocol is documented elsewhere 
(Shupler et al., 2020; Arku et al., 2018). 

2.2. Variable importance 

Variables were selected from (1) the PURE-AIR survey and (2) the 
PURE baseline household and individual surveys that were hypothesized 
a priori to be associated with HAP kitchen concentrations and personal 
exposures. A unique set of variables for kitchen concentration and per
sonal exposure models were selected with two separate goals: (1) to use 
PURE-AIR survey data to determine the maximum predictive power of 
cooking environment variables and (2) to use cooking environment 
variables available in PURE baseline surveys to develop the most ac
curate quantitative exposure coefficients to apply to the PURE cohort 
(for whom only PURE baseline survey was available). 

To evaluate cooking environment characteristics that explained the 
largest percent of between- and within-country variability in PM2.5 
kitchen concentrations and personal exposure among rural PURE com
munities, machine learning models, developed using random forests via 
the randomForest package in R, were built for all measurements as well 
as separate models for China, India, South America (Chile/Colombia), 
other South Asia (Bangladesh/Pakistan) and Africa (Tanzania/ 
Zimbabwe). For each model, variable importance was evaluated using 
the interpretable machine learning (iml) package in R (Molnar, 2021; 

Fisher et al., 2019), which ranked model variables according to the 
lowest mean absolute error (MAE). Before running all models, contin
uous variables were grouped into tertiles when possible to avoid bias in 
variable importance calculations (see Table S3 for a list of variables); a 
similar approach was followed in a previous modeling study of primary 
cooking fuel switching in PURE (Shupler et al., 2019). Due to small size, 
some heating fuel types were condensed to increase the power of the 
analysis; heated coal beds (“kang”), commonly used as a heating fuel in 
Northern China, were grouped with ‘coal open fires’, and households 
reporting using animal dung and agricultural waste in open fires for 
heating were grouped with wood to form a ‘biomass open fire’ heating 
category. 

2.3. Bayesian modeling 

While machine learning methods are advantageous to this study in 
their ability to find the best relationship between predictors and PM2.5 
concentrations, they are limited by their lack of interpretability (Rudin, 
2019). This is because machine learning models are a ‘black box’ of 
complicated functions of variables, rendering it infeasible to understand 
how the predictors are jointly related to each other. As such, machine 
learning results cannot be easily applied to external datasets for pre
diction. Therefore, Bayesian hierarchical models were built using the 
PURE-AIR sample to generate quantitative PM2.5 exposure coefficients 
and variance around the estimates for predicting quantitative PM2.5 
exposures for the entire PURE cohort. 

A Bayesian approach also had the advantage of application of pri
mary cooking fuel-specific ‘priors’ to the predictive models, using data 
from a previous global WHO Global Database modeling study (Shupler 
et al., 2018). The Bayesian log-linear regression models accounted for 
the clustered sampling within PURE-AIR (households nested in com
munities nested in sub-national regions), with fixed effects added in the 
order of their importance determined from the random forest modeling. 
Households (n = 19, 0.8% of sample) and participants (n = 9, 1% of 
sample) sampled in Tanzania were excluded from Bayesian modeling of 
PM2.5 kitchen concentrations due to low sample size that precluded 
model convergence. Separate Bayesian models were built for PM2.5 
kitchen concentrations (n = 2,384 out of 2,541 (6% missing data) and 
PM2.5 personal exposures (n = 910 out of 951 (4% missing)) using only 
variables available in PURE baseline surveys. 

Using the brms package in R (Bürkner, 2017), Bayesian models were 
run with two chains and model convergence was monitored via visual 
chain inspection. A total of 8,000 posterior estimates were retained for 
use in variance calculations for the modeled exposures. Model selection 
was based on simultaneously optimizing the coefficient of determination 
(R2) and reducing the leave-one-out information criterion (LOOIC) 
(Gelman et al., 2017). Given differences in sex-specific average 48-hour 
PM2.5 exposures between countries detected descriptively from PURE- 
AIR measurements (Shupler et al., 2020), a sex*country interaction 
was evaluated in the personal exposure model. Bayesian model valida
tion was conducted using leave-one-out (LOO) cross validation via an 
approximation technique (Pareto smoothed importance sampling) 
(Vehtari et al., 2016). 

Bayesian models included ‘power priors’ of cooking fuel-specific 
PM2.5 concentrations and exposures from the WHO Global Database 
modeling (Shupler et al., 2018). Priors were normally distributed and 
centered at the mean PM2.5 level obtained from the previous global HAP 
models (see Table 1 in Shupler et al., 2018). Power priors (Table 1) 
accounted for the different study designs of publications included in the 
WHO Global Database modeling and PURE-AIR by employing a hyper
parameter to quantify the heterogeneity (Ibrahim and Chen, 2000). 

2.4. Predicting fine particulate matter exposures for PURE cohort 

We applied coefficients from the final Bayesian models to PURE 
baseline survey data to quantitatively estimate baseline PM2.5 kitchen 
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and personal exposures in the PURE cohort. We restricted prediction to 
22,480 households and 33,554 individuals in rural communities of eight 
PURE countries with > 20% polluting cooking fuel use at baseline (see 
Fig. 2 in Arku et al. 2018 for baseline prevalence of primary cooking fuel 
use in each country). 

To estimate average annual PM2.5 concentrations based on a single 
48-hour HAP measurement, all countries were assumed to have equal 
(50/50) wet (April-September; summer in northern hemisphere coun
tries) and dry (October-March; winter) seasons, as done in the previous 
WHO global HAP modeling study (Shupler et al., 2018). ‘Prediction 
intervals’ around point estimates were calculated using the posterior 
distribution from the Bayesian models. 

