

Cancer Biomarkers in Liquid Biopsy for Early Detection of Breast Cancer: A Systematic Review

Galo Duque^{1,2}, Carlos Manterola^{1,3}, Tamara Otzen^{1,3}, Cristina Arias², Dennise Palacios², Miriann Mora^{1,2}, Bryan Galindo², Juan Pablo Holguín^{1,2} and Lorena Albarracín¹

¹Medical Sciences PhD Program, Universidad de La Frontera, Temuco, Chile. ²Faculty of Medicine, Universidad del Azuay, Cuenca, Ecuador. ³Center of Excellence in Morphological and Surgical Studies (CEMyQ), Universidad de La Frontera, Temuco, Chile.

Clinical Medicine Insights: Oncology

Volume 16: 1–16

© The Author(s) 2022

Article reuse guidelines:

sagepub.com/journals-permissions

DOI: 10.1177/11795549221134831

ABSTRACT

BACKGROUND: Breast cancer (BC) is the most common neoplasm in women worldwide. Liquid biopsy (LB) is a non-invasive diagnostic technique that allows the analysis of biomarkers in different body fluids, particularly in peripheral blood and also in urine, saliva, nipple discharge, volatile respiratory fluids, nasal secretions, breast milk, and tears. The objective was to analyze the available evidence related to the use of biomarkers obtained by LB for the early diagnosis of BC.

METHODS: Articles related to the use of biomarkers for the early diagnosis of BC due to LB, published between 2010 and 2022, from the databases (WoS, EMBASE, PubMed, and SCOPUS) were included. The MInCir diagnostic scale was applied in the articles to determine their methodological quality (MQ). Descriptive statistics were used, as well as determination of weighted averages of each variable, to analyze the extracted data. Sensitivity, specificity, and area under the curve values for specific biomarkers (individual or in panels) are described.

RESULTS: In this systematic review (SR), 136 articles met the selection criteria, representing 17 709 patients with BC. However, 95.6% were case-control studies. In 96.3% of cases, LB was performed in peripheral blood samples. Most of the articles were based on microRNA (miRNA) analysis. The mean MQ score was 25/45 points. Sensitivity, specificity, and area under the curve values for specific biomarkers (individual or in panels) have been found.

CONCLUSIONS: The determination of biomarkers through LB is a useful mechanism for the diagnosis of BC. The analysis of miRNA in peripheral blood is the most studied methodology. Our results indicate that LB has a high sensitivity and specificity for the diagnosis of BC, especially in early stages.

KEYWORDS: Breast neoplasms, liquid biopsy, early diagnosis, microRNAs, sensitivity and specificity, breast cancer

RECEIVED: April 19, 2022. ACCEPTED: October 10, 2022.

TYPE: Systematic Review

FUNDING: The author(s) received no financial support for the research, authorship, and/or publication of this article.

DECLARATION OF CONFLICTING INTERESTS: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

CORRESPONDING AUTHOR: Galo Duque, Faculty of Medicine, Universidad del Azuay. Postal address: Av. 24 de Mayo y Hernán Malo, Cuenca, Ecuador 010107. Email: galoduque@uazuay.edu.ec

Introduction

Breast cancer (BC) is the most frequently diagnosed malignancy and the leading cause of cancer-related deaths in women worldwide. In 2020, more than 2.2 million new cases were diagnosed and 684 996 deaths were reported globally.¹ This neoplasm originates in the epithelial cells that line the mammary ducts responsible for transporting milk to the nipple or in the lobules, which are the glandular structures that produce milk.

Despite recent developments for early detection of this disease, additional innovative and effective diagnostic methods in the early stages are needed to obtain the best possible outcomes during treatment. To date, progress in this area has been slow and continues to be an important challenge.^{2,3}

Although ultrasound and mammography are the most widely used methods, both procedures depend on the radiologist's expertise, as well as the quality and technology of the equipment used during these procedures. Furthermore, as mammography applies ionizing radiation, the ability to use in patients younger than 30 years of age is limited.³⁻⁵ During the

last decade, nuclear magnetic resonance of the mammary glands has been used as a complementary method, with high sensitivity in the detection of small lesions. This approach, however, is an expensive procedure with a significant rate of false-positives.⁶

Nevertheless, to confirm the diagnosis of BC, all of the above methods require a tissue biopsy as an adjunct, which is an invasive procedure. The development of non-invasive techniques and methods that allow early diagnosis of BC is highly relevant, and several methods are being studied and researched worldwide. An example of the above would be the use of serum markers such as carcinoembryonic antigen (CEA) and Ca153, which may be interesting strategies, but show low sensitivity and specificity.⁷

Liquid biopsy (LB) is an approach that has also recently emerged. It identifies circulating biomarkers that can serve as a valuable and promising tool for early diagnosis of BC. This procedure, which is non-invasive, can be performed on blood and other body fluids such as urine, saliva, nipple discharge,

volatile respiratory fluids, nasal secretions, breast milk, and tears. Cellular components, such as circulating tumor nucleic acids (ctDNA), circulating tumor cells (CTC), vesicle-encapsulated extracellular RNA (EV-mRNA), and circulating microRNA (miRNA) molecules, are among the major components identified.⁸

The molecular classification of the disease based on the expression of estrogenic hormone receptors (ER), progesterone receptors (PR), human epidermal growth factor 2 (HER2), and Ki-67 proliferative index allows the following BC subtypes to be identified: luminal A (ER and/or PR+, Her2-, Ki-67 low), luminal B (ER and/or PR+, Her2-, Ki-67 high) or (ER and/or PR+ Her2+), Her2-enriched (ER and PR- Her2+), and triple-negative (ER- PR- Her2-), each of which is related to a specific gene expression and useful in the diagnosis of neoplasia.⁹ In addition to molecular classification, the histological grade and stage of the disease are being investigated to determine their benefit in the early diagnosis of BC.

The aim of this study was to analyze the available evidence on the use of biomarkers obtained by LB in the early diagnosis of BC.

Materials and Methods

This study was written following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA 2020) statement¹⁰ and is registered as a protocol in the PROSPERO database (ID: CRD42021255596).

Design

Systematic Review (SR).

Eligibility criteria

Articles related to LB and BC early detection in humans were included, without language restriction; the articles were published between January 2010 and June 2022. Review articles, letters to the editor, case reports, conference abstracts, and duplicate articles were excluded.

Information sources

A systematic search of related literature was conducted from the following sources: WoS, EMBASE, PubMed, SCOPUS. In addition, a manual cross-reference search was performed.

Search strategy

MeSH terms and free words were used: “circulating cell-free DNA,” or “plasma cell-free DNA,” or “serum cell-free DNA,” or “liquid biopsy” or “biomarkers,” or “circulating tumor cells,” or “circulating tumor DNA,” or “detection of cancer DNA,” or “serum microRNA” and “breast cancer” or “early breast cancer

detection” or “screening of breast cancer.” In addition, Boolean operators “AND” and “OR” were used. The searches were adapted to each source of information and the corresponding language.

Selection process. The eligibility assessment of the primary articles was performed by 2 groups of 2 reviewers each (G.D.-C.A. and B.G.-J.P.H.), who worked independently and blinded. Disagreements between review groups were resolved by consensus. Item recruitment closed on May 30, 2022.

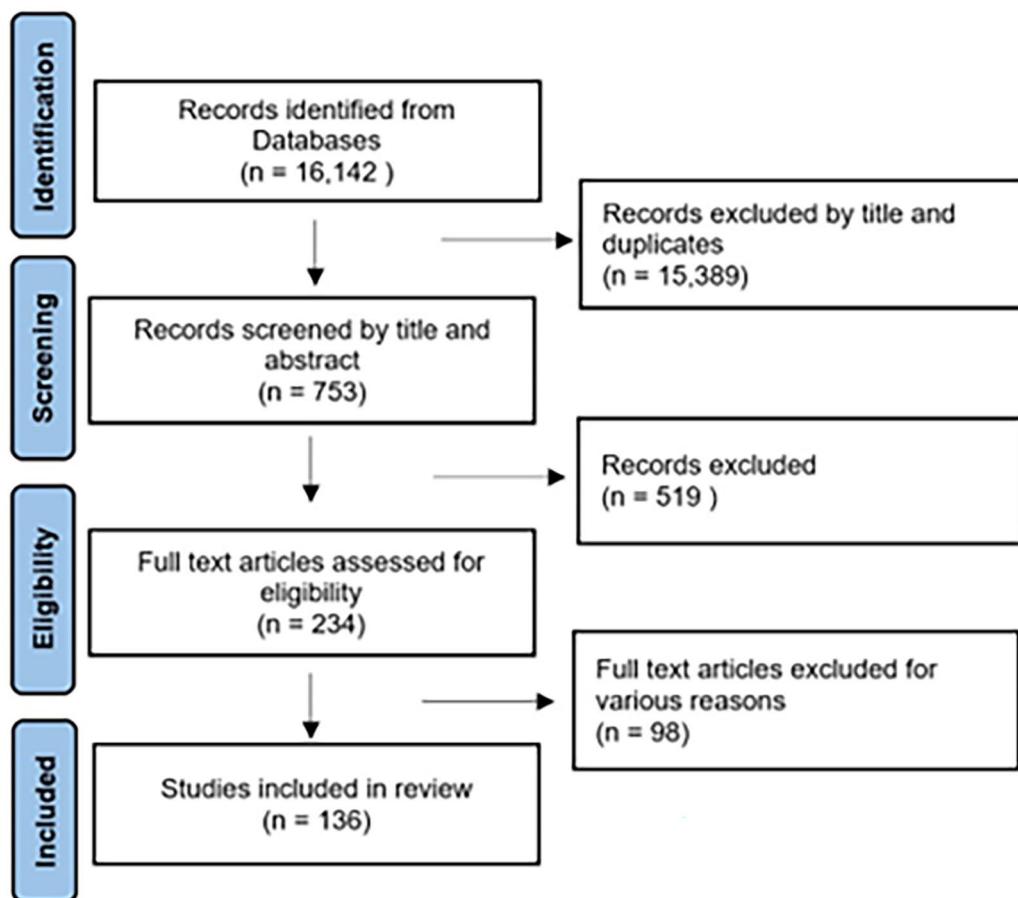
Data collection process. For data extraction, an Excel sheet (PC Excel, version 15.24; 2016 Microsoft Corporation) was created. Five authors extracted data from the included studies (G.D., C.A., D.P., J.P.H., and B.G.) and 2 additional authors checked the extracted data (M.M. and L.A.). Disagreements between the reviewers were resolved by consensus.

Variables studied

The variables considered were year of publication, country, number of cases, type of design, body fluid used for LB (peripheral blood, saliva, fluid aspirated from the nipple, sweat, urine, tears, and volatile compounds in the breath), type of biomarkers in the blood (CTC, ctDNA, circulating free DNA [cfDNA], circulating miRNA, circulating extracellular RNA vesicles [EV-RNA], and others), type of biomarkers in other body fluids (CTC, EV-RNA, miRNA, ctDNA, cfDNA, and others), determined biomarkers, sensitivity, specificity, and methodological quality (MQ) of the primary studies.

