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1. Introduction

Automorphism groups of compact Riemann surfaces have been extensively studied, going back to Wiman, 
Klein and Hurwitz, among others.

It is classically known that the full automorphism group of a Riemann surface of genus g ≥ 2 is finite; its 
size is bounded by 84(g−1). Moreover, there are infinitely many integers g for which this bound is attained; 
see [36].

Usually when additional conditions are imposed on a group of automorphisms, a smaller bound for its 
order is obtained; for example, classical results assert that in the abelian and cyclic case these bounds are 
4g + 4 and 4g + 2 respectively.

It is an interesting problem to understand the extent to which the order of the full automorphism group 
determines the Riemann surface; see for example [32], [33] and [39].

Very recently, Costa and Izquierdo have proved that the maximal order of the form ag+b (for fixed integers 
a and b) of the full automorphism group of equisymmetric and one-dimensional families of Riemann surfaces 
of genus g ≥ 2 appearing in all genera is 4g + 4. Moreover, they constructed explicit families attaining this 
bound; see [11]. The second possible largest order is 4g.
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Bujalance, Costa and Izquierdo have recently determined all those Riemann surfaces of genus g ≥ 2 with 
exactly 4g automorphisms. More precisely, following [6, Theorem 7], if g is different from the exceptional 
values 3, 6, 12, 15 and 30, then the Riemann surfaces of genus g admitting exactly 4g automorphisms form 
an equisymmetric one-dimensional family, denoted by Fg. Moreover, if S is a Riemann surface in Fg then 
its full automorphism group G is isomorphic to a dihedral group, and the corresponding quotient S/G has 
genus zero.

The present article is devoted to study further properties of each member S of the family Fg and of its 
Jacobian variety JS. In spite of the fact that the results of this paper might be stated for each integer g ≥ 2
different from 3, 6, 12, 15 and 30, for the sake of simplicity we shall restrict to the case g = q ≥ 5 prime.

This paper is organized as follows.
In Section 2 we shall introduce the basic background; namely, group actions on Riemann surfaces, com-

plex tori and abelian varieties, representation of groups, and the group algebra decomposition theorem for 
Jacobians.

In Section 3 we shall take advantage of the hyperellipticity of the Riemann surfaces in the family Fq

(see [6, Remark 9]) to determine explicit algebraic descriptions of them. In addition, with respect to these 
models, we will provide realizations of their full automorphism groups.

If a finite group G acts on a Riemann surface S, then this action induces a G-equivariant isogeny de-
composition of JS into a product of abelian subvarieties, of the form JS ∼G Πr

i=1B
ni
i . This decomposition 

(known as the group algebra decomposition of JS with respect to G; see [8] and [34]) only depends on the al-
gebraic structure of the group; however, further information such as the dimension of each factor Bi depends 
on the geometry of the action. Following [44], the dimension of each Bi is explicitly given after choosing a 
generating vector of G representing the action on S. Because of this dependence, the general question arises 
about how the choice of such a generating vector affects the group algebra decomposition of JS.

In Section 4 we shall give a complete answer to the aforementioned question, for each Riemann surface 
S in the family Fq. To prove this result, we shall begin by proving some lemmata concerning the rational 
representations of G, and the possible generating vectors representing the action. We shall also prove that 
each Jacobian JS contains an elliptic curve, and that it decomposes into a product of Jacobians of quotients 
of S.

In Section 5 we shall explore the fields of definition of the Riemann surfaces S in the family Fq. More 
precisely, we shall give a characterization for when S and JS can be defined, as projective algebraic varieties, 
by polynomials with real coefficients, and by polynomials with algebraic coefficients. Furthermore, in the 
latter case we prove that JS decomposes in terms of abelian subvarieties which can also be defined by 
polynomials with algebraic coefficients. We shall also observe that S and JS can be defined over the field 
of moduli of S.

Finally, in Section 6 we shall compute the dimension of a special variety in the moduli space Aq of 
principally polarized abelian varieties of dimension q associated to each Riemann surface S in the family 
Fq, called the Shimura family; see [54]. Moreover, for the particular case q = 5, we will be able to describe 
its elements – by exhibiting period matrices – as members of a three-dimensional family in A5 admitting a 
fixed action of the dihedral group of order 20.

Acknowledgments. The author wishes to express his gratitude to Anita M. Rojas for sharing her SAGE 
routines with him.