2.5. Comparing PURE-AIR measurements to ambient air pollution 
concentrations 

Due to lower anticipated PM2.5 emissions from clean fuels (Shen 
et al., 2018) and the infiltration of outdoor air pollution to the indoor 
environment (Krebs et al., 2021), the utility of using average 48-hour 
PM2.5 kitchen concentrations in households cooking exclusively with 
clean fuels as a surrogate measure of ambient air pollution concentra
tions was assessed. Spearman correlation coefficients (r) were calculated 
to quantify the relationship between modeled average annual ambient 
PM2.5 levels (at 0.1◦×0.1◦ resolution; approximately 11 × 11 km reso
lution at the equator) in 2018 (spanning the time of PURE-AIR sam
pling). The ambient air pollution estimates were derived from a 
Bayesian modeling study that incorporated satellite and ground PM2.5 
measurements (Shaddick et al., 2018). These estimates were map- 
matched (via GPS coordinates) at a sub-national regional level to 
average kitchen and personal exposure measurements from PURE-AIR. 
Due to a lack of PURE-AIR measurements among households using 
electric stoves in most countries, only kitchen measurements from 
households cooking with gas were compared to modeled average annual 
ambient PM2.5 concentrations. Due to a focus on cooking environmental 
predictors of PM2.5 concentrations, a lack of resolution in average 
annual ambient air pollution concentrations at a household-level within 
PURE-AIR communities precluded its inclusion as a predictor in PURE- 
AIR modeling. 

All statistical analyses were conducted in R version 3.5.1 (R Core 
Team. R, 2017). Initial and ongoing ethics approvals for the PURE 
cohort were obtained from the Institutional Review Board at McMaster 
University, Hamilton, Ontario and from each PURE study country using 
local Institutional Review Boards. Ethics approval for the PURE-AIR 
study was obtained from the University of British Columbia’s Behav
ioral Research Ethics Board. 

3. Results 

3.1. Characteristics of PURE baseline sample 

Due to recruitment of PURE households in different waves, 16% (n =
4,932) of households recruited in the first wave in India did not have 
information on heating fuel type. Due to the importance of heating fuel 
type as a PM2.5 concentration determinant, these households were 
excluded from the modeling to ensure maximum predictive accuracy. 
Additionally, PURE households using kerosene as their primary cooking 
fuel at baseline (n = 363, 1% of total sample) were excluded as PURE- 
AIR did not include monitoring of households cooking with kerosene. 
The final analytic sample was comprised of 22,480 rural households and 
33,554 individuals living in the households. A sensitivity analysis that 
examined characteristics between the full and analytic baseline sample 
revealed that households in India with missing data on heating fuel type 
at baseline tended to be lower SES (lower income tertile, higher percent 
of income spent on food) than the average household in India 
(Table S10). Thus, predicted average PM2.5 kitchen concentrations 
among rural communities in India at PURE baseline may be slightly 
attenuated due to an inverse association between higher household SES 
and lower average PM2.5 kitchen concentrations found among PURE- 
AIR households (Shupler et al., 2020). 

PURE baseline households were predominantly from China (49%; n 
= 15,163) and India (29%; n = 9,051). The most frequently used pri
mary cooking fuels at PURE baseline were wood (37%; n = 11,334) and 
gas (24%; n = 7,385) (Table S1). Coal (19%; n = 5,722) was almost 
exclusively used for cooking in China. Approximately two-thirds of 
households heated their homes during the cold season; a biomass open 
fire was the most common heating method (outside of China) (27%; n =
8,351). A coal open fire was used by 31% (n = 9,686) of the PURE 
sample at baseline, with nearly all coal heating occurring in China (97%; 
n = 9,382). Less than 10% of rural PURE households heated their homes 
with clean fuels (electricity (7%; n = 2,119), central heating (1%; n =
454), gas furnace (1%; n = 350)). 

Approximately half (49%) of households had 3–7 rooms; the pro
portion of households in Bangladesh (52%; n = 487) and Pakistan (46%; 
n = 398) with only 1–2 rooms was over twice the overall average (18%; 
n = 5,521) (Table S1). The proportion of households with natural roof 
materials (e.g. thatch, wood) in Pakistan (32%; 270) and Zimbabwe 
(29%; n = 186) was four times the average of the PURE sample (8%; n =
2,401). Nearly half (48%; n = 9,618) of female study participants 
indicated their primary occupation as a homemaker, compared with less 
than 10% (n = 1,326) of males (Table S2). Approximately half (48%) of 
male study participants earned a secondary or university/trade school 
degree, compared with only one-third (34%) of female participants. 
Over half of rural PURE participants were ranked in the lowest one-third 
of household income in their country. Characteristics of the sub-sample 
of households and individuals selected to receive HAP monitoring as 
part of the PURE-AIR study are described elsewhere (Shupler et al., 
2020; Arku et al., 2018). 

3.2. Predictors of PM2.5 kitchen concentrations 

The PURE-AIR PM2.5 kitchen concentration model performed 
slightly better (R2 = 0.45) than the kitchen concentration model using 
only PURE baseline survey data (R2 = 0.37), which did not include in
formation on stove type and secondary cooking fuel (Table 2). The 
decrease in R2 in the PURE baseline model was largely due to the 
absence of stove type, which was the most important variable for 
characterizing the variability in PM2.5 concentrations across countries 
(Fig. 1). PURE baseline models explained three times as much of the 
variability in kitchen concentrations in India (R2 = 0.31) and Chile/ 
Colombia (R2 = 0.32), compared with China (R2 = 0.11), Bangladesh/ 
Pakistan (R2 = 0.05) and Tanzania/Zimbabwe (R2 = 0.13) (Table S7). 

Country, primary cooking fuel type, heating fuel type and season 

Table 1 
Power priors used in Bayesian hierarchical models of PURE-AIR measurements.  

Model type Cooking fuel 
type 

Mean PM2.5 

estimate (μg/ 
m3)1 

Power prior (log scale) 
(mean, standard 
deviation)2 

Kitchen 
concentration 

Gas 104 ~Normal(4.65, 0.48) 
Electricity 104 ~Normal(4.65, 0.48) 
Wood 395 ~Normal(5.98, 0.48) 
Coal 319 ~Normal(5.77, 0.48) 
Animal dung 958 ~Normal(6.87, 0.48) 

Personal 
exposure 

Gas 42 ~Normal(3.75, 0.48) 
Electricity 42 ~Normal(3.75, 0.48) 
Wood 161 ~Normal(5.08, 0.48) 
Coal 130 ~Normal(4.87, 0.48) 
Animal dung 391 ~Normal(5.97, 0.48) 

1. Estimates obtained from Table 1 of WHO Global Database modeling study 
(Shupler et al., 2018). 
2. Standard deviation of 0.48 is a power prior obtained by multiplying largest 
fuel-specific standard deviation from WHO Global Database modeling study 
(0.06) by ‘fudge factor’ of 8 to account for heterogeneity in study design between 
WHO Global Database measurements and PURE-AIR measurements. 
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Table 2 
Machine learning model performance for predicting average 48-hour PM2.5 kitchen concentrations and personal exposures among PURE-AIR participants.  