Study risk of bias assessment. The internal validity (MQ) of the primary studies was assessed using the MInCir-Dg scale¹¹ (MQ assessment scale for diagnostic studies), composed of 9 items grouped into 3 domains, with a minimum and maximum score of 9 and 45 points, and a cut-off point of 20 points, which defines the dichotomy of the MQ construct for diagnostic studies.

Effect measures


Descriptive statistics (percentages, frequencies) and determination of variable weighted means (weighting of the result of each variable by the MQ of the primary study from which it originated) were used to analyze the extracted data.

Synthesis methods

The identified documents were filtered by duplication between databases. Titles and abstracts were screened using selection criteria. Finally, an in-depth analysis of each of the selected primary articles was performed; critical reading guides were applied, thus organizing the synthesis of the information.

Table 1. Search strategy: databases used and primary articles found.

DATABASES	NO. OF ARTICLES FOUND	NO. OF SELECTED ARTICLES
EMBASE	3036	32 (23.5%)
WoS	8819	74 (54.4%)
PubMed	3286	3 (2.20%)
SCOPUS	1001	27 (19.9%)
TOTAL	16 142	136

Figure 1. Flow chart of primary articles used in this SR.

Assessment of reporting bias

Potentially missing studies were identified by cross-reference searches.

Certainty assessment

Not considered.

Ethics

The authors and centers of the primary studies used were masked.

Results

Study selection

In total, 16 142 articles were identified in the aforementioned databases (Table 1). However, 234 articles were retained for full reading, following the elimination of duplicates and articles whose title and abstract did not meet the eligibility criteria; of these, only 136¹²⁻¹⁴⁷ met the inclusion criteria and are the basis of the qualitative and quantitative analysis of this SR (Figure 1).

Study characteristics

Of the 136 primary articles, 130 (95.6%) were case-control studies and 6 (4.4%) were cohort studies. The population

Table 2. Characterization of the primary articles on the diagnosis of BC by means of LB (n=136).

TYPE OF BC	N	%
Several	73	53.7
Not specified	59	43.4
Triple-negative	2	1.5
HER2-enriched	2	1.5
PUBLICATION YEAR	NO. OF ARTICLES	%
2022	11 ¹²⁻²²	8.1
2021	35 ²³⁻⁵⁷	25.7
2020	17 ⁵⁸⁻⁷⁴	12.5
2019	14 ⁷⁵⁻⁸⁸	10.3
2018	10 ⁸⁹⁻⁹⁸	7.4
2017	4 ⁹⁹⁻¹⁰²	2.9
2016	12 ¹⁰³⁻¹¹⁴	8.8
2015	8 ¹¹⁵⁻¹²²	5.9
2014	8 ¹²²⁻¹³⁰	5.9
2013	2 ^{131,132}	1.5
2012	9 ¹³³⁻¹⁴¹	6.6
2011	2 ^{142,143}	1.5
2010	4 ¹⁴⁴⁻¹⁴⁷	2.9

Abbreviations: BC, breast cancer; HER2, human epidermal growth factor 2; LB, liquid biopsy.

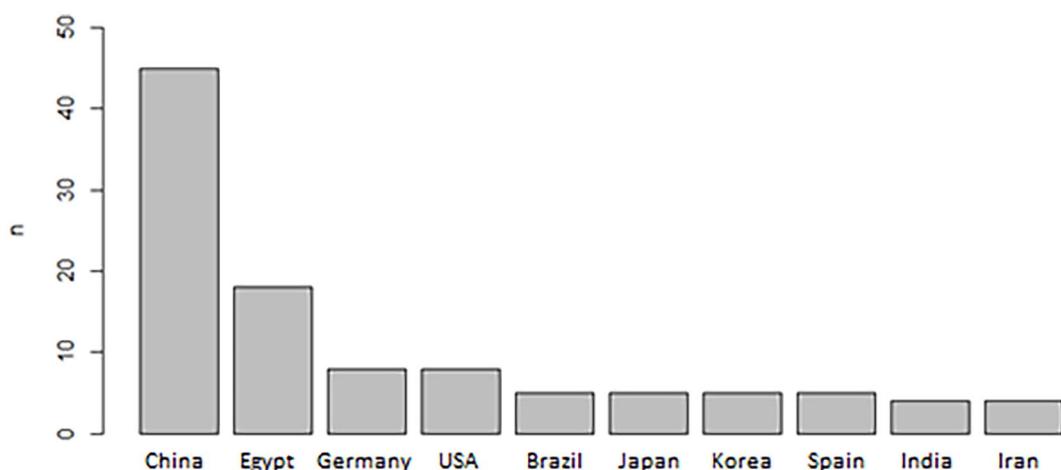
represented in these articles comprised 34376 patients, of which 17709 are BC carriers and 16667 correspond to controls (defined as healthy subjects with benign breast disease or other types of cancer). In all, 75.7% of the articles were published between 2016 and 2022 (Table 2).

Results of individual studies

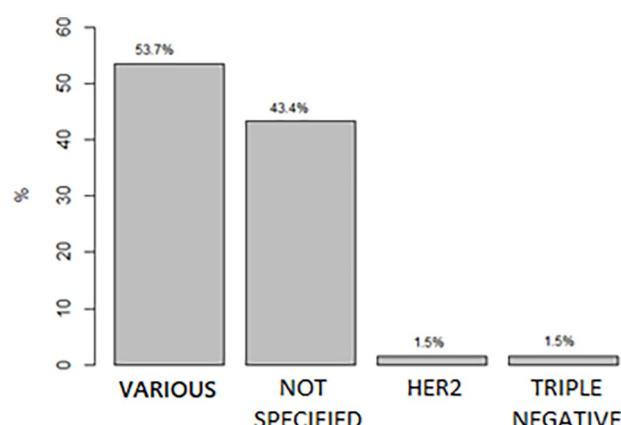
Evidence on the early diagnosis of BC through LB came from 31 countries. China (n = 45) and Egypt (n = 18) were the countries that contributed the most articles (Figure 2).

The molecular classification of BC (Figure 3) was not described in 59 articles, while 73 articles included patients with various types, based on the molecular classification (luminal A, luminal B, HER2-enriched, and triple-negative). In addition, 2 articles studied only patients with triple-negative BC,^{101,116} and 2 included patients with HER2-enriched BC.^{76,95}

In reference to the disease stage, 57.4% of the articles detailed the stages that the patients were in at the time. In 43 articles, patients in all stages (I, II, III, and IV) were included, representing a population of 5382 patients with BC (stage II was the most frequent, representing 3230 patients). The details are available in Table 3.


The histological grade was identified in 40.4% of the articles, which represents 5102 patients. Patients with all grades (1-3) were included in 51 articles. In 3 articles, grades 2 and 3 were included,^{68,96,140} and 1 article included only grade 3 patients¹²⁰ (Table 4).

Diagnostic role of LB in BC


The body fluids in which LB was analyzed are detailed in Table 5 emphasizing that in 96.3% of the studies, it was performed in peripheral blood. Additional body fluids analyzed included urine^{69,74,86} and saliva.^{71,120}

Regarding the different LB methods, miRNA analysis (56.8%) predominated, followed by cfDNA (20.5%), in the studies that used blood samples. In those that analyzed saliva or urine, the diagnosis was performed by miRNA analysis.

The validity of the different tools for early diagnosis of BC described by the primary studies (markers obtained in DNA or RNA) is noted in Tables 6 to 8. It is noteworthy that the sensitivity of most is higher than 70% (Table 6).

Figure 2. Main countries of origin of articles on BC diagnosis through LB. BC indicates breast cancer; LB, liquid biopsy.

Figure 3. Molecular classification of BC reported in 136 primary articles. BC indicates breast cancer.

As shown in Table 6, highlighted in gray, 28 biomarkers presenting a Sensitivity greater than 90% were identified: miR-17-5p, miR-155, miR-222,⁸⁹ miR-202,⁶⁰ PTEN, SMAD4,²⁴ APC, RARB2,¹¹⁵ miRNA-222, miRNA-373,⁹² miR-27a,⁸⁵ cfDNA methylation score,²⁵ HER2 mRNA,⁹⁵ miR-21,²⁸ polymorphism -31G/C in survivin promoter gene,⁷⁹ hsa-miR25-3p, hsa-miR-548ar-5p,⁸⁰ miR-598-3p, miR-1246,¹⁰⁵ miR-495,¹¹⁷ telomeric sequences in cfDNA,¹²¹ miR-30c, miR-148a,³⁹ miR-185-3p,⁴⁹ miR-34a,¹⁷ miR10b, miR21,¹² and miRNA-373.³⁴

As shown in Table 7, highlighted in gray, 16 biomarker panels in peripheral blood can be observed^{19,22,27,29,30,42,44,54,61,81,93,98,106,111,112,123} and 2 biomarker panels in saliva^{74,86} with a sensitivity greater than 90%.

As shown in Table 8, highlighted in gray, 8 individual biomarkers and 7 panel biomarkers taken from peripheral blood had statistically significant area under the curve (AUC) values (greater than 0.80). However, 21 studies (20 in peripheral blood and 1 in urine) presented statistically significant *P* values (less than .05).

Sensitivity, specificity, AUC, or *P* value of the test analyzed was not described in 17 of the articles studied. These articles, however, did address frequencies and associations with patients' clinical pathological characteristics.

Methodological quality. The average MQ of the articles was 24.7 points (Table 9). Most of the articles were cases and control studies. None of the studies validate the sample size used, and from a methodological standpoint, there is a lack of homogeneity throughout all of the articles reviewed. Furthermore, not all studies describe the inclusion and exclusion criteria; and in some, the study population involves less than 100 patients. However, the study test is described in sufficient detail in all of these studies, and regardless of the results, the same reference standard was applied to all study subjects. Furthermore, in most of the articles, the objectives of the study were clear and precise.

Table 3. Characterization of primary articles based on the stage of the disease.

STAGES	NO. OF ARTICLES	NO. OF PATIENTS BY STAGES							
		TOTAL	I	II	III	IV	I AND II	I, II, AND III	III AND IV
I and II	15	1291	428	637	—	—	226	—	—
I, II, and III	20	1842	544	793	365	—	114	26	—
I, II, III, and IV	43	5382	1259	1800	846	406	625	—	446
Unknown	—	91	—	—	—	—	—	—	—
Total	78	8606	2231	3230	1211	406	965	26	446

Table 4. Characterization of primary articles based on the histological grade.

HISTOLOGICAL GRADE	NO. OF ARTICLES	NO. OF PATIENTS BY GRADE					
		TOTAL	1	2	3	1 AND 2	2 AND 3
1, 2, and 3	51	4695	646	2049	1676	274	50
2 and 3	3	153	—	110	43	—	—
3	1	5	—	—	5	—	—
Unknown	—	249	—	—	—	—	—
Total	55	5102	646	2159	1724	274	50

Table 5. Characterization of LB analyzed in primary articles.

BODY FLUIDS	NO. OF ARTICLES (N=136)
Peripheral blood	131 (96.3%)
Urine	3 (2.2%)
Saliva	1 (0.7%)
Saliva and peripheral blood	1 (0.7%)
BIOMARKERS USED IN PERIPHERAL BLOOD	NO. OF ARTICLES (N=132)
miRNA	75 (56.8%)
cfDNA	27 (20.5%)
ctDNA	8 (6.1%)
RNA	8 (6.1%)
DNA	5 (3.8%)
cfRNA	4 (3.0%)
Vesicles	4 (3.0%)
Others	1 (0.8%)
BIOMARKERS IN OTHER BODY FLUIDS	NO. OF ARTICLES (N=4)
miRNA	4 (100%)

Abbreviation: LB, liquid biopsy.