2. Preliminaries

2.1. Group actions on Riemann surfaces

Let S be a compact Riemann surface and let G be a finite group. We denote by Aut(S) the full auto-
morphism group of S, and say that G acts on S if there is a group monomorphism ψ : G → Aut(S). The 
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space of orbits S/G of the action of G ∼= ψ(G) on S is naturally endowed with a Riemann surface structure 
in such a way that the natural projection π : S → S/G is holomorphic. The degree of π is the order |G| of 
G and the multiplicity of π at p ∈ S is |Gp|, where Gp denotes the stabilizer of p in G. If |Gp| �= 1 then p is 
called a branch point and its image by π is a branch value.

Let {p1, . . . , pl} be a maximal collection of non-G-equivalent branch points of π. The signature of the 
action of G on S is the tuple (γ; m1, . . . , ml) where γ is the genus of the quotient S/G and mi = |Gpi

|. 
If γ = 0 we write (m1, . . . , mr) for short. The branch value π(pi) is said to be marked with mi. The 
Riemann–Hurwitz formula relates these numbers, the order of G and the genus g of S; namely

2g − 2 = |G|(2γ − 2) + |G| · Σl
i=1(1 − 1

mi
).

A 2γ + l tuple (a1, . . . , aγ , b1, . . . , bγ , c1, . . . , cl) of elements of G is called a generating vector of G of type 
(γ; m1, . . . , ml) if the following conditions are satisfied:

(a) G is generated by the elements a1, . . . , aγ , b1, . . . , bγ , c1, . . . , cl,
(b) order(ci) = mi for 1 ≤ i ≤ l, and
(c) Πγ

j=1[aj , bj ]Πl
i=1ci = 1, where [ai, bi] = aibia

−1
i b−1

i .

Riemann’s existence theorem ensures that the group G acts on a Riemann surface of genus g with 
signature (γ; m1, . . . , ml) if and only if the Riemann–Hurwitz formula is satisfied and G has a generating 
vector of type (γ; m1, . . . , ml). See [4].

If we denote by Cj the conjugacy class of the subgroup Gpj
in G then, the tuple (γ; [m1, C1], . . . , [ml, Cl])

is called a geometric signature for the action of G on S. This concept was introduced in [44] in order to 
control the behavior of the intermediate coverings (S → S/H for a subgroup H of G) and the dimension of 
the factors arising in the group algebra decomposition of JS (see Subsection 2.6).

We shall say that the geometric signature (γ; [m1, C1], . . . , [ml, Cl]) is associated to the generating vector 
(a1, . . . , aγ , b1, . . . , bγ , c1, . . . , cl) because the subgroup of G generated by ci is in the conjugacy class Ci.

2.2. Topologically equivalent actions

Let Hom+(S) denote the group of orientation preserving homeomorphisms of S. Two actions ψ1 and ψ2
of G on S are topologically equivalent if there exist ω ∈ Aut(G) and h ∈ Hom+(S) such that

ψ2(g) = hψ1(ω(g))h−1 for all g ∈ G. (2.1)

In terms of Fuchsian groups, the action of G on S can be constructed by means of a pair of Fuchsian 
groups Γ � Δ such that S = H/Γ, with H denoting the upper half-plane, and an epimorphism θ : Δ → G

with kernel Γ. The group Γ is torsion-free and isomorphic to the fundamental group of S. It is also known 
that Δ has a presentation given by generators α1, . . . , αγ , β1, . . . , βγ , γ1, . . . , γl and relations

γm1
1 = · · · = γml

l = Πγ
j=1[αj , βj ]Πl

i=1γi = 1.

Note that there is a bijective correspondence between the set of generating vectors of G of type 
(γ, m1, . . . , ml) and the set K of epimorphism of groups Δ → G with torsion-free kernel.

Each orientation preserving homeomorphism h satisfying (2.1) yields a group automorphism h∗ of Δ; we 
denote by B the subgroup of Aut(Δ) consisting of them. The group Aut(G) × B acts on K by

((ω, h∗), θ) �→ ω ◦ θ ◦ (h∗)−1
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and therefore it also acts on the set of generating vectors of G of type (γ, m1, . . . , ml).
Let σ1 and σ2 be two generating vectors of type (γ, m1, . . . , ml) of G. Then σ1 and σ2 define topologically 

equivalent actions if and only if σ1 and σ2 are in the same (Aut(G) × B)-orbit (see [4]; also [22] and [35]).
We refer to the classical articles [48] and [49] for more details concerning the relationship between Riemann 

surfaces, generating vectors and Fuchsian groups.