Model N R2 RMSE1 NormalizedRMSE2(%) Important variables (1–5) 

Kitchen concentrations (PURE-AIR survey variables)3 2,384  0.45 130 18% (1) stove type (2) country (3) heating fuel (4) winter/summer season 
(5) number of household members 

Kitchen concentrations (PURE baseline survey 
variables only)4 

2,384  0.37 172 23% (1) country (2) primary cooking fuel (3) heating fuel (4) winter/ 
summer season (5) household income 

Personal exposures (PURE-AIR survey variables)3 910  0.33 83 13% (1) PM2.5 kitchen concentration (2) stove type (3) winter/summer 
season (4) heating fuel (5) time spent in kitchen 

Personal exposures (PURE-AIR survey variables 
without kitchen PM2.5 concentration)3 

910  0.23 92 14% (1) stove type (2) winter/summer season (3) country (4) heating fuel 
(5) secondhand smoke exposure 

Personal exposures (PURE baseline survey variables 
only)4 

910  0.20 99 15% (1) roof material (2) primary cooking fuel (3) country (4) heating 
fuel (5) winter/summer season 

1. RMSE = root mean squared error. 
2. Normalized RMSE = normalized root mean squared error (obtained by dividing the RSME by the range of PM2.5 concentrations in each region or country). 
3. PURE-AIR survey variables = variables available in PURE-AIR survey, including: primary cooking fuel type, secondary cooking fuel type, stove type, heating fuel 
type, hours spent cooking during monitoring, roof material, number of household members, highest household level of education, household income, percent of 
income spent on food, season, country, hours spent in kitchen during monitoring, indoor/outdoor kitchen, chimney in the kitchen, window in the kitchen, smoking 
inside the home, years using current fuel. 
4. PURE Baseline only = variables only present in PURE baseline survey, including: primary cooking fuel type, heating fuel type, roof material, number of household 
members, highest household level of education, household income, percent of income spent on food, season, country, indoor/outdoor kitchen, chimney in the kitchen, 
window in the kitchen. 

Fig. 1. Variable importance of PURE-AIR survey data 
for average PM2.5 kitchen concentration among all 
study households. Note: Used Another Fuel = house
hold previously used a different primary cooking fuel 
(yes/no). Yrs Using Fuel Cat = self-reported number 
of years using current primary fuel. See Table S3 in 
Supplement for all variable categories. Note: stove 
type excluded from India model due to all cooking 
fuel types used in the same stove across households. 
Presence of window and kitchen location excluded 
from China model due to nearly all households having 
windows and located indoors. Presence of chimney 
excluded from Africa and Other South Asia models 
due to all households not having a chimney.   
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(winter/summer) were the most significant determinants of PM2.5 
kitchen concentrations in the model using only PURE baseline variables 
(Table 2). The importance of heating fuel type in the overall model is 
partially attributed to its significance as a determinant of PM2.5 kitchen 
concentrations in China (which makes up 50% of the PURE sample) 
(Fig. S1). In China and India, sub-national region was the second most 
important predictor of PM2.5 kitchen concentrations (Table S7). 

3.3. Predictors of PM2.5 personal exposures 

The explained variability of the overall PURE-AIR PM2.5 personal 
exposure model (R2 = 0.33) was lower than that of the kitchen con
centration model (R2 = 0.45). Average 48-hour PM2.5 kitchen concen
tration was the best predictor of average male and female PM2.5 
exposures (Table 1); removal of average 48-hour PM2.5 kitchen 

concentration from the overall PM2.5 personal exposure model reduced 
the coefficient of determination by 30% (R2 = 0.23). Similar to the PM2.5 
kitchen concentration model, stove type, season and heating fuel type 
were significant drivers of PM2.5 exposure differences (Fig. 2). Kitchen 
ventilation characteristics, including presence of a chimney and location 
(indoor versus indoor) were stronger predictors of variations in PM2.5 
kitchen concentrations (Fig. 1) than personal exposures. However, time 
spent in the kitchen was highly predictive of average 48-hour PM2.5 
personal exposure among PURE-AIR participants. Notably, exposure to 
secondhand smoke was a slightly more important predictor of average 
PM2.5 personal exposures than primary cooking fuel type. 

Secondhand smoke was the second most important predictor of 
PM2.5 personal exposures in South American and African PURE coun
tries (Fig. S2), and less important in South Asian countries. In 
Bangladesh, Pakistan, Tanzania and Zimbabwe, average PM2.5 kitchen 

Fig. 2. Variable importance of PURE-AIR survey data for average PM2.5 personal exposures. Note: PM2.5 kitchen concentration not shown on this figure to improve 
figure scale/visibility. Used Another Fuel = household previously used a different primary cooking fuel (yes/no). Yrs Using Fuel Cat = self-reported number of years 
using current primary fuel. See Table S3 in Supplement for all variable categories. 
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concentration was less important in explaining variation in average 
PM2.5 personal exposures than in China, India and South American 
countries (Fig. S2). 

3.4. Modeled PM2.5 kitchen concentrations from the PURE-AIR sample 

Among 2,384 PURE-AIR households, the model with the best fit 
(Bayesian R2 = 0.53) (Table S8) included primary cooking fuel type, 
primary heating fuel type, roof material, season, age group, household 
income tertile, presence of a chimney in the kitchen and country 
(Equation (1)). Random intercepts were included for sub-national region 
(intraclass correlation coefficient (ICC) = 0.01) and community (ICC =
0.24), along with a random slope for wet versus dry season to account 
for different meteorological effects on HAP concentrations between 
study countries (Table S8). 