Discussion

There are 3 SRs related to this issue. One of them studied circulating tumor ctDNA with disease-free survival in patients with BC,¹⁴⁸ another described the clinical uses of LB in BC,¹⁴⁹ and the last one reported the validity of HER2/ERBB2 copy number variation in LB from BC patients.¹⁵⁰ This is the first SR aimed at establishing the main biomarkers obtained by LB, useful for the early diagnosis of BC. This evidence is highly relevant because the identification of biomarkers in the early diagnosis of BC would undoubtedly be valuable in reducing mortality rates resulting from this neoplasm.

The LB approach shows promise, given that the standard BC screening technology is limited. For instance, the sensitivity of mammography depends on age, ethnic origin, personal history, the experience of the radiologist, and the quality of the technique applied.¹⁵¹ In addition, ultrasound imaging of the breast also depends on the radiologist's expertise.¹⁴⁸

The primary use of serum markers CA-153, CA27-29, CA-125, and CEA is applied to monitor response to treatment. However, these markers are not recommended as screening methods in light of their low diagnostic sensitivity in early disease, and their lack of specificity.¹⁴⁸ Despite scientific technological advancements, LB has not yet been standardized as a routine diagnostic method in the clinical setting.

It is expected that the sequencing of the genetic material obtained through LB and the significant amount of research

being conducted in this area will prompt the implementation of this diagnostic tool for diagnosis, early detection, and follow-up of BC patients.

Our study found that only 4 primary articles researched the determination of biomarkers in urine and saliva, in such a way that although the use of LB in different bodily fluids has been described in BC, peripheral blood is still the most frequently used.

Contrary to what we reported in our previous review, in which most of the primary articles applied the determination of biomarkers using ctDNA,¹⁴⁹ in this SR, miRNA expressions were researched in 56 studies, with the aim of identifying biomarkers that differentiated between tumor tissue, healthy tissue, benign tumor breast tissue, and BC. This could be explained because the levels of cfDNA and ctDNA are significantly low in the preclinical stages, which reduces the sensitivity for screening.¹⁵² Thus, the Yong Tay study determined that although ctDNA had a specificity greater than 99% for detecting BC, its sensitivity was only 33%.¹⁵³

The explanation may be related to the miRNA biomarker normal signals derived from active metabolic processes occurring in all living, growing cells, increasing the pool of cellular biomarkers in earlier stages. The expressions obtained from cfDNA originate from tumor cells that detach from a tumor at an advanced stage of its development.¹⁵⁴

In 29 articles,^{23-25,28,59,60,68,73,79,80,85,89,92,95,96,99,103,105,108,109,115,117,119,121,126,128,129,136,141} sensitivity and specificity were reported individually for a single biomarker. In 21 of these, sensitivity was greater than 70%. However, in 10 of the studies in which sensitivity was less than 70%, and in one, 80% greater specificity was reported. In contrast, 26 articles reported sensitivity and specificity figures greater than 70% for combined biomarkers in the form of panels^{27,29,30,61,76,77,81,82,87,90,93,94,97,98,101,104,106,111-114,118,123,124,132,147} leaving only 6 panels with figures lower than 70%.^{61,76,93,114,124,132} Finally, 27 articles reported AUC and *P* values,^{26,62,63,67,71,72,78,83,84,88,102,110,116,120,122,125,127,130,133,135,137,139,140,142,143,145,146} and of these, AUC was lower than 0.7^{67,133,137} only in 3 articles. In contrast, 2 articles reported AUC values above 0.9^{26,88}

A study worth noting is by Hua Zhao, in which 31 miRNA biomarkers were found in White patients, and 18 in African Americans, all with adequate sensitivity and specificity to discriminate between BC and healthy subjects.¹⁴⁵ Despite the above, to be considered useful, a biomarker must meet a set of analyses and clinical criteria. The benefit provided by the biomarker is underscored in the clinical setting to reduce mortality from BC and clinical validity (the ability to accurately identify a patient with BC).^{155,156}

Consequently, even though research results are increasingly promising, the use of biomarkers for the early diagnosis of BC requires time to better understand the mechanisms related to circulating tumor material and to achieve adequate reproducibility.^{157,158}

Table 6. Individually tested biomarkers for early diagnosis of BC in peripheral blood.

AUTHOR	BIOMARKERS	SENSITIVITY (%)	SPECIFICITY (%)	AUC
Guo et al ¹⁰³	miR-155	84.2	88.1	NR
Garrido-Cano et al ⁵⁹	miR-99a-5p	68.8	65.3	NR
Swellam et al ⁸⁹	miR-17-5p	100	75.5	0.87
	miR-155	97.4	94.4	0.99
	miR-222	91.2	78.6	0.86
Kim et al ⁶⁰	miR-202	90	93	NR
Adam-Artigues et al ²³	miR-30b-5p	78.3	72.3	NR
Swellam et al ²⁴	PTEN	100	94	0.99
	SMAD4	100	100	0.85
Swellam et al ¹¹⁵	APC	93.4	95.4	0.95
	RARB2	95.5	92.4	0.94
Zhao et al ¹²⁶	miR-195	69	89.2	0.86
El-Ashmawy et al ⁶⁸	LncRNA-ATB	80	90	0.91
	FAM83H-AS1	70	76.7	0.74
Swellam et al ⁹²	miRNA-21	70.8	91.8	0.86
	miRNA-222	97.8	75.5	0.83
	miRNA-373	93.4	99	0.99
Guo and Zhang ¹³⁶	miR-181a	70.7	59.9	0.67
Swellam et al ⁸⁵	miR-27a	92	92	0.96
Bozhenko et al ¹⁰⁸	Mammaglobin	60.6	92.3	NR
Zhang et al ¹⁰⁹	LncRNA H19	56.7	86.7	0.81
Xia et al ¹²⁸	mtDNA	77	83	0.82
Zhang et al ⁹⁹	miR-30b-5p	80	100	NR
	miR-96-5p	53.3	100	NR
	miR-182-5p	53.3	92.3	NR
	miR-374b-5p	86.7	69.2	NR
	miR-942-5p	66.7	100	NR
Yousif et al ⁷³	miR-99a	76.7	95	0.93
Liu et al ²⁵	cfDNA methylation score	93	73.5	0.81
Wu et al ⁹⁵	HER2 mRNA	90	50	0.72
Hussein et al ⁹⁶	ALU-247	70	100	0.80
	ALU-115	67.5	100	0.78
	cfDNA integrity	77.5	90	0.83
Diansyah et al ²⁸	miR-21	92.3	81.2	0.92
Motaw et al ⁷⁹	Polymorphism -31G/C in survivin promoter gene	92.7	86.9	0.89
Souza et al ⁸⁰	hsa-miR-25-3p	92	83	0.92

(Continued)

Table 6. (Continued)

AUTHOR	BIOMARKERS	SENSITIVITY (%)	SPECIFICITY (%)	AUC
	hsa-miR-548a-5p	83	83	0.85
	hsa-miR-888-5p	83	75	0.86
	hsa-miR-548ar-5p	100	77	0.97
Fu et al ¹⁰⁵	miR-382-3p	52	92.5	0.74
	miR-598-3p	95	85	0.94
	miR-1246	93	75	0.90
	miR-184	87.5	71	0.74
Mishra et al ¹¹⁷	miR-195-5p-5p	77.8	100	0.90
	miR-495	100	66.7	0.90
Matamala et al ¹¹⁹	miR-505-5p	75	60	0.72
	miR-96-5p	73	66	0.72
Wu and Tanaka ¹²¹	Telomeric sequences in cfDNA	91.5	76.2	0.87
Wang-Johanning et al ¹²⁹	HERV-K type (HML-2) levels	80	84.6	0.89
Sun et al ¹⁴¹	miR-155	65	81.8	0.80
Bartkowiak et al ¹³	CCN1	80	99	0.90
Canatan et al ³⁷	Delta181CTmir155	83.3	82.4	0.86
	Delta181CTmir125a	83.3	64.7	0.85
	Delta192CTmir155	77.8	64.7	0.77
	Delta181CTmir21	72.2	64.7	0.70
El-Fattah et al ³⁸	Hotair	76	76	0.77
	Neat1	80	80	0.73
	Pai-1	64	68	0.71
	Opn	80	76	83.00
Elhelaly et al ¹⁴	ccfDNA	67	90	0.86
	DNA integrity index	51	90	0.73
	VEGF	74	34	0.55
Elhelbawy et al ³⁹	miR-30c	97.3	96.4	0.99
	miR-148a	94.7	90.9	0.99
Mahmoud et al ⁴⁹	miR-185-3p	95	66	0.84
	miR-301a-3p	85	78	0.90
Majumder et al ⁵¹	pri-miR526b	86	71.8	NR
Mohamed et al ¹⁷	miR-155	86	90	0.94
	miR-373	85	100	0.95
	miR-10b	60	93	0.77
	miR-34a	91	75	0.89
Ali et al ¹²	miR10b	97.1	100	0.99
	miR21	95.7	98.5	0.97

(Continued)

Table 6. (Continued)

AUTHOR	BIOMARKERS	SENSITIVITY (%)	SPECIFICITY (%)	AUC
Ameli-Mojarad et al ³³	hsa_circ_0005046	85	51	0.77
	hsa_circ_0001791	10	87	100
Bakr et al ³⁴	miRNA-373	90.8	98.4	0.98
Han et al ⁴¹	cfDNA	70	76	0.77
Liu et al ⁴⁶	hsa-miR-423-5p	66	68	68
Liu et al ⁴⁷	hsa-miR-21-5p	86.7	93.3	0.96

Abbreviations: AUC, area under curve; BC, breast cancer; cfDNA, circulating cell-free DNA; HER2, human epidermal growth factor 2; miRNA, microRNA; NR, not reported.

Table 7. Biomarker panels tested in LB for early diagnosis of BC.