2.3. Abelian varieties

A g-dimensional complex torus X = V/Λ is the quotient of a g-dimensional complex vector space V by a 
lattice Λ. Each complex torus is an abelian group and a g-dimensional compact connected complex analytic 
manifold.

Complex tori can be described in a very concrete way, as follows. Choose bases

BV = {vi}gi=1 and BΛ = {λj}2g
j=1 (2.2)

of V as a C-vector space, and of Λ as a Z-module, respectively. Then there are complex constants {πij}
such that λj = Σg

i=1πijvi. The matrix

Π = (πij) ∈ M(g × 2g,C)

represents X, and is known as the period matrix for X with respect to (2.2).
A homomorphism between complex tori is a holomorphic map which is also a homomorphism of groups. 

We shall denote by End(X) the ring of endomorphism of X. An automorphism of a complex torus is a 
bijective homomorphism into itself.

Special homomorphisms are isogenies: these are surjective homomorphisms with finite kernel; isogenous 
tori are denoted by X1 ∼ X2. The isogenies of a complex torus X into itself are the invertible elements of 
the ring of rational endomorphisms

EndQ(X) := End(X) ⊗Z Q.

An abelian variety is a complex torus which is also a projective algebraic variety. Each abelian variety 
X = V/Λ admits a polarization; namely, a non-degenerate real alternating form Θ on V such that for all 
v, w ∈ V

Θ(iv, iw) = Θ(v, w) and Θ(Λ × Λ) ⊂ Z.

If the elementary divisors of Θ|Λ×Λ are {1, g. . ., 1}, where g is the dimension of X, then the polarization 
Θ is called principal and the pair (X, Θ) is called a principally polarized abelian variety (from now on we 
write ppav for short).

Let (X = V/Λ, Θ) be a ppav of dimension g. Then there exists a basis for Λ such that the matrix for Θ
with respect to it is

J =
(

0 Ig
−Ig 0

)
with Ig denoting the g × g identity matrix; such a basis is termed symplectic. Furthermore, there exist a 
basis for V and a symplectic basis for Λ which respect to which the period matrix for X is Π = (Ig Z), 
where Z belongs to the Siegel space

Hg = {Z ∈ M(g,C) : Z = Zt and Im(Z) > 0},

with Zt denoting the transpose matrix of Z.
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2.4. Moduli space of ppavs

An isomorphism between ppavs is an isomorphism of the underlying complex torus structures that 
preserves the polarizations.

Let (Xi, Θi) be a ppav of dimension g, and let Πi = (Ig Zi) be the period matrix of Xi with respect to 
chosen basis, for i = 1, 2. Each isomorphism between (X1, Θ1) and (X2, Θ2) is given by a pair of matrices

M ∈ GL(g,C) and R ∈ GL(2g,Z)

(corresponding to the analytic and rational representations, respectively) such that

M(Ig Z1) = (Ig Z2)R. (2.3)

Since R preserves the principal polarizations, it belongs to the symplectic group

Sp(2g,Z) = {R ∈ M(2g,Z) : RtJR = J}.

Now, it follows from (2.3) that the correspondence

Sp(2g,Z) × Hg → Hg (
(
A B
C D

)
, Z) �→ (A + ZC)−1(B + ZD)

defines an action which identifies period matrices representing isomorphic ppavs. Hence, the quotient

Hg → Ag := Hg/Sp(2g,Z)

is the moduli space of isomorphism classes of ppavs of dimension g.
We refer to [3] and [12] for more details on abelian varieties.

2.5. Representations of groups

Let G be a finite group and let ρ : G → GL(V ) be a complex representation of G. Abusing notation, we 
shall also write V to refer to the representation ρ. The degree dV of V is the dimension of V as complex 
vector space, and the character χV of V is the map obtained by associating to each g ∈ G the trace of the 
matrix ρ(g). Two representations V1 and V2 are equivalent if and only if their characters agree; we write 
V1 ∼= V2. The character field KV of V is the field obtained by extending the rational numbers by the values 
of the character χV . The Schur index sV of V is the smallest positive integer such that there exists a field 
extension LV of KV of degree sV over which V can be defined.

It is a known fact that for each rational irreducible representation W of G there is a complex irreducible 
representation V of G such that

W ⊗Q C ∼= (⊕σV
σ)⊕ sV· · · ⊕(⊕σV

σ) = sV (⊕σV
σ) ,

where the sum ⊕σ is taken over the Galois group associated to the extension Q ≤ KV . We say that V is 
associated to W .