Eq. (1): Kitchen concentration model 

log(PM2.5)ijk =(β0 + β0j + β0k)+ (β1*season + β1j + β1k)*seasoni + β2(Gas)i
+ β2(Electricity)i+ β3(Wood)i + β4(Coal)i+ β5(Charcoal)i
+ β6(Ag/crop residue)i+ β7(Animal dung)i
+ β8(Shrubs/grass)i+ β9(Heating fuel)i
+ β10(Roof material)i + β11(Season)i+ β12(Age group)i
+ β13(Household income tertile)i + β14(Chimney)i
+ β15(Country)i + eijk

(1)  

log(PM2.5)ijk is natural logarithm of mean 48-hour PM2.5 kitchen con
centration of ith household in community j in sub-national region k. β0 is 
overall intercept, B0j is random intercept for the jth community in sub- 
national region k, B0k is random intercept for the kth sub-national re
gion. (β1*season + β1j + βik)* seasoni represents the random slope for 
season in community j within sub-national region k. eijk is the leftover 
error. 

Primary cooking fuel, heating fuel, having a chimney in the kitchen 
and country were statistically evident in the final kitchen concentration 
model (i.e. the 95% credible interval excluded a null value) (Table 3); 
households cooking primarily with polluting cooking fuels had signifi
cantly higher average 48-hour PM2.5 kitchen concentrations compared 
to households cooking with gas or electricity. Households cooking with 
wood in China had 32 μg/m3 (95 %CI: [25,40] higher average PM2.5 
kitchen concentrations (75 μg/m3; 95 %CI:[68,83]) than households 
cooking with gas (43 μg/m3; 95 %CI: [31,60]). 

Households in China using gas for cooking and coal for heating their 
homes had a significantly (14 μg/m3) higher average PM2.5 kitchen 
concentration (57 μg/m3; 95 %CI:[45,74]) than households cooking 
with gas and not using any heating fuel (43 μg/m3; 95 %CI: [31,60]). 
Families in China cooking with wood in a kitchen with a chimney (66 
μg/m3; 95 %CI:[61,72]) had 15 μg/m3 lower average kitchen concen
trations than those cooking with wood in a kitchen without a chimney 
(81 μg/m3; 95 %CI:[73,90]). 

3.5. Predicting household concentrations for the PURE baseline cohort 

Modeled average annual kitchen concentrations among all PURE 
participants varied four-fold among primary cooking fuel types, ranging 
from 47 μg/m3 (95 %CI: [47,47] (gas) to 204 μg/m3 (95 %CI:[195,213]) 
(animal dung) (Fig. 3). 

Only 4% (n = 1,000) of average PM2.5 kitchen concentrations at 
PURE baseline were below the WHO Interim-1 Target (35 μg/m3). 
Nearly 90% of the households in compliance with the WHO target were 
using clean cooking fuels (gas: 85%; electricity: 2%); only 2% of 
households using wood (all using improved chimney stoves in Chile) 
met the WHO target (Table 4). With the exception of 2% (n = 70) of 
households cooking with gas in China, South America was the only 
continent in which modeled PM2.5 kitchen concentrations among PURE 

Table 3 
Fixed effect coefficients from final Bayesian hierarchical model of PM2.5 kitchen 
concentrations.  

Variable Mean Std. Dev Stat. Sig. (p < 0.05) 

Primary cooking fuel    
Intercept (gas) 3.84  0.18  
Electricity − 0.04  0.07  
Ag/crop residue 0.37  0.10 * 
Charcoal 0.61  0.31 * 
Coal 0.51  0.10 * 
Wood 0.55  0.05 * 
Shrub/grass 0.79  0.17 * 
Animal dung 0.81  0.16 *  

Heating fuel type    
No heating REF   
Gas/electric 0.24  0.10 * 
Wood (open fire or chimney stove) 0.12  0.06 * 
Coal open fire 0.28  0.12 *  

Season    
Wet (summer) REF   
Dry (winter) 0.14  0.11   

Roof material    
Concrete REF   
Tile 0.01  0.04  
Wood/thatch 0.10  0.07  
Zinc/iron/asbestos 0.11  0.08  
Other 0.0  0.08   

Age group    
35–54 REF   
55–64 − 0.02  0.04  
65–85 − 0.02  0.04   

Chimney in kitchen    
Yes − 0.20  0.05 *  

Household income tertile    
Lowest REF   
Middle − 0.04  0.04  
Highest − 0.01  0.05   

Country/Region    
China REF   
India − 1.13  0.40 * 
Zimbabwe 1.12  0.49 * 
South America (Chile, Colombia) − 0.85  0.36 * 
South Asia (Bangladesh, Pakistan) 1.30  0.36 * 

Stat. sig. = statistically significant at alpha = 0.95 level 
REF = reference group. 

Fig. 3. Modeled average PM2.5 kitchen concentrations (μg/m3) (95% CI) in 
rural PURE communities at baseline by primary cooking fuel type. 
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households met the WHO Interim-1 target. Average modeled PM2.5 
kitchen concentrations during summer months (wet season) were 
consistently 5–15 μg/m3 lower than average winter PM2.5 kitchen con
centrations across all cooking fuel types (Table 4). At a country level, the 
difference in average PM2.5 kitchen concentrations between wet and dry 
seasons varied, with the largest seasonal disparity in South Asian 
countries (Fig. S3). Seasonal PM2.5 concentration differences remained 
in some countries (e.g. India) among households not using any heating 
fuels during the winter (Fig. S4). 

There was substantial within-country variation in PM2.5 levels 
among households using the same primary cooking fuel type. Among the 
PURE baseline sample, the distribution of predicted average annual 
PM2.5 kitchen concentrations spanned >100 μg/m3 among households 
using gas for cooking in China and India (41–148 μg/m3 and 51–171 μg/ 
m3, respectively) (Fig. 4). Among households predominantly cooking 
with wood, average 48-hour PM2.5 kitchen concentrations also differed 
by up to 100 μg/m3 in China (50 to 149 μg/m3) and Pakistan (403 to 
501 μg/m3) and over 75 μg/m3 in India (77 to 159 μg/m3) (Fig. 5). 

Country-level modeled average PM2.5 kitchen concentrations varied 
by a factor of 2.5 among households primarily cooking with gas (20 μg/ 
m3 (95 %CI: [20,20]) in Chile to 55 μg/m3 (95 %CI: [55,55]) in China) 
and 12-fold among households primarily cooking with wood (36 μg/m3 

(95 %CI: [36,36]) in Chile to 427 μg/m3 (95 %CI:[425,429]) in 
Pakistan) (Table S4). 