FLUID	AUTHOR	BIOMARKER	SENSITIVITY (%)	SPECIFICITY (%)	AUC
Peripheral blood	Shan et al ¹⁰⁴	HOXD13, SFN, RASSF1A, P16, PCDHGB7, Hmlh1	79.6	72.4	NR
	Fan et al ⁹⁰	c-miR-16, c-miR21, c-miR155, c-miR195	88.9	86.7	0.936
	Luo et al ¹²³	miR-451, miR-148a, miR-27a, miR-30b	94.7	82.8	0.953
	Li et al ⁷⁶	miR-23a-3p,	86.5	45.9	0.699
		miR-130a-5p, miR-144-3p, miR-148a-3p, miR-152-3p			
	Li et al ⁸¹	miR let-7b-5p, miR-122-5p, miR-146b-5p, miR-210-3p, miR-215-5p	94.4	88.9	0.978
	Kodahl et al ¹²⁴	miR-15a, miR-18a, miR-107, miR-133a, miR-139-5p, miR-143, miR-145, miR-365, miR-425	83.3	41.2	0.665
	Fang et al ⁸²	hsa-miR-324-3p/hsa-miR-382-5p, hsa-miR21-3p/hsa-miR-324-3p, hsa-miR-30a-5p/has-miR-30e-5p, hsa-miR-221-3p/hsa-miR-324-3p	89.0	92.5	0.901
	Liu et al ⁹³	PD-1 + IL-10 + IL-2R α + CA15-3	93.3	61.4	0.811
	Salta et al ⁹⁴	APC, FOXA1, RASSF1A	81.8	76.9	NR
	Ozawa et al ⁶¹	EV-miR-142-5p, miR320a, miR-4433b-5p	93.3	68.8	0.8387
Peripheral blood	Liu et al ¹⁰¹	ANRIL, HIF1A-AS2, UCA1	76.0	97.1	0.934
	Murillo Carrasco et al ²⁷	PUM1 y RNasa P	100	93.8	0.989
	Raheem et al ⁸⁷	miR-34a y CA15-3	77.7	83.3	0.842
	Shimomura et al ¹¹¹	miR1246, miR1307-3p, miR4634, miR6861-5p, miR6875-5p	97.3	82.9	0.971
	Thakur et al ¹¹²	miR21, miR-221, miR-210	100	100	1
	Nunes et al ⁹⁷	Methylation cfDNA APC, FOXA1, RASSF1A (PanCancer)	72.4	73.5	NR
	Wang et al ²⁹	Methylation GCM2, ITPRIPL1 and CCDC181	92.9	87.5	0.961
Peripheral blood	Jang et al ³⁰	miR-1246, miR6, miR-24, miR-373	98.0	96.0	0.992
	Mijnes et al ⁷⁷	SPAG6 - PER1 - ITIH5 - NKX2-6	70.0	79.0	0.842
	Yu et al ⁹⁸	miR-21-3p, miR-21-5p, miR-99a-5p	97.9	73.5	0.895
	Uehiro et al ¹¹³	Methylation RASGRF1, CPXM1, HOXA10 and DACH1	86.2	82.7	0.876

(Continued)

Table 7. (Continued)

FLUID	AUTHOR	BIOMARKER	SENSITIVITY (%)	SPECIFICITY (%)	AUC
	Li et al ¹¹⁴	EGFR + PPM1E	77.9	50.7	0.734
	Wang et al ¹⁰⁶	Survivin + VEGF	95.4	84.0	0.898
	Zhang et al ¹¹⁸	miR-199a, miR-29c y miR-424	77.2	88.9	0.905
	Kloten et al ¹³²	RASSF1A, ITIH5 y DKK3	67.0	69.0	0.697
	Aaroe et al ¹⁴⁷	738 gene expression profile	80.6	78.3	0.88
	Adam-Artigues et al ³¹	miR-30b-5p, miR-99a-5p	82.3	87.5	0.92
	Itani et al ⁴²	miR-145, miR-425-5p, miR-139-5p, miR-130a	97.0	91.0	0.97
	Jang et al ⁴³	miR-1246, miR-202, miR-21, and miR-219B	85.3	93.3	0.96
	Kim et al ⁴⁴	miR-9, miR-16, miR-21, and miR-429	96.8	80.0	0.88
	Lopes et al ⁴⁸	miR-210, miR-152	83.3	68.0	0.75
	Rajkumar et al ¹⁹	Panel 6 (Adipsin, Leptin, Syndecan-1, Basic fibroblast growth factor, Interleukin 17B and Dickopff-3)	65.0	80.0	NR
		Panel 3 (SOSTDC1, DACT2, WIFI)	100	90.0	NR
	Sadeghi et al ⁵²	hsa-miR-106b-5, -126-3p, -140-3p, -193a-5p, -10b-5p	67.0	80.0	74
	Yu et al ²²	hsa_circ_0000091, hsa_circ_0067772, and hsa_circ_0000512	97.0	90.0	0.97
	Zhang et al ⁵⁴	miR-185-5p, miR-362-5p	92.7	92.3	0.96
	Zhang et al ⁵⁵	cg00594560 cg01348584 cg04541368 cg07458308 cg08279008 cg08402365 cg08599259 cg09760908 cg13973436 cg14140881 cg14868703 cg15321298 cg15634980 cg16304215 cg17632299 cg18087672 cg18786873 cg20072171 cg20631750 cg21501525 cg22778178 cg23035715 cg25566568 cg25756435 cg25924096 cg26371731	89.0	100	0.97
	Zhang et al ⁵⁶	tRF-Gly-CCC-046, tRF-Tyr-GTA-010 and tRF-Pro-TGG-001	84.0	67.0	0.73
	Zou et al ⁵⁷	let-7b-5p, miR-106a-5p, miR-19a-3p, miR-19b543 3p, miR-20a-5p, miR-223-3p, miR-25-3p, miR-425-544 5p, miR-451a, miR-92a-3p, miR-93-5p, and miR-16-545 5p	87.2	89.3	0.94
Saliva	Ando et al ⁸⁶	miR.21 y MMP1/CD63	95.0	79.0	NR
	Hirschfeld et al ⁷⁴	miR-424, miR-423, miR-660, let7-i	98.6	100	0.995

Abbreviations: AUC, area under curve; BC, breast cancer; cfDNA, circulating cell-free DNA; LB, liquid biopsy; NR, not reported.

Table 8. Analysis through AUC values or *P* values of different individual biomarkers and panel biomarkers in peripheral blood and urine. (Sensitivity and specificity were not reported in these primary articles.).

FLUID	AUTHOR	BIOMARKERS	AUC
Peripheral blood	Cuk et al ¹³³	miR-148b, miR-376c, miR-409-3p, miR-801	0.69
	Guo et al ⁶⁷	miR-21-5p, miR-1273g-3p	0.51
	Madhavan et al ¹²⁵	cfDNA integrity	0.75
	Yan et al ⁸³	Vesicles mR-375, mRNA-655-3p, mR-548b-5p	0.81
	Shin et al ¹¹⁶	miR-16	0.79
		miR-21	0.87
		miR-199a-5p	0.88
	Zhao et al ¹⁴⁵	hsa-miRNA-595	0.75
		hsa-miRNA-493	0.70
		hsa-miRNA-155	0.72
	Huang et al ⁸⁴	tDR-7816, tDR-5334, tDR-5236, tDR-6954 y tDR-4733	0.86
	Schrauder et al ¹³⁷	miR375, miR655-3p, miR548b-5p, miR24-2-5p	0.68
	Bao et al ²⁶	genomic instability MIR421, MIR128-1 y MIR128-2	0.92
	Tahmouresi et al ⁶²	LncRNAs DSCAM-AS1 y MANCR	0.76
	Loke et al ⁸⁸	miR-3162-5p, miR-6869-5p, miR-6781-5p, miR-1249, miR-7108-5p, miR 6804-3p, let-7e-3p y miR-1306-5p	0.95
	Farina et al ¹⁰²	hsa-miR-3124-5p, hsa-miR-1184, hsa-miR-4423-3p, hsa-miR-4529-3p, hsa-miR-7855, hsa-miR-766-3p	0.89
	Cappetta et al ⁵⁸	CYFIP1	0.73
	Giussani et al ⁴⁰	hsa-miR-423-5p-002340; hsa-miR-181c-000482; hsa-miR-625-002431; hsa-miR-301b-002392	0.71
		hsa-miR-423-5p-002340; hsa-miR-181c-000482; hsa-miR-301b-002392; hsa-miR-370-002275	0.68
		hsa-miR-181c-000482; hsa-miR-625-002431; hsa-miR-301b-002392	0.70
		hsa-miR-423-5p-002340; hsa-miR-625-002431; hsa-miR-370-002275	0.68
		hsa-miR-423-5p-002340; hsa-miR-625-002431; hsa-miR-301b-002392	0.66
		hsa-miR-181c-000482; hsa-miR-301b-002392; hsa-miR-370-002275	0.66
		hsa-miR-181c-000482; hsa-miR-301b-002392	0.63
	Lin et al ⁴⁵	circRNAs in plasma EVs	0.83
FLUID	AUTHOR	BIOMARKERS	AUC
Peripheral blood	Mahmoudian et al ⁵⁰	miR 25-3p	0.83
		miR29a-5p	0.84
		miR105-3p	0.82
		miR181b1-5p	0.88
		miR 335-5p	0.81
		miR 339-5p	0.77

(Continued)

Table 8. (Continued)

FLUID	AUTHOR	BIOMARKERS	AUC
	Wang et al ²¹	MIAT, LINC0096, LINC01140	0.87
	Wang et al ⁵³	circ_0000745, circ_0001531 and circ_0001640	0.91
	Su-Ying et al ¹³⁵	miRNA-155	<.05
	Liu et al ¹²²	methylation FHT	.002
	Delmonico et al ¹²⁰	ATM	.999
		p14	.582
		p16	.003
	Ahmed et al ¹⁴⁶	RASS + DAPK1	<.001
	Habeeb et al ⁷²	B-actin DNA integrity index	<.001
	Zhou et al ¹⁴²	polymorphism CD44 exon2	<.001
	Hamam et al ¹¹⁰	hsa-miRNA-4270	.001
	Chen et al ⁷⁸	Let-7a-5p	<.001
		miR-21-5p	<.001
	Kandula et al ¹³⁹	KRAS mRNA	.001
		PTEN mRNA	.006
	Sochor et al ¹²⁷	miRNA-155	.026
		miRNA-19a	.026
		miRNA-181b	.025
		miRNA-24	.009
	Kim et al ¹⁴³	Slit2 factor hypermethylation	<.001
	Radwan et al ¹⁴⁰	Mammaglobin	.017
	Holubekova et al ⁶³	miRNA-99a, miRNA-130a, miRNA-484 y miRNA-1260a	<.005
	Ramadan et al ¹³⁰	polymorphism Arg399Gln del gen XRCC1	.017
		polymorphism Arg194Trp del gen XRCC1	<.001
Urine	Bentata et al ⁷¹	* RNA splicing factors: HNRNPA1, HNRNPA2BQ, SRSF6, HNRNPA3, HNRNPK, HNRNPK exon 8 inclusion, PTBP1	.005

AUC, area under curve; cfDNA, circulating cell-free DNA; EV, extracellular vesicles; miRNA, microRNA.

The studies by Ming et al⁷⁰ and Yoshinami et al⁶⁴ also evaluated gene profiles and the presence of mutations, coinciding with Jimenez et al⁷⁵ and Duque et al,¹⁴⁹ in which the most frequently found mutations affected these loci: PIK3CA, TP53, and AKT1.

MiRNA-34a expression was low and miRNA-155 expression was elevated in BC vs controls with a significant *P* value. In addition, a correlation was demonstrated between the expression of miRNA-155 or miRNA-34a and TNM, presence of nodes, and histological grade.¹⁰⁷ Similarly, the Nadeem study agrees with this result by showing that low miRNA-195

expression was correlated with clinical stage, nodes, and histological grade.¹⁰⁰

However, the studies of Delmonico et al¹²⁰ and Ritter et al,⁶⁹ which analyzed methylation promoters in DNA in saliva and blood, as well as miRNA in urine and blood, did not find significant associations.

As is noted in Figure 2, 45 studies from China (33%), 18 from Egypt, 8 from the United States, and 8 from Germany representing more than half of the primary articles were found. The figures clearly indicate considerable interest in ongoing research by these countries, regarding this area.