We refer to [47] for further basic facts related to representations of groups.
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2.6. Group algebra decomposition theorem for Jacobians

Let S be a Riemann surface of genus g. Let us denote by H 1,0(S, C) the g-dimensional complex vector 
space of the holomorphic 1-forms on S, and by H1(S, Z) the first homology group of S. The Jacobian variety
of S is the ppav of dimension g defined as

JS = (H 1,0(S,C))∗/H1(S,Z),

endowed with the principal polarization given by the geometric intersection number.
The relevance of the Jacobian variety lies in the well-known Torelli’s theorem, which asserts that two 

compact Riemann surfaces are isomorphic if and only if their Jacobians are isomorphic as ppavs.
Let G be a finite group and let W1, . . . , Wr be its rational irreducible representations. It is known that 

each action of G on S induces a Q-algebra homomorphism Φ : Q[G] → EndQ(JS). Each α ∈ Q[G] defines 
an abelian subvariety of JS; namely,

Aα := Im(α) = Φ(lα)(JS) ⊂ JS,

where l is some positive integer chosen such that lα ∈ End(JS).
The decomposition 1 = e1 + · · ·+ er ∈ Q[G], where ei is a central idempotent (uniquely determined and 

canonically computed from Wi) yields an isogeny

JS ∼ Ae1 × · · · ×Aer

which is G-equivariant; this is called the isotypical decomposition of JS. See [34].
Additionally, there are idempotents fi1, . . . , fini

such that ei = fi1 + · · · + fini
where ni = dVi

/sVi
, with 

Vi being a complex irreducible representation associated to Wi. These idempotents provide ni subvarieties 
of JS which are isogenous to each other; let Bi be one of them, for each i. Then

JS ∼G Bn1
1 × · · · ×Bnr

r (2.4)

which is called the group algebra decomposition of JS with respect to G. See [8].
If W1 denotes the trivial representation, then n1 = 1 and B1 ∼ J(S/G).
Let H be a subgroup of G. It was proved in [8] that the group algebra decomposition (2.4) of JS with 

respect to G yields the following isogeny decomposition:

J(S/H) ∼ B
nH

1
1 × · · · ×B

nH
r

r where nH
i = dHVi

/sVi
(2.5)

with dHVi
denoting the dimension of the vector subspace V H

i of Vi consisting of those elements which are 
fixed under H.

The previous result provides a criterion to identify if a factor in (2.4) is isogenous to the Jacobian of 
a quotient of S (cf. [30]). Namely, if a subgroup N of G satisfies dNVi

= sVi
for some fixed 2 ≤ i ≤ r and 

dNVl
= 0 for all l �= i such that Bl �= 0, then

Bi ∼ J(S/N). (2.6)

Let us now suppose that τ = (γ; [m1, C1], . . . , [ml, Cl]) is the geometric signature of the action of G on S. 
Let Gk be a representative of the conjugacy class Ck for 1 ≤ k ≤ l. In [44] it was proved that the dimension 
of the factor Bi in (2.4) is

dim(Bi) = ki(dVi
(γ − 1) + 1Σl

k=1(dVi
− dGk

V )) (2.7)
2 i
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where ki is the degree of the extension Q ≤ LVi
. To avoid confusion, we shall write dimτ (Bi) instead of 

dim(Bi) to refer to the dependence on τ .
For decompositions of Jacobians with respect to special groups, see, for example, the articles [7], [9], [24], 

[29], [31], [40], [42], [43] and [46].

3. Algebraic description of Fq

Let q ≥ 5 be a prime number. Let S denote a Riemann surface in the family Fq and let

G = 〈r, s : r2q = s2 = (sr)2 = 1〉 ∼= D2q

denote its full automorphism group. We recall that the quotient Riemann surface S/G has genus zero, and 
that the associated 4q-fold branched regular covering map

πG : S → S/G ∼= P1

ramifies over four values; three ramification values marked with 2 and one ramification value marked with 
2q. We can assume the action to be represented by the generating vector (s, sr−2, rq, rq+2). In addition, up 
to a Möbius transformation, we can assume the branch values to be ∞, 0, 1 marked with 2 and λ ∈ C −{0, 1}
marked with 2q.