In China, the average modeled 48-hour PM2.5 kitchen concentration 

was approximately 30% higher (72 μg/m3 (95 %CI:[72,73])) among 
households cooking with wood (chimney stoves were predominantly 
used), compared with those using gas (55 μg/m3 (95 %CI: [55,55])) or 
electricity (58 μg/m3 (95 %CI: [58,59])) (Fig. 6). In India, average 
concentrations among households cooking with wood (primarily mud 
stoves) (89 μg/m3 (95 %CI:[88,90])) were over double that of house
holds cooking primarily with gas (41 μg/m3 (95 %CI: [40,41])). 

The average PM2.5 kitchen concentration among households cooking 
with gas in Jaipur, India (79 μg/m3) were approximately 50 μg/m3 

higher than average kitchen concentration among households using gas 
in Trivandrum (30 μg/m3) (Table S6). In China, modeled average PM2.5 
kitchen concentrations among households cooking with gas varied by 
approximately 35 μg/m3 across sub-national regions (40 μg/m3 in 
Jiangxi to 76 μg/m3 in Shaanxi) (Table S6). At the sub-national regional 
level, average PM2.5 kitchen concentrations among households cooking 
primarily with gas were highly correlated with average annual outdoor 
PM2.5 concentrations (Fig. S5). 

3.6. Modeled PM2.5 personal exposures from the PURE-AIR sample 

Among 903 participants (499 females; 404 males), the best fitting 
PM2.5 personal exposure model (Bayesian R2 = 0.48) included modeled 
average 48-hour kitchen concentration (dependent variable from 
Equation (1)), primary cooking fuel type, primary heating fuel type, roof 
material, summer/winter season, sex, age group, exposure to second
hand smoke, country and a sex*country interaction term (Equation (2)). 
In a sensitivity analysis, excluding average 48-hour kitchen concentra
tion from the personal modeling, the explained variability of PM2.5 
personal exposures decreased by 9% (R2 = 0.39). A random intercept 
was included for sub-national region (ICC = 0.23) (the personal expo
sure model did not converge with a community-level random intercept) 
(Table S9). 

Eq. (2): Personal exposure model 

log(PM2.5)ij =(β0 + β0j)+ β1(Gas)i+ β2(Electricity)i+ β3(Wood)i
+ β4(Coal)i + β5(Charcoal)i+ β6(Ag/crop residue)i
+ β7(Animal dung)i+ β8(Shrubs/grass)i + β9(Age)i
+ β10(average 48 − hour PM2.5 kitchen concentration)i
+ β11(Roof material)i + β12(Secondhand smoke exposure)i
+ β13(Season)i + β14(Sex)i + β15(Country)i
+ β16(Sex*Country)i+ eij

(2) 

Table 4 
Average PM2.5 kitchen concentrations (μg/m3) by primary cooking fuel type 
from PURE modeling.  

Primary 
cooking fuel 

Summer 
Mean (95% 
CI) 

Winter 
Mean (95% 
CI) 

Annual Mean 
(95% CI) 

% under 
WHO 
interim-1 

Gas 44 (44, 45) 50 (50, 50) 47 (46, 48) 14 
Electricity 59 (58, 60) 67 (66, 68) 61 (62, 64) 4 
Charcoal 83 (81, 86) 88 (85, 91) 86 (83, 88) 0 
Ag/crop 84 (83, 84) 92 (91, 92) 88 (87, 88) 0 
Coal 86 (86, 86) 101 (100, 

101) 
93 (93, 93) 0 

Wood 106 (105, 
107) 

122 (121, 
124) 

114 (113,115) 2 

Shrubs/grass 148 (146, 
151) 

160 (157, 
163) 

154 (151, 
157) 

0 

Animal dung 195 (186, 
203) 

214 (205, 
223) 

204 (195, 
213) 

0  

Fig. 4. Distribution of modeled baseline PM2.5 kitchen concentrations (μg/m3) among households cooking primarily with gas in rural PURE communities by country.  
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log(PM2.5)ij is natural logarithm of mean 48-hour PM2.5 personal expo
sure of ith individual in sub-national region j. β0 is overall intercept, B0j is 
random intercept for the jth sub-national region. eij is the leftover error 
after accounting for all fixed and random effects. 

Average 48-hour kitchen concentration, season (summer/winter), 
exposure to secondhand smoke, and the interaction between sex and 
country were statistically evident in the final model (Table 5). A 1 ug/m3 

increase in average 48-hour PM2.5 kitchen concentration was associated 
with a 0.54 ug/m3 (95 %CI:[0.51,0.58]) increase in average 48-hour 
personal exposure. Individuals cooking with gas in China and exposed 
to secondhand smoke in their home had an average 48-hour PM2.5 
exposure (46 ug/m3 95 %CI: [42,50]) that was 5 ug/m3 higher than 
individuals cooking with gas and not exposed to secondhand smoke (41 
ug/m3 95 %CI: [37,45]). 

In sensitivity analyses that included occupation as a predictor among 
a subset of 912 participants with available data, occupation type was not 

strongly associated with variations in average PM2.5 personal exposures 
(Fig. S7). When stratifying by sex, occupation was a slightly more 
important predictor of PM2.5 exposure differences among PURE male 
participants than female participants (Fig. S8). 

While ambient PM2.5 levels were not examined at an individual level, 
precluding their inclusion in the modeling, measured personal expo
sures among PURE-AIR participants primarily cooking with gas were 
compared to average annual outdoor PM2.5 concentrations in each sub- 
national region (Fig. S6). A high correlation was found between average 
annual outdoor PM2.5 concentrations and average male (r = 0.78) and 
female (r = 0.68) PM2.5 exposures. 

3.7. Predicting personal exposures for the PURE baseline cohort 

Among the PURE baseline sample, the distribution of predicted 
average annual PM2.5 personal exposures spanned approximately 70 μg/ 

Fig. 5. Distribution of modeled baseline PM2.5 kitchen concentrations (μg/m3) among households cooking primarily with wood in rural PURE communities 
by country. 

Fig. 6. Modeled PURE baseline average PM2.5 kitchen concentrations (μg/m3) (95% CI) in rural communities by country and primary cooking fuel type (only fuel 
types with n > 30 in a country shown). 
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m3 among individuals using gas for cooking in China and India (25–88 
μg/m3 and 29–97 μg/m3, respectively) (Fig. 7). Among households 
predominantly cooking with wood, average 48-hour PM2.5 kitchen 
concentrations differed by 100 μg/m3 in China (40 to 139 μg/m3), 120 
μg/m3 in India (50–169 μg/m3) and 200 μg/m3 in Pakistan (353–568 
μg/m3) (Fig. 8). 