Table 9. MQ scores of the primary articles studied by year (n=136).

YEAR	NO. OF CASES	MQ SCORE	
		M (SD)	MEDIAN (MAX-MIN)
2022	11 ²²⁻²²	25.6 (3.17)	26.0 (20-30)
2021	35 ²³⁻⁵⁷	26.5 (3.11)	27.0 (18-34)
2020	17 ⁵⁸⁻⁷⁴	22.4 (3.94)	22.0 (17-30)
2019	14 ⁷⁵⁻⁸⁸	24.5 (3.20)	24.5 (19-29)
2018	10 ⁸⁹⁻⁹⁸	24.2 (2.57)	24.5 (20-28)
2017	4 ⁹⁹⁻¹⁰²	22.8 (2.99)	22.0 (20-27)
2016	12 ¹⁰³⁻¹¹⁴	25.0 (3.52)	25.5 (19-31)
2015	8 ¹¹⁵⁻¹²²	23.1 (2.42)	23.0 (20-26)
2014	8 ¹²²⁻¹³⁰	23.6 (3.07)	24.5 (18-27)
2013	2 ^{131,132}	27.5 (2.12)	27.5 (26-29)
2012	9 ¹³³⁻¹⁴¹	25.4 (4.64)	25.0 (19-34)
2011	2 ^{142,143}	23.5 (0.71)	23.5 (23-24)
2010	4 ¹⁴⁴⁻¹⁴⁷	23.3 (5.12)	23.0 (18-29)

Abbreviations: MQ, methodological quality; SD, standard deviation.

Finally, and in reference to the MQ analysis of the primary studies (applying the MInCir-Dg scale),¹¹ it is important to emphasize that the median score was 25 points (17-34 points) and the average was 24.7 points, which represents a regular MQ. It should be highlighted that the lowest scores were associated with the type of design (most of the studies correspond to cases and controls) and not having estimated the sample size, which determines that the level of evidence of the primary articles is 2b and 3b for diagnostic studies, with a grade B recommendation.¹⁵⁹

Regarding the limitations of this study, the heterogeneity of the primary studies should be highlighted, as various methods are used, both for the identification of different biomarkers through LB (CTCs, ctDNA, cfDNA, miRNA, and EV-RNA), as well as the fact that some studies evaluate biomarkers individually, while others do so through combinations, establishing biomarker panels under evaluation. Another important limitation of the study was that none of the primary studies performed a sample size calculation, and in the articles, the number of participants varied and was inconsistent. In addition, some primary studies established sensitivity and specificity, while others only reported AUC values, and some only reported P values. These variables are made for a difficult analysis and comparison. Despite these limitations, the strengths of the primary studies are that a significant number maintained a methodological strategy to perform the analyses in test cohorts, and then in validation cohorts, maintaining groups of cases and control groups in each of the studies.

Conclusions

Integrating LB in clinical practice as part of the process for early diagnosis of BC is a promising alternative. The biomarkers, obtained from samples obtained through LB, consisting of miRNA molecules, were the most frequently investigated biomarkers in the early diagnosis of BC. MiR-21, miR-155, and miR-195 have the greatest potential to discriminate between healthy individuals, BC, and benign breast tumors. There are panels of combined biomarkers, with the potential to increase diagnostic sensitivity. Our results reflect that LB has a high sensitivity and specificity for the diagnosis of BC, especially in early stages.

Author Contributions

GD and CM contributed to the concept and design of the research. TO reviewed and approved the study design. GD, CA, JPH, and BG performed the selection process for article recruitment. GD, CA, DP, JPH, and BG extracted the data from the studies included, and MM and LA verified the extracted data. GD, CM, CA, and BG collaborated in the analysis of the results and presentation of data. GD and BG contributed to final revisions. Data sharing is not applicable to this article as no new data were created or analyzed in this study. All authors contributed in the drafting of the article.

ORCID iDs

Galo Duque <https://orcid.org/0000-0003-1306-9392>

Cristina Arias <https://orcid.org/0000-0002-8737-5109>

Lorena Albarracín <https://orcid.org/0000-0001-8902-1040>

REFERENCES

1. Ferlay J, Ervik M, Lam F, et al. *Global Cancer Observatory: Cancer Today*. Lyon, France: International Agency for Research on Cancer; 2020. <https://gco.iarc.fr/today>.
2. Welch HG, Prorok PC, O'Malley AJ, Kramer BS. Breast-cancer tumor size, overdiagnosis, and mammography screening effectiveness. *N Engl J Med*. 2016;375:1438-1447. doi:10.1056/nejmoa1600249.
3. Jacklyn G, McGeechan K, Irwig L, et al. Trends in stage-specific breast cancer incidence in New South Wales, Australia: insights into the effects of 25 years of screening mammography. *Breast Cancer Res Treat*. 2017;166:843-854. doi:10.1007/s10549-017-4443-x.
4. Inagaki M, Ota D, Tsuji M, Kobayashi Y, Mori M, Fukuuchi A. Using ultrasound findings to predict high tumor-infiltrating lymphocytes in triple negative breast cancer. *Cancer Res*. 2017;77:P4-02-04.
5. Pijpe A, Andriu N, Easton D, et al. Exposure to diagnostic radiation and risk of breast cancer among carriers of BRCA1/2 mutations: retrospective cohort study (GENE-RAD-RISK). *BMJ*. 2012;345:e5660. doi:10.1136/bmj.e5660.
6. Saslow D, Boetes C, Burke W, et al. American Cancer Society guidelines for breast screening with MRI as an adjunct to mammography. *CA Cancer J Clin*. 2007;57:75-89. doi:10.3322/canjclin.57.2.75.
7. An X, Quan H, Lv J, et al. Serum microRNA as potential biomarker to detect breast atypical hyperplasia and early-stage breast cancer. *Future Oncol*. 2018;14:3145-3161. doi:10.2217/fon-2018.
8. Tellez M, Knutson E, Perander M. Current status of circulating tumor cells, circulating tumor DNA, and exosomes in breast cancer liquid biopsies. *Int J Mol Sci*. 2020;21: 9457. doi:10.3390/ijms21249457.
9. Harbeck N, Penault F, Cortes J, et al. Breast cancer. *Nat Rev Dis Prim*. 2019;5:66. doi:10.1038/s41572-019-0111-2.
10. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *BMJ*. 2021;372:n71. doi:10.1136/bmj.n71.

11. Manterola C, Cartes-Velasquez R, Otzen T. Instructions for using the MInCir scale to assess methodological quality in diagnostic accuracy studies. *Int J Morphol.* 2016;34:78-84. doi:10.4067/S0717-95022016000100012.
12. Ali M, El Gayar D, Hany N, Ezzat AH, Zeyada R. MicroRNA 21 and microRNA 10b: early diagnostic biomarkers of breast cancer in Egyptian females. *J Egypt Natl Canc Inst.* 2022;34:16. doi:10.1186/s43046-022-00115-6.
13. Bartkowiak K, Heidrich I, Kwiatkowski M, et al. Circulating cellular communication network factor 1 protein as a sensitive liquid biopsy marker for early detection of breast cancer. *Clin Chem.* 2022;68:344-353. doi:10.1093/clinchem/hvab153.
14. Elhelaly R, Effat N, Hegazy MAEF, et al. Circulating cell free DNA and DNA integrity index as discriminating tools between breast cancer and benign breast disease. *Asian Pac J Cancer Prev.* 2022;23:545-552. doi:10.31557/APJCP.2022.23.2.545.
15. Lan J, Zhou YH, Zhang MX, Chen DQ, Wu MY, Yu ZY. Molecular profiles and circulating tumor-DNA detected in Chinese early stage breast cancer. *Gland Surg.* 2022;11:319-329. doi:10.21037/gs-21-691.
16. Li X, Tang X, Li K, Lu L. Evaluation of serum microRNAs (miR-9-5p, miR-17-5p, and miR-148a-3p) as potential biomarkers of breast cancer. *Biomed Res Int.* 2022;2022:9961412. doi:10.1155/2022/9961412.
17. Mohamed AA, Allam AE, Aref AM, et al. Evaluation of expressed microRNAs as prospective biomarkers for detection of breast cancer. *Diagnostics.* 2022;12:789. doi:10.3390/diagnostics12040789.
18. Panagopoulou M, Drosouli A, Fanidis D, et al. ENPP2 promoter methylation correlates with decreased gene expression in breast cancer: implementation as a liquid biopsy biomarker. *Int J Mol Sci.* 2022;23:3717. doi:10.3390/ijms23073717.
19. Rajkumar T, Amirtha S, Sridevi V, et al. Identification and validation of plasma biomarkers for diagnosis of breast cancer in South Asian women. *Sci Rep.* 2022;12:100. doi:10.1038/s41598-021-04176-w.
20. Sklias T, Vardas V, Pantazaka E, et al. PARP-1 expression and BRCA1 mutations in breast cancer patients' CTCs. *Cancers (Basel).* 2022;14:1731. doi:10.3390/cancers14071731.
21. Wang M, Liu H, Wu W, et al. Identification of differentially expressed plasma lncRNAs as potential biomarkers for breast cancer. *Clin Breast Cancer.* 2022;22:e135-e141. doi:10.1016/j.clbc.2021.05.003.
22. Yu Y, Zheng W, Ji C, et al. Tumor-derived circRNAs as circulating biomarkers for breast cancer. *Front Pharmacol.* 2022;13:811856. doi:10.3389/fphar.2022.811856.
23. Adam-Artigues A, Garrido-Cano I, Simón S, et al. Circulating miR-30b-5p levels in plasma as a novel potential biomarker for early detection of breast cancer. *ESMO Open.* 2021;6:100039. doi:10.1016/j.esmo.2020.100039.
24. Swellam M, Saad EA, Sabry S, Denewer A, Abdel Malak C, Abouzid A. Alterations of PTEN and SMAD4 methylation in diagnosis of breast cancer: implications of methyl II PCR assay. *J Genet Eng Biotechnol.* 2021;19:54. doi:10.1186/s43141-021-00154-x.
25. Liu J, Zhao H, Huang Y, et al. Genome-wide cell-free DNA methylation analyses improve accuracy of non-invasive diagnostic imaging for early-stage breast cancer. *Mol Cancer.* 2021;20:36. doi:10.1186/s12943-021-01330-w.
26. Bao S, Hu T, Liu J, et al. Genomic instability-derived plasma extracellular vesicle-microRNA signature as a minimally invasive predictor of risk and unfavorable prognosis in breast cancer. *J Nanobiotechnology.* 2021;19:1-14. doi:10.1186/s12951-020-00767-3.
27. Murillo Carrasco A, Acosta O, Ponce J, et al. PUM1 and RNase P genes as potential cell-free DNA markers in breast cancer. *J Clin Lab Anal.* 2021;35:e23720. doi:10.1002/jcla.23720.
28. Diansyah M, Prayogo AA, Sedana MP, et al. Early detection breast cancer: role of circulating plasma miRNA-21 expression as a potential screening biomarker. *Turkish J Med Sci.* 2021;51:562-569. doi:10.3906/sag-2005-138.
29. Wang SC, Liao LM, Ansar M, et al. Automatic detection of the circulating cell-free methylated DNA pattern of GCM2, ITPRIPL1 and CCDC181 for detection of early breast cancer and surgical treatment response. *Cancers (Basel).* 2021;13:1375. doi:10.3390/cancers13061375.
30. Jang JY, Kim YS, Kang KN, Kim KH, Park YJ, Kim CW. Multiple microRNAs as biomarkers for early breast cancer diagnosis. *Mol Clin Oncol.* 2021;14:31-19. doi:10.3892/mco.2020.2193.
31. Adam-Artigues A, Garrido-Cano I, Carbonell-Asins JA, et al. Identification of a two-microRNA signature in plasma as a novel biomarker for very early diagnosis of breast cancer. *Cancers (Basel).* 2021;13:2848. doi:10.3390/cancers13112848.
32. Ahuno ST, Doebley AL, Ahearn TU, et al. Circulating tumor DNA is readily detectable among Ghanaian breast cancer patients supporting non-invasive cancer genomic studies in Africa. *NPJ Precis Oncol.* 2021;5:83. doi:10.1038/s41698-021-00219-7.
33. Ameli-Mojarad M, Ameli-Mojarad M, Nourbakhsh M, Nazemalhosseini-Mojarad E. Circular RNA hsa_circ_0005046 and hsa_circ_0001791 may become diagnostic biomarkers for breast cancer early detection. *J Oncol.* 2021;2021:2303946. doi:10.1155/2021/2303946.
34. Bakr NM, Mahmoud MS, Nabil R, Boushnak H, Swellam M. Impact of circulating miRNA-373 on breast cancer diagnosis through targeting VEGF and cyclin D1 genes. *J Genet Eng Biotechnol.* 2021;19:84. doi:10.1186/s43141-021-00174-7.
35. Bandini E, Rossi T, Scarpi E, et al. Early detection and investigation of extracellular vesicles biomarkers in breast cancer. *Front Mol Biosci.* 2021;8:732900. doi:10.3389/fmolb.2021.732900.
36. Basit Z, Gull I, Tipu I, Abbas Z, Iqbal MM, Aslam MS. Quantitative analysis of plasma circulating cell-free nucleic acid based biomarkers in patients with breast cancer. *Mol Genet Microbiol Virol.* 2021;36:S23-S28. doi:10.3103/S0891416821050050.
37. Canatan D, Yilmaz Ö, Sönmez Y, et al. Circulating microRNAs as potential non-invasive biomarkers for breast cancer detection. *Acta Biomed.* 2021;92:2021028. doi:10.23750/abm.v92i2.9678.
38. El-Fattah AAA, Sadik NAH, Shaker OG, Kamal AM, Shahin NN. Serum long non-coding RNAs PVT1, HOTAIR, and NEAT1 as potential biomarkers in Egyptian women with breast cancer. *Biomolecules.* 2021;11:301. doi:10.3390/biom1120301.
39. Elhelbawy NG, Zaid IF, Khalifa AA, Gohar SF, Fouada EA. miRNA-148a and miRNA-30c expressions as potential biomarkers in breast cancer patients. *Biochem Biophys Rep.* 2021;27:101060. doi:10.1016/J.BBREP.2021.101060.
40. Giussani M, Ciniselli CM, De Cecco L, et al. Circulating miRNAs as novel non-invasive biomarkers to aid the early diagnosis of suspicious breast lesions for which biopsy is recommended. *Cancers (Basel).* 2021;13:4028. doi:10.3390/CANCERS13164028.
41. Han BW, Cai GX, Liu Q, et al. Noninvasive discrimination of benign and malignant breast lesions using genome-wide nucleosome profiles of plasma cell-free DNA. *Clin Chim Acta.* 2021;520:95-100. doi:10.1016/j.cca.2021.06.008.
42. Itani MM, Nassar FJ, Tfayli AH, et al. A signature of four circulating microRNAs as potential biomarkers for diagnosing early-stage breast cancer. *Int J Mol Sci.* 2021;22:6121. doi:10.3390/ijms22116121.
43. Jang JY, Ko EY, Jung JS, Kang KN, Kim YS, Kim CW. Evaluation of the value of multiplex microRNA analysis as a breast cancer screening in Korean women under 50 years of age with a high proportion of dense breasts. *J Cancer Prev.* 2021;26:258-265. doi:10.15430/jcp.2021.26.4.258.
44. Kim MW, Park S, Lee H, et al. Multi-miRNA panel of tumor-derived extracellular vesicles as promising diagnostic biomarkers of early-stage breast cancer. *Cancer Sci.* 2021;112:5078-5087. doi:10.1111/cas.15155.
45. Lin L, Cai GX, Zhai XM, et al. Plasma-derived extracellular vesicles circular RNAs serve as biomarkers for breast cancer diagnosis. *Front Oncol.* 2021;11:752651. doi:10.3389/fonc.2021.752651.
46. Liu D, Li B, Shi X, et al. Cross-platform genomic identification and clinical validation of breast cancer diagnostic biomarkers. *Aging (Albany NY).* 2021;13:4258-4273. doi:10.18632/aging.202388.
47. Liu M, Mo F, Song X, et al. Exosomal hsa-miR-21-5p is a biomarker for breast cancer diagnosis. *PeerJ.* 2021;9:e12147. doi:10.7717/peerj.12147.
48. Lopes BC, Braga CZ, Ventura FV, et al. MiR-210 and miR-152 as biomarkers by liquid biopsy in invasive ductal carcinoma. *J Pers Med.* 2021;11:31. doi:10.3390/jpm11010031.
49. Mahmoud MM, Sanad EF, Elshimy RAA, Hamdy NM. Competitive endogenous role of the LINC00511/miR-185-3p axis and miR-301a-3p from liquid biopsy as molecular markers for breast cancer diagnosis. *Front Oncol.* 2021;11:749753. doi:10.3389/fonc.2021.749753.
50. Mahmoudian M, Razmara E, Mahmud Hussen B, et al. Identification of a six-microRNA signature as a potential diagnostic biomarker in breast cancer tissues. *J Clin Lab Anal.* 2021;35:e24010. doi:10.1002/jcla.24010.
51. Majumder M, Ugwuagbo KC, Maiti S, Lala PK, Brackstone M. Pri-mir526b and pri-mir655 are potential blood biomarkers for breast cancer. *Cancers (Basel).* 2021;13:3838. doi:10.3390/cancers13153838.
52. Sadeghi H, Kamal A, Ahmadi M, et al. A novel panel of blood-based microRNAs capable of discrimination between benign breast disease and breast cancer at early stages. *RNA Biol.* 2021;18:747-756. doi:10.1080/15476286.2021.1998218.
53. Wang YW, Xu Y, Wang YY, et al. Elevated circRNAs circ_0000745, circ_0001531 and circ_0001640 in human whole blood: potential novel diagnostic biomarkers for breast cancer. *Exp Mol Pathol.* 2021;121:104661. doi:10.1016/j.yexmp.2021.104661.
54. Zhang K, Wang YY, Xu Y, et al. A two-miRNA signature of upregulated miR-185-5p and miR-362-5p as a blood biomarker for breast cancer. *Pathol Res Pract.* 2021;222:153458. doi:10.1016/j.prp.2021.153458.
55. Zhang X, Zhao D, Yin Y, et al. Circulating cell-free DNA-based methylation patterns for breast cancer diagnosis. *NPJ Breast Cancer.* 2021;7:106. doi:10.1038/s41523-021-00316-7.
56. Zhang Y, Bi Z, Dong X, et al. tRNA-derived fragments: tRF-Gly-CCC-046, tRF-Tyr-GTA-010 and tRF-Pro-TGG-001 as novel diagnostic biomarkers for breast cancer. *Thorac Cancer.* 2021;12:2314-2323. doi:10.1111/1759-7714.14072.
57. Zou X, Xia T, Li M, et al. MicroRNA profiling in serum: potential signatures

for breast cancer diagnosis. *Cancer Biomark.* 2021;30:41-53. doi:10.3233/CBM-201547.