Modeled average male PM2.5 exposures were higher than female 
exposures among households primarily cooking with gas and charcoal 
(Fig. 9); average male exposures were significantly lower than female 
exposures among the majority of polluting fuels (wood, crop waste, 
shrubs, animal dung). On a country-level, male participants had 
approximately 50% lower exposures than that of females across all 
primary cooking fuel types in Pakistan and Zimbabwe (Fig. 10). 
Although there was not a significant difference in PM2.5 exposures 

between sexes in other countries, modeled PM2.5 male exposures were 
higher than females across all primary fuel types in South American 
countries (Chile, Colombia) and India (Fig. 10). 

4. Discussion 

The quantitative PM2.5 models developed in this study, based on 
measurements obtained under a single study protocol across a variety of 
cooking environments and socioeconomic conditions in seven countries, 
represent one of the largest multinational HAP exposure assessments 
conducted to-date. The PURE-AIR models uncovered a gradient of 
increasing average 48-hour PM2.5 kitchen concentrations (Fig. 3) and 
personal exposures (Fig. 9) when moving from clean to polluting pri
mary cooking fuels. Aside from primary cooking fuel type, stove type, 
heating fuel type, and presence of a chimney in the kitchen significantly 
contributed to variation in PM2.5 kitchen concentrations across rural 
PURE communities of LMICs (Table 3). The PURE-AIR quantitative 
exposure estimates also revealed that average PM2.5 male exposures 
were as high as, or greater than, that of females in some countries (e.g. 
Chile, Colombia, China, Chile) (Fig. 10), despite females spending an 
average of nearly thrice as much time in the cooking area (1.9 versus 0.7 
h) during the 48-hour monitoring (Shupler et al., 2020). 

4.1. Contextual factors 

The statistical significance of the country indicator in the final PURE- 
AIR kitchen concentration model (Table 3) demonstrates that HAP 
personal exposures and kitchen concentrations are greatly impacted by 
location-specific factors. This is evidenced by the distribution of PM2.5 
kitchen concentrations (Figs. 4 and 5) and personal exposures (Figs. 7 
and 8) varying substantially by country among households cooking with 
the same primary cooking fuel; for instance, average 48-hour PM2.5 
kitchen concentrations ranged from 20 μg/m3 in Chile to 55 μg/m3 in 
China among households primarily using gas and from 36 μg/m3 in 
Chile to 427 μg/m3 in Pakistan among households primarily cooking 
with wood. 

Moreover, the significant interaction between country and sex in the 
personal exposure model (Table 5) signals that the impact of contextual 
factors on PM2.5 exposures varies between males and females. In ma
chine learning models stratified by sex, occupation was more predictive 
of average 48-hour PM2.5 male exposures than female exposures 
(Fig. S8), which echoes findings from peri-urban India (Sanchez et al., 
2020). In addition, ambient PM2.5 modeled estimates from Shaddick et 
al (Shaddick et al., 2018) were more highly correlated with average 
male PM2.5 exposures (r = 0.78) than female exposures (r = 0.68) 
(Fig. S6), signaling that outdoor sources of PM, including occupational 
exposures, may have a disproportionate impact on male exposure levels 
due to more time spent outside the home. 

Some PM2.5 exposure variation can also likely be attributed to other 
indoor sources of PM2.5 including secondhand smoke and kerosene 
lighting. While PURE surveys did not contain information on primary 
lighting source, precluding its inclusion in the modeling, kerosene 
lighting has been shown to increase indoor PM2.5 concentrations 
(Muyanja et al., 2017; Lam et al., 2012). Additionally, other factors 
including SES characteristics (e.g. roof material, education) were more 
predictive of personal exposures than cooking environment character
istics in PM2.5 exposure models for Tanzania/Zimbabwe, Bangladesh/ 
Pakistan and Chile/Colombia (Table S7). 

Sub-national region explained more variation in average PM2.5 
kitchen concentration in China than primary cooking fuel type 
(Table S6). Additionally, there was a high correlation (r = 0.79) between 
average annual outdoor PM2.5 concentrations and PURE-AIR average 
PM2.5 kitchen measurements among households cooking primarily with 
gas at a regional-level (Fig. S5). These results suggest that regional dif
ferences in ambient air pollution (due to emissions from agricultural 
burning, traffic, industry) (Zhang et al., 2016; Zhuang et al., 2013; 

Table 5 
Fixed effect coefficients from final Bayesian hierarchical model of PM2.5 per
sonal exposures.  

Variable Mean Std. Dev Stat. Sig. (p < 0.05) 

Primary cooking fuel    
Intercept (gas) 2.05  0.18  
Electricity 0.01  0.09  
Ag/crop residue 0.22  0.13  
Charcoal N/A   
Coal 0.05  0.15  
Wood − 0.03  0.07  
Shrub/grass − 0.03  0.17  
Animal dung 0.01  0.14   

Heating fuel type    
No heating REF   
Gas/electric 0.10  0.10  
Wood (open fire or chimney stove) 0.23  0.08 * 
Coal open fire N/A    

Season    
Wet (summer) REF   
Dry (winter) 0.22  0.08 *  

Roof material    
Concrete REF   
Tile 0.03  0.06  
Wood/thatch 0.06  0.09  
Zinc/iron/asbestos 0.03  0.11  
Other 0.12  0.11   

Age group    
35–54 REF   
55–64 0.07  0.05  
65–85 − 0.03  0.06   

PM2.5 kitchen conc (log) 0.39  0.03 * 
Sex    
Female REF   
Male − 0.02  0.04   

Secondhand smoke exposure    
Yes 0.11  0.05 *  

Country    
China REF   
Bangladesh 0.46  0.40  
Chile − 0.26  0.45  
Colombia − 0.19  0.38  
India 0.16  0.21  
Pakistan 0.32  0.41  
Zimbabwe 0.56  0.39   

Country*Sex    
China*Male REF   
Bangladesh*Male − 0.29  0.21  
Chile*Male 0.37  0.34  
Colombia*Male 0.22  0.19  
India*Male 0.04  0.10  
Pakistan*Male − 0.56  0.24 * 
Zimbabwe*Male − 0.44  0.20 * 