58. Cappetta M, Fernandez L, Brignoni L, et al. Discovery of novel DNA methylation biomarkers for non-invasive sporadic breast cancer detection in the Latino population. *Mol Oncol.* 2020;15:473-486. doi:10.1002/1878-0261.12842.
59. Garrido-Cano I, Constâncio V, Adam-Artigues A, et al. Circulating mir-99a-5p expression in plasma: a potential biomarker for early diagnosis of breast cancer. *Int J Mol Sci.* 2020;21:7427. doi:10.3390/ijms21197427.
60. Kim J, Park S, Hwang D, Kim S, Il Lee H. Diagnostic value of circulating miR-202 in early-stage breast cancer in South Korea. *Medicina.* 2020;56:340. doi:10.3390/medicina56070340.
61. Ozawa P, Vieira E, Lemos D, et al. Identification of miRNAs enriched in extracellular vesicles derived from serum samples of breast cancer patients. *Biomolecules.* 2020;10:150. doi:10.3390/biom10010150.
62. Tahmouresi F, Razmara E, Pakravan K, et al. Upregulation of the long noncoding RNAs DSCAM-AS1 and MANCR is a potential diagnostic marker for breast carcinoma. *Biotechnol Appl Biochem.* 2020;68:1250-1256. doi:10.1002/bab.2048.
63. Holubekova V, Kolkova Z, Grendar M, et al. Pathway analysis of selected circulating miRNAs in plasma of breast cancer patients: a preliminary study. *Int J Mol Sci.* 2020;21:7288. doi:10.3390/ijms21197288.
64. Yoshinami T, Kagara N, Motooka D, et al. Detection of ctDNA with personalized molecular barcode NGS and its clinical significance in patients with early breast cancer. *Transl Oncol.* 2020;13:100787. doi:10.1016/j.tranon.2020.100787.
65. Delmonico L, Magalhães MAS, Gomes J, et al. Methylation profiling in promoter sequences of ATM and CDKN2A (p14ARF/p16INK4a) genes in blood and cfDNA from women with impalpable breast lesions. *Oncol Lett.* 2020;19:3003-3010. doi:10.3892/ol.2020.11382.
66. Ali S, Ahmed Z, Faraidun H. Circulatory miRNA-155, miRNA-21 target PTEN expression and activity as a factor in breast cancer development. *Cell Mol Biol.* 2020;66:44-50. doi:10.14715/cmb/2020.66.7.8.
67. Guo H, Zeng X, Li H, et al. Plasma mir-1273g-3p acts as a potential biomarker for early breast ductal cancer diagnosis. *An Acad Bras Cienc.* 2020;92:e20181203. doi:10.1590/0001-3765202020181203.
68. El-Ashmawy NE, Hussien FZ, El-Feky OA, Hamouda SM, Al-Ashmawy GM. Serum LncRNA-ATB and FAM83H-AS1 as diagnostic/prognostic non-invasive biomarkers for breast cancer. *Life Sci.* 2020;259:118193. doi:10.1016/j.lfs.2020.118193.
69. Ritter A, Hirschfeld M, Berner K, et al. Discovery of potential serum and urine-based microRNA as minimally-invasive biomarkers for breast and gynecological cancer. *Cancer Biomark.* 2020;27:225-242. doi:10.3233/CBM-190575.
70. Ming C, Takahashi Y, Chan HT, et al. Ultradeep targeted sequencing of circulating tumor DNA in plasma of early and advanced breast cancer. *Cancer Sci.* 2020;112:454-464. doi:10.1111/cas.14697.
71. Bentata M, Morgenstern G, Nevo Y, et al. Splicing factor transcript abundance in saliva as a diagnostic tool for breast cancer. *Genes (Basel).* 2020;11:880. doi:10.3390/genes11080880.
72. Habeeb WH, Suleiman AA, Al-Hitabee HT. Exploration of the beta-actin DNA integrity index as early genetic marker of presence of breast cancer. *Electron J Gen Med.* 2020;17:2-5. doi:10.29333/ejgm/7618.
73. Yousif AA, Eisa HA, Nawar AM, Abd El-latif MS, Behiry EG. Study of serum microRNA-99a relative expression as a diagnostic and prognostic noninvasive biomarker of breast cancer in Egyptian females. *Gene Rep* 2020;19:100593. doi:10.1016/j.genrep.2020.100593.
74. Hirschfeld M, Rücker G, Weiß D, et al. Urinary exosomal microRNAs as potential non-invasive biomarkers in breast cancer detection. *Mol Diagn Ther.* 2020;24:215-232. doi:10.1007/s40291-020-00453-y.
75. Jimenez B, Diaz G, Garrido A, et al. Detection of TP53 and PIK3CA mutations in circulating tumor DNA using next-generation sequencing in the screening process for early breast cancer diagnosis. *J Clin Med.* 2019;8:1183. doi:10.3390/jcm8081183.
76. Li X, Zou W, Wang Y, et al. Plasma-based microRNA signatures in early diagnosis of breast cancer. *Mol Genet Genomic Med.* 2019;8:e1092. doi:10.1002/mgg3.1092.
77. Mijnlieff J, Tiedemann J, Eschenbruch J, et al. Sniper: a novel hypermethylation biomarker panel for liquid biopsy based early breast cancer detection. *Oncotarget.* 2019;10:6494-6508. doi:10.18632/oncotarget.27303.
78. Chen C, Liu X, Chen C, Chen Q, Dong Y, Hou B. Clinical significance of let-7a-5p and miR-21-5p in patients with breast cancer. *Ann Clin Lab Sci.* 2019;49:302-308. doi:10.1371/journal.pone.0221779.
79. Motawi TMK, Zakhary NI, Darwish HA, Abdalla HM, Tadros SA. Significance of serum survivin and -31G/C gene polymorphism in the early diagnosis of breast cancer in Egypt. *Clin Breast Cancer.* 2019;19:e276-e282. doi:10.1016/j.clbc.2019.01.002.
80. Souza KCB, Evangelista AF, Leal LF, et al. Identification of cell-free circulating microRNAs for the detection of early breast cancer and molecular subtyping. *J Oncol.* 2019;2019:8393769. doi:10.1155/2019/8393769.
81. Li M, Zou X, Xia T, et al. A five-miRNA panel in plasma was identified for breast cancer diagnosis. *Cancer Med.* 2019;8:7006-7017. doi:10.1002/cam4.2572.
82. Fang R, Zhu Y, Hu L, et al. Plasma microRNA pair panels as novel biomarkers for detection of early stage breast cancer. *Front Physiol.* 2019;9:1879. doi:10.3389/fphys.2018.01879.
83. Yan C, Hu J, Yang Y, et al. Plasma extracellular vesicle-packed microRNAs as candidate diagnostic biomarkers for early-stage breast cancer. *Mol Med Rep.* 2019;20:3991-4002. doi:10.3892/mmr.2019.10669.
84. Huang Y, Ge H, Zheng M, et al. Serum rRNA-derived fragments (tRFs) as potential candidates for diagnosis of nontriple negative breast cancer. *J Cell Physiol.* 2019;235:2809-2824. doi:10.1002/jcp.29185.
85. Swellam M, Zahran RFK, Ghonem SA, Abdel-Malak C. Serum miRNA-27a as potential diagnostic nucleic marker for breast cancer. *Arch Physiol Biochem.* 2019;127:90-96. doi:10.1080/13813455.2019.1616765.
86. Ando W, Kikuchi K, Uematsu T, et al. Novel breast cancer screening: combined expression of miR-21 and MMP-1 in urinary exosomes detects 95% of breast cancer without metastasis. *Sci Rep.* 2019;9:13595. doi:10.1038/s41598-019-50084-5.
87. Raheem AR, Abdul-Rasheed OF, Al-Naqqash MA. The diagnostic power of circulating micro ribonucleic acid 34a in combination with cancer antigen 15-3 as a potential biomarker of breast cancer. *Saudi Med J.* 2019;40:1218-1226. doi:10.1553/smj.2019.12.24712.
88. Loke SY, Munusamy P, Koh GL, et al. A circulating miRNA signature for stratification of breast lesions among women with abnormal screening mammograms. *Cancers (Basel).* 2019;11:1872. doi:10.3390/cancers11121872.
89. Swellam M, Zahran RFK, Abo El-Sadat Taha H, El-Khazragy N, Abdel-Malak C. Role of some circulating MiRNAs on breast cancer diagnosis. *Arch Physiol Biochem.* 2018;125:456-464. doi:10.1080/13813455.2018.1482355.
90. Fan T, Mao Y, Sun Q, et al. Branched rolling circle amplification method for measuring serum circulating microRNA levels for early breast cancer detection. *Cancer Sci.* 2018;109:2897-2906. doi:10.1111/cas.13725.
91. Hesari A, Azizian M, Darabi H, et al. Expression of circulating miR-17, miR-25, and miR-133 in breast cancer patients. *J Cell Biochem.* 2018;120:7109-7114. doi:10.1002/jcb.27984.
92. Swellam M, El Magdoub HM, Hassan NM, Hefny MM, Sobieh ME. Potential diagnostic role of circulating MiRNAs in breast cancer: implications on clinicopathological characters. *Clin Biochem.* 2018;56:47-54. doi:10.1016/j.clinbiochem.2018.04.013.
93. Liu C, Sun B, Xu B, et al. A panel containing PD-1, IL-2R α , IL-10, and CA15-3 as a biomarker to discriminate breast cancer from benign breast disease. *Cancer Manag Res.* 2018;10:1749-1761. doi:10.2147/CMAR.S160452.
94. Salta S, Nunes SP, Fontes-Sousa M, et al. A DNA methylation-based test for breast cancer detection in circulating cell-free DNA. *J Clin Med.* 2018;7:420. doi:10.3390/jcm7110420.
95. Wu Y, Meng Q, Yang Z, et al. Circulating HER-2 mRNA in the peripheral blood as a potential diagnostic and prognostic biomarker in females with breast cancer. *Oncol Lett.* 2018;16:3726-3734. doi:10.3892/ol.2018.9091.
96. Hussein N, Mohamed S, Ahmed M. Plasma ALU-247, ALU-115, and cfDNA integrity as diagnostic and prognostic biomarkers for breast cancer. *Appl Biochem Biotechnol.* 2018;187:1028-1045. doi:10.1007/s12010-018.
97. Nunes SP, Moreira-Barbosa C, Salta S, et al. Cell-free DNA methylation of selected genes allows for early detection of the major cancers in women. *Cancers (Basel).* 2018;10:357. doi:10.3390/cancers10100357.
98. Yu X, Liang J, Xu J, et al. Identification and validation of circulating microRNA signatures for breast cancer early detection based on large scale tissue-derived data. *J Breast Cancer.* 2018;21:363-370. doi:10.4048/jbc.2018.21.e56.
99. Zhang K, Wang YW, Wang YY, et al. Identification of microRNA biomarkers in the blood of breast cancer patients based on microRNA profiling. *Gene.* 2017;619:10-20. doi:10.1016/j.gene.2017.03.038.
100. Nadeem F, Hanif M, Ahmed A, Jamal Q, Khan A. Clinicopathological features associated to miRNA-195 expression in patients with breast cancer: evidence of a potential biomarker. *Pak J Med Sci.* 2017;33:1242-1247. doi:10.12669/pjms.335.13008.
101. Liu M, Xing LQ, Liu YJ. A three-long noncoding RNA signature as a diagnostic biomarker for differentiating between triple-negative and non-triple-negative breast cancers. *Medicine (Baltimore).* 2017;96:e6222. doi:10.1097/MD.0000000000006222.
102. Farina N, Ramsey J, Cuke M, et al. Development of a predictive miRNA signature for breast cancer risk among high-risk women. *Oncotarget.* 2017;8:112170-112183. doi:10.18632/oncotarget.22750.
103. Guo J, Jiang W, Xu X, Zheng X. Serum microRNA-155 in early diagnosis and prognosis of breast cancer. *Int J Clin Exp Med.* 2016;9:10289-10296.
104. Shan M, Yin H, Li J, et al. Detection of aberrant methylation of a six-gene panel in serum DNA for diagnosis of breast cancer. *Oncotarget.* 2016;7:18485-18494. doi:10.18632/oncotarget.7608.
105. Fu L, Li Z, Zhu J, et al. Serum expression levels of microRNA-382-3p, -598-3p, -1246 and -184 in breast cancer patients. *Oncol Lett.* 2016;1212:269269-274274. doi:10.3892/ol.2016.4582.
106. Wang S, Xu J, Zhang Q. Clinical significance of survivin and vascular endothelial growth factor mRNA detection in the peripheral whole blood of breast cancer patients. *Neoplasma.* 2016;63:133-140. doi:10.4149/neo_2016_016.
107. Tan X, Guo L, Luo S, Wang W, Zhang K, Chen F. Expression profile of miR-155 and miR-34a in peripheral blood and tissues of breast cancer patients. *Int J Clin Exp Pathol.* 2016;9:7566-7570.

108. Bozhenko VK, Kharchenko NV, Vaskevich EF, et al. Mammaglobin in peripheral blood and tumor in breast cancer patients. *Biomed Khim.* 2016;62:453-457. doi:10.18097/PBMC20166204453.

109. Zhang K, Luo Z, Zhang Y, et al. Circulating lncRNA H19 in plasma as a novel biomarker for breast cancer. *Cancer Biomark.* 2016;17:187-194. doi:10.3233/CBM-160630.

110. Hamam R, Ali A, Alsaleh K, et al. microRNA expression profiling on individual breast cancer patients identifies novel panel of circulating microRNA for early detection. *Sci Rep.* 2016;6:25997. doi:10.1038/srep25997.

111. Shimomura A, Shiino S, Kawauchi J, et al. Novel combination of serum microRNA for detecting breast cancer in the early stage. *Cancer Sci.* 2016;107:326-334. doi:10.1111/cas.12880.

112. Thakur S, Grover RK, Gupta S, Yadav AK, Das BC. Identification of specific miRNA signature in paired sera and tissue samples of Indian women with triple negative breast cancer. *PLoS ONE.* 2016;11:e0158946. doi:10.1371/journal.pone.0158946.

113. Uehiro N, Sato F, Pu F, et al. Circulating cell-free DNA-based epigenetic assay can detect early breast cancer. *Breast Cancer Res.* 2016;18:129. doi:10.1186/s13058-016-0788-z.

114. Li Z, Guo X, Tang L, et al. Methylation analysis of plasma cell-free DNA for breast cancer early detection using bisulfite next-generation sequencing. *Tumour Biol.* 2016;37:13111-13119. doi:10.1007/s13277-016-5190-z.

115. Swellam M, Abdelmaksoud MD, Sayed Mahmoud M, Ramadan A, Abdel-Moneem W, Hefny MM. Aberrant methylation of APC and RAR β 2 genes in breast cancer patients. *IUBMB Life.* 2015;67:61-68. doi:10.1002/iub.1346.

116. Shin V, Siu J, Cheuk I, Ng E, Kwong A. Circulating cell-free miRNAs as biomarker for triple-negative breast cancer. *Br J Cancer.* 2015;112:1751-1759. doi:10.1038/bjc.2015.143.

117. Mishra S, Srivastava AK, Suman S, Kumar V, Shukla Y. Circulating miRNAs revealed as surrogate molecular signatures for the early detection of breast cancer. *Cancer Lett.* 2015;369:67-75. doi:10.1016/j.canlet.2015.07.045.

118. Zhang L, Xu Y, Jin X, et al. A circulating miRNA signature as a diagnostic biomarker for non-invasive early detection of breast cancer. *Breast Cancer Res Treat.* 2015;154:423-434. doi:10.1007/s10549-015.

119. Matamala N, Vargas MT, González-Cámpora R, et al. Tumor MicroRNA expression profiling identifies circulating microRNAs for early breast cancer detection. *Clin Chem.* 2015;61:1098-1106. doi:10.1373/clinchem.2015.238691.

120. Delmonico L, Moreira ADS, Franco MF, et al. CDKN2A (p14ARF/p16INK4a) and ATM promoter methylation in patients with impalpable breast lesions. *Hum Pathol.* 2015;46:1540-1547. doi:10.1016/j.humpath.2015.06.016.

121. Wu X, Tanaka H. Aberrant reduction of telomere repetitive sequences in plasma cell-free DNA for early breast cancer detection. *Oncotarget.* 2015;6:29795-29807. doi:10.18632/oncotarget.5083.

122. Liu L, Sun L, Li C, et al. Quantitative detection of methylation of FHIT and BRCA1 promoters in the serum of ductal breast cancer patients. *Biomed Mater Eng.* 2015;26:S2217-S2222. doi:10.3233/BME-151527.

123. Luo J, Zhao Q, Zhang W, et al. A novel panel of microRNAs provides a sensitive and specific tool for the diagnosis of breast cancer. *Mol Med Rep.* 2014;10:785-791. doi:10.3892/mmr.2014.2274.

124. Kodahl AR, Lyng MB, Binder H, et al. Novel circulating microRNA signature as a potential non-invasive multi-marker test in ER-positive early-stage breast cancer: a case control study. *Mol Oncol.* 2014;8:874-883. doi:10.1016/j.molonc.2014.03.002.

125. Madhavan D, Wallwiener M, Bents K, et al. Plasma DNA integrity as a biomarker for primary and metastatic breast cancer and potential marker for early diagnosis. *Breast Cancer Res Treat.* 2014;146:163-174. doi:10.1007/s10549-014.

126. Zhao FL, Dou YC, Wang XF, et al. Serum microRNA-195 is down-regulated in breast cancer: a potential marker for the diagnosis of breast cancer. *Mol Biol Rep.* 2014;41:5913-5922. doi:10.1007/s11033-014.

127. Sochor M, Basova P, Pesta M, et al. Oncogenic microRNAs: miR-155, miR-19a, miR-181b, and miR-24 enable monitoring of early breast cancer in serum. *BMC Cancer.* 2014;14:448. doi:10.1186/1471-2407.

128. Xia P, Wang HJ, Geng TT, et al. Mitochondrial DNA levels in blood and tissue samples from breast cancer patients of different stages. *Asian Pac J Cancer Prev.* 2014;15:1339-1344. doi:10.7314/APJCP.2014.15.3.1339.

129. Wang-Johanning F, Li M, Esteva F, et al. Human endogenous retrovirus type K antibodies and mRNA as serum biomarkers of early-stage breast cancer. *Int J Cancer.* 2014;125:1-25. doi:10.1002/ijc.24801.

130. Ramadan RA, Desouky LM, Elnagggar MA, Moaaz M, Elsherif AM. Association of DNA repair genes XRCC1 (Arg399Gln), (Arg194Trp) and XRCC3 (Thr241Met) polymorphisms with the risk of breast cancer: a case-control study in Egypt. *Genet Test Mol Biomarkers.* 2014;18:754-760. doi:10.1089/gtmb.2014.0191.

131. Godfrey A, Xu Z, Weinberg C, et al. Serum microRNA expression as an early marker for breast cancer risk in prospectively collected samples from the Sister Study cohort. *Breast Cancer Res.* 2013;15:R42. doi:10.1186/bcr3428.

132. Kloten V, Becker B, Winner K, et al. Promoter hypermethylation of the tumor-suppressor genes ITIH5, DKK3, and RASSF1A as novel biomarkers for blood-based breast cancer screening. *Breast Cancer Res.* 2013;15:R4. doi:10.1186/bcr3375.

133. Cuk K, Zucknick M, Heil J, et al. Circulating microRNAs in plasma as early detection markers for breast cancer. *Int J Cancer.* 2012;132:1602-1612. doi:10.1002/ijc.27799.

134. Fu F, Wang C, Huang M, Song C, Lin S, Huang H. Polymorphisms in second intron of the FGFR2 gene are associated with the risk of early-onset breast cancer in Chinese Han women. *Tohoku J Exp Med.* 2012;226:221-229. doi:10.1620/tjem.226.221.

135. Su-Ying Z, Qian W, Fen G, Chun-Bing Z, Xue-Wen Y. Increased expression of microRNA-155 in the serum of women with early-stage breast cancer. *Lab Med.* 2012;43:177-180. doi:10.1309/LMD71DRHD9JPWBR.

136. Guo LJ, Zhang QY. Decreased serum miR-181a is a potential new tool for breast cancer screening. *Int J Mol Med.* 2012;30:680-686. doi:10.3892/ijmm.2012.1021.

137. Schrauder MG, Strick R, Schulz-Wendtland R, et al. Circulating microRNAs as potential blood-based markers for early stage breast cancer detection. *PLoS ONE.* 2012;7:e29770. doi:10.1371/journal.pone.0029770.

138. Oloomi M, Bouzari S, Mohagheghi MA, Khodayaran-Tehrani H. Molecular markers in peripheral blood of Iranian women with breast cancer. *Cancer Micro-environ.* 2012;6:109-116. doi:10.1007/s12307-012-0118-7.

139. Kandula M, Kumar K, Kanth R, Addala L, Murthy S, Raju A. Differences in gene expression profiles between human breast tissue and peripheral blood samples for breast cancer detection. *J Cancer Sci Ther.* 2012;4:379-385. doi:10.4172/1948-5956.1000171.

140. Radwan WM, Moussa HS, Essa ES, Kandil SH, Kamel AM. Peripheral blood mammaglobin gene expression for diagnosis and prediction of metastasis in breast cancer patients. *Asia Pac J Clin Oncol.* 2012;9:66-70. doi:10.1111/j.1743-7563.2012.01556.x.

141. Sun Y, Wang M, Lin G, et al. Serum microRNA-155 as a potential biomarker to track disease in breast cancer. *PLoS ONE.* 2012;7:e47003. doi:10.1371/journal.pone.0047003.

142. Zhou J, Nagarkatti PS, Zhong Y, Zhang J, Nagarkatti M. Implications of single nucleotide polymorphisms in CD44 exon 2 for risk of breast cancer. *Eur J Cancer Prev.* 2011;20:396-402. doi:10.1097/CEJ.0b013e3283463943.

143. Kim GE, Lee KH, Choi YD, et al. Detection of Slit2 promoter hypermethylation in tissue and serum samples from breast cancer patients. *Virchows Arch.* 2011;459:383-390. doi:10.1007/s00428-011.

144. Brooks JD, Cairns P, Shore RE, et al. DNA methylation in pre-diagnostic serum samples of breast cancer cases: results of a nested case-control study. *Cancer Epidemiol.* 2010;34:717-723. doi:10.1016/j.canep.2010.05.006.

145. Zhao H, Shen J, Medico L, Wang D, Ambrosone CB, Liu S. A pilot study of circulating miRNAs as potential biomarkers of early stage breast cancer. *PLoS ONE.* 2010;5:e13735. doi:10.1371/journal.pone.0013735.

146. Ahmed IA, Pusch CM, Hamed T, et al. Epigenetic alterations by methylation of RASSF1A and DAPK1 promoter sequences in mammary carcinoma detected in extracellular tumor DNA. *Cancer Genet Cytogenet.* 2010;199:96-100. doi:10.1016/j.cancergen.2010.02.007.

147. Aaroe J, Lindahl T, Dumeaux V, et al. Gene expression profiling of peripheral blood cells for early detection of breast cancer. *Breast Cancer Res.* 2010;12:R7. doi:10.1371/journal.pone.0013735.

148. Cullinane C, Fleming C, O'Leary DP, et al. Association of circulating tumor DNA with disease-free survival in breast cancer: a systematic review and meta-analysis. *JAMA Netw Open.* 2020;3:e2026921. doi:10.1001/jamanetworkopen.2020.26921.

149. Duque G, Manterola C, Otzen T, et al. Clinical utility of liquid biopsy in breast cancer: a systematic review. *Clin Genet.* 2022;101:285-295.

150. Verschoor N, Deger T, Jager A, Sleijfer S, Wiltink SM, Martens JWM. Validity and utility of HER2/ERBB2 copy number variation assessed in liquid biopsies from breast cancer patients: a systematic review. *Cancer Treat Rev.* 2022;106:102384.

151. Li J, Guan X, Fan Z, et al. Non-invasive biomarkers for early detection of breast cancer. *Cancers (Basel).* 2020;12:2767.

152. D'Amico P, Corvaja C, Gerratana L, Reduzzi C, Curiel G, Cristofanilli M. The use of liquid biopsy in early breast cancer: clinical evidence and future perspectives. *J Cancer Metastasis Treat.* 2021;7:3.

153. Kwang YT, Tan PH. Liquid biopsy in breast cancer: a focused review. *Arch Pathol Lab Med.* 2020;145:678-686. doi:10.5858/arpa.2019-0559-RA.

154. Amintas S, Vendrely V, Dupin C, et al. Next-generation cancer biomarkers: extracellular vesicle DNA as a circulating surrogate of tumor DNA. *Front Cell Dev Biol.* 2021;8:622048.

155. Bossuyt PM. Clinical validity: defining biomarker performance. *Scand J Clin Lab Invest Suppl.* 2010;242:46-52.

156. Pletcher M, Pignone M. Evaluating the clinical utility of a biomarker: a review of methods for estimating health impact. *Circulation.* 2011;123:1116-1124.

157. Heidrich I, Ackar L, Mossahebi P, Pantel K. Liquid biopsies: potential and challenges. *Int J Cancer.* 2020;148:528-545.

158. Chi K. The tumour trail left in blood. *Nature.* 2016;532:269-271.

159. Centre for Evidence-based Medicine (CEBM)-levels of evidence (March 2009). <https://www.cebm.ox.ac.uk/resources/levels-of-evidence/oxford-centre-for-evidence-based-medicine-levels-of-evidence-march-2009>. Accessed November 12, 2021.