Stat. sig. = statistically significant at alpha = 0.95 level. 
REF = reference group. 
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Conibear et al., 2021) are greatly affecting indoor PM2.5 levels. A HAP 
measurement study in rural China similarly found that distance to the 
highway, a proxy for the level of exposure to vehicular emissions, 
significantly impacted participants’ average PM2.5 exposures, additional 
to residential exposure from cooking with polluting fuels (Baumgartner 
et al., 2014). The large range (35 μg/m3) of modeled average PM2.5 
kitchen concentrations among households cooking with gas across sub- 
national regions in China, from an average of 40 μg/m3 in Jiangxi to 76 
μg/m3 in Shaanxi) (Table S5) further indicates the probable existence of 
other PM2.5 sources. Hence, ambient air pollution is likely a key factor in 
the WHO Interim-1 target (35 μg/m3) being exceeded by 98% of 
modeled average 48-hour kitchen concentrations among rural PURE 
households cooking with clean fuels in India and China. Accordingly, a 
transition to clean cooking fuels alone in these two rapidly developing 
countries is likely not sufficient to reach PM2.5 concentrations that meet 
the WHO Interim-1 target. 

4.2. Comparing male and female household air pollution exposures 

Minor differences between modeled average 48-hour PM2.5 male and 
female exposures across primary cooking fuel types in rural PURE 
communities of China, India, Chile and Colombia (Fig. 10) may be due to 
greater exposure to ambient sources of pollution among males, as 

China, India and Temuco, Chile have some of the highest levels of 
outdoor pollution globally (Conibear et al., 2021; Archer-Nicholls et al., 
2016; Díaz-Robles et al., 2008). The higher correlation of average 48- 
hour PM2.5 male exposure measurements (r = 0.78) with kitchen con
centrations compared with female exposures (r = 0.68) (Fig. S6) and the 
significance of exposure to ambient PM2.5 pollution while traveling to 
work in the predictive model for PURE communities in Chile/Colombia 
(Table S7) indicates that male participants likely had higher ambient 
PM2.5 exposures than females in these areas. It is feasible that males in 
PURE communities were more highly exposed to ambient air pollution 

Fig. 7. Distribution of modeled baseline PM2.5 personal exposures (μg/m3) among households cooking primarily with gas in rural PURE communities by country.  

Fig. 8. Distribution of modeled baseline PM2.5 female and male personal among households cooking primarily with wood in rural PURE communities by country.  
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since they were more likely to travel outside the home to their place of 
employment (Shupler et al., 2020). With cooking emissions possibly 
playing a less important role in overall PM2.5 exposures in these rapidly 
developing countries, where industrial air pollution sources may 
dominate, these modeling results are contrary to previous studies that 

suggest that women have disproportionately higher PM2.5 exposures in 
LMICs where HAP is common. The swiftly changing environmental 
landscape in several urbanizing LMICs requires that increased attention 
be placed on mitigating exposure to industrial pollution alongside res
idential emissions to improve public health. 

Fig. 9. Modeled average annual PM2.5 male and female exposures by primary fuel type.  

Fig. 10. Modeled average annual PM2.5 male and female exposures by primary fuel type and country.  

M. Shupler et al.                                                                                                                                                                                                                                



Environment International 159 (2022) 107021

13

Contrastingly, female participants in Pakistan, Bangladesh and 
Zimbabwe had 100–200 μg/m3 higher modeled average 48-hour PM2.5 
exposure than males (significant interaction term in personal exposure 
model (Table 5). Additionally, hours spent in the kitchen during the 48- 
hour monitoring was an important determinant of average PM2.5 ex
posures in Tanzania/Zimbabwe and Bangladesh/Pakistan (Table S7), 
indicating that HAP was possibly a more dominant PM2.5 exposure 
source in these settings. Consequently, policies that increase use of clean 
cooking fuels may achieve greater health benefits from higher re
ductions in female PM2.5 exposures in rural communities in these 
countries, compared with China, India and South American countries 
(Shupler et al., 2021; Gould and Urpelainen, 2018; Astuti et al., 2019). 
As the proportion of households in Bangladesh (52%) and Pakistan 
(46%) with only 1–2 rooms was more than twice the overall average 
(18%) (Table S1), higher female PM2.5 exposures in these locations may 
partially be due to lower dispersion rates because of smaller household 
size. 

The findings of similar male and female exposures are consistent 
with other studies from China (Lee et al., 2021) and peri-urban India 
(Sanchez et al., 2020) that also showed minimal differences in PM2.5 
exposures between sexes. Both studies also found smoking status to be a 
significant driver of personal exposures, which is consistent with our 
finding of secondhand smoke being positively associated with PM2.5 
personal exposures (Table 5). 

As HAP measurement studies have historically prioritized collection 
of kitchen and living room concentrations or female (main cook) per
sonal measurements, the variation in the difference between modeled 
average 48-hour PM2.5 male and female exposures at a country-level 
emphasizes the need for additional monitoring of male PM2.5 expo
sures in future HAP measurement studies. Direct PM2.5 male exposure 
measurements will prevent the need for use of personal:kitchen expo
sure ratios from external studies, thereby reducing biases in male PM2.5 
exposure estimation in risk assessments. 

4.3. Seasonal variation in household air pollution levels 

Use of heating fuels was a statistically significant driver of PM2.5 
kitchen concentrations (Table 3) and personal exposures (Table 5) 
among PURE communities. However, heating fuel type only partially 
explained the higher average PM2.5 kitchen concentrations in winter, as 
elevated average winter concentrations (~15 μg/m3 higher) remained 
in India among households that reported no use of heating fuels 
(Fig. S4). Thus, temporal HAP exposure assessment is warranted to 
minimize misclassification of average annual PM2.5 concentrations that 
can occur when using a 24-hour or 48-hour measurement in a single 
season. 

As studies have shown large within-individual variability in average 
PM2.5 personal exposures in similar peri-urban settings (Sanchez et al., 
2020; Lee et al., 2021), the single 48-hour exposure measurements in 
this study may not reflect average annual PM2.5 levels. However, the 
PURE study provides a large, geographically diverse sample, and 
included collection of measurements across different seasons in some 
communities. Therefore, season-specific and annual PM2.5 levels were 
derived from the modeling as they may be useful for post-hoc adjust
ment of short-term HAP measurements in other studies that similarly do 
not collect seasonal measurements. Using the season-specific estimates 
presented in this study or others (Shupler et al., 2018) may potentially 
allow other researchers to more accurately estimate annual PM2.5 ex
posures by factoring in the effects of seasonality, in the absence of other 
reference data. 

4.4. Evaluating model performance 

The overall kitchen concentration (Bayesian R2 = 0.54) and personal 
exposure (Bayesian R2 = 0.48) models moderately explained the large 
variation in PM2.5 levels among rural PURE communities in the seven 

study countries, and were similar to the performance in other peri-urban 
settings in India (Sanchez et al., 2020) and Kenya (Johnson et al., 2021). 
Taken together, these studies demonstrate the utility of using quanti
tative exposure estimation (e.g. PM2.5 levels) as opposed to categorical 
indicators (e.g. primary cooking fuel type) to more accurately capture 
the range of PM2.5 exposures for use in national and multinational 
models. Similar studies that conduct limited HAP monitoring alongside 
larger-scale survey collection in the future can generate improved 
quantitative PM2.5 exposure datasets for spatially resolved, large-scale 
exposure assessment, with HAP sampling becoming increasingly less 
expensive and resource intensive with the advancement of air moni
toring technology (Piedrahita et al., 2014; Amegah, 2018). 

Among rural PURE-AIR households in African countries (Tanzania/ 
Zimbabwe) and Bangladesh/Pakistan, a smaller sample size and more 
polluted kitchen environments in Tanzania/Zimbabwe and Bangladesh/ 
Pakistan led to increased variability in PM2.5 concentrations, which 
lessened the predictive power of the corresponding models (Table S6). 
This finding is partially due to minimal variation in primary cooking fuel 
used (nearly all households cooked with wood at baseline) and rare use 
of heating fuels; in a previous HAP predictive modeling study conducted 
in peri-urban Kenya among households cooking with gas and polluting 
fuels, primary cooking fuel type was the most important exposure pre
dictor (Johnson et al., 2021). 

4.5. Strengths and limitations 

Exposure determinants included in the PURE-AIR modeling study 
were not constrained by data reported in publications, and therefore 
minimized bias that occurs when combining PM2.5 measurements across 
studies with different equipment, measurement techniques and moni
toring periods. As ‘rural’ households recruited into the PURE cohort 
were typically within a 45-minute drive of urban centers for biological 
sample storage, the modeled PM2.5 estimates in this study may not be 
nationally representative (Corsi et al., 2013). Nonetheless, as HAP 
measurement studies typically recruit households in rural communities 
that have the highest prevalence of polluting cooking fuel use, PURE- 
AIR modeling was conducted among a unique demographic of com
munities. The predictive models developed in this study were thus able 
to examine PM2.5 exposure differences in rapidly changing communities, 
as evidenced by the high rate of primary cooking fuel switching among 
PURE households over the last two decades (Shupler et al., 2019). 

Although PURE-AIR households may not be representative of the full 
PURE baseline sample, the main goal of the predictive modeling was to 
establish a diverse PM2.5 exposure profile, across a range of primary 
cooking fuel types, to enable a sufficient sample size for assigning PM2.5 
exposures to all individuals and households cooking with various 
cooking technologies. The modeling was able to achieve this goal due to 
use of a stratified sampling design for HAP monitoring in the PURE-AIR 
study. 

This modeling study did not include direct measurement of ambient 
air pollution levels in each community. Therefore, while we conclude 
that air pollution is likely affecting HAP exposures, the relative effect of 
localized ambient air pollution as opposed to other region-specific fac
tors (e.g. housing type, food choices, time-activity patterns) cannot be 
quantified. Future multinational studies should aim to collect informa
tion on these characteristics to better assess how factors aside from 
cooking and heating fuel type can alter average PM2.5 exposures. These 
studies can uncover additional changes, beyond a transition to clean 
cooking fuels, that will be needed in order to meet WHO-interim target 
levels, which were only achieved by 14% of households cooking pri
marily with gas at PURE baseline (Table 4). 

Because PM2.5 measurements and survey data collected in the PURE- 
AIR study in 2017–2019 were used to assign kitchen and personal levels 
to PURE participants at baseline (~2005–2010), this modeling study 
assumed the relationship among the household environment, external 
factors (e.g. ambient air pollution) and HAP exposures were not 
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substantially altered over the follow up period. As ambient pollution 
levels and cooking environments may have changed during PURE follow 
up, particularly in rapidly developing countries like China, applying 
measurements from 2017 to 2019 to estimate HAP levels a decade prior 
may have introduced bias in predicted baseline PM2.5 exposures. 
Nevertheless, the quantitative PM2.5 exposure estimates obtained in 
PURE remain the most accurate for a multinational study of this size due 
to the detailed household-level information included in the predictive 
modeling. 

4.6. Conclusion 

Cooking environment characteristics (e.g. stove type, heating fuel 
and presence of a chimney) partially explained the variation of PM2.5 
kitchen concentrations and personal exposures among PURE households 
cooking with the same primary cooking fuel in different countries. 
Collecting this information in global health surveys (e.g. National Cen
suses, WHO Harmonized Survey, Demographic Health surveys) can 
therefore be useful to reasonably quantifying global variations in PM2.5 
concentrations and exposures due to HAP. Integration of ambient air 
pollution measurements into PM2.5 exposure models may further in
crease their accuracy. 

The heterogenous modeled PM2.5 exposures derived in the PURE 
study can be combined with longitudinal and cross-sectional health data 
collected among the PURE cohort in epidemiological models. These 
multinational models will elucidate the shape of PM2.5 exposur
e–response for several respiratory and cardiovascular health outcomes 
(Burnett and Cohen, 2020; Burnett et al., 2018). Improved estimation of 
global HAP-related morbidity and mortality obtained using the exposure 
assessment conducted in PURE can affect how HAP is prioritized, rela
tive to other environmental risk factors, on the global health agenda. 
This modeling study can therefore benefit policymakers tasked with 
allocation of finite resources and funding to efficiently alleviate pressing 
global health problems. 
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Canada Université Laval Institut universitaire de cardiologie et de 
pneumologie de Québec, Quebec 
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