As we will discuss later (see Remark 5), λ must be different from the exceptional values −1, 12 , 2, γ, γ
2

where γ3 = −1. If we denote by

Ω := C− {0,±1, 1
2 , 2, γ, γ

2}

the set of admissible parameters, then the family Fq can be understood by means of an everywhere maximal 
rank holomorphic map

h : Fq → Ω

in such a way that the fibers of h agree with the Riemann surfaces in Fq. See, for example, Section 6.2 in 
[27].

We denote by Sλ the Riemann surface h−1(λ) and by Gλ
∼= G its full automorphism group.

Theorem 1. Let λ ∈ Ω. Then Sλ is isomorphic to the Riemann surface defined by the normalization of the 
hyperelliptic algebraic curve

y2 = x(x2q + 2 1+λ
1−λx

q + 1).

Proof. Following [6, Remark 9], the Riemann surface Sλ is hyperelliptic; the hyperelliptic involution being 
represented by rq. In other words, the Riemann surface Rλ := Sλ/〈rq〉 has genus zero, and the associated 
two-fold branched regular covering map

π1 : Sλ → Rλ

ramifies over 2q + 2 values; let us denote these values by α1, . . . , α2q+2. Let

π2 : Rλ → Rλ/K ∼= Sλ/G ∼= P1
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denote the 2q-fold branched regular covering map associated to the action of the quotient group K =
G/〈rq〉 ∼= Dq on Rλ. The following diagram commutes

Sλ

P1 Rλ

πG π1

π2

Claim. The ramification values of π2 are: ∞ marked with two, 0 marked with two, and λ marked with q. 
Moreover, among the ramification values of π1 only two of them are ramification points of π2, these points 
lying over λ by π2.

We proceed to study carefully the ramification data associated to the coverings in the previous commu-
tative diagram. To do that, we follow [44, Section 3.1].

(a) The fiber over ∞ by πG consists of 2q different points, say β′
1, . . . , β

′
2q. The stabilizer subgroup of β′

j in 
G is of the form 〈sr−2t〉 for a suitable choice of t. Now, as |〈sr−2t〉 ∩ 〈rq〉| = 1 for each choice of t, it 
follows that β′

j is not a branch point of π1. Thus, over ∞ by π2 there are exactly q different points, say

{β1, . . . , βq} = π1({β′
1, . . . , β

′
2q}),

showing that ∞ is a ramification value of π2 marked with two.
(b) The fiber over 0 by πG consists of 2q different points, say γ′

1, . . . , γ
′
2q. As argued in (a), γ′

j is not a 
branch point of π1 and over 0 by π2 there are exactly q different points, say

{γ1, . . . , γq} = π1({γ′
1, . . . , γ

′
2q}),

showing that 0 is a ramification value of π2 marked with two.
(c) The fiber over 1 by πG consists of 2q different points, say α′

1, . . . , α
′
2q. The stabilizer subgroup of α′

j in 
G is 〈rq〉 and therefore α′

j is a branch point marked with two of π1 for each j. Thus, over 1 by π2 there 
are exactly 2q different points, say

αj = π1(α′
j), for j ∈ {1, . . . , 2q}

showing that 1 is not ramification value of π2.
(d) The fiber over λ by πG consists of 2 different points, say α′

2q+1 and α′
2q+2. The stabilizer subgroup of 

α′
2q+1 and α′

2q+2 in G is 〈r〉. Now, as |〈r〉 ∩ 〈rq〉| = 2, it follows that α′
2q+1 and α′

2q+2 are branch points 
of π1 marked with 2. Thus, over λ by π2 there are exactly two different points:

α2q+1 = π1(α′
2q+1) and α2q+2 = π1(α′

2q+2),

showing that λ is a ramification value of π2 marked with q.

The proof of the claim is done.
Then, without loss of generality, we can suppose K to be generated by

a(z) = ω2
2qz and b(z) = 1

z

where ωt = exp(2πi ), and that:
t
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(a) the q branch points of π2 over ∞ are βj = ω2j−1
2q for 1 ≤ j ≤ q.

(b) the q branch points of π2 over 0 are γj = ω2j
2q for 0 ≤ j < q.

(c) the two branch points of π2 over λ are α2q+1 = 0 and α2q+2 = ∞.

It follows that Sλ is isomorphic to the Riemann surface defined by the normalization of the hyperelliptic 
algebraic curve

y2 = x(x− α1) · · · (x− α2q),

and it only remains to prove that α1, . . . , α2q are the 2q different solutions of the polynomial equation

z2q + 2 1+λ
1−λz

q + 1 = 0.

Now, by virtue of the claim, to accomplish this task we need to exhibit a 2q-fold branched regular covering 
map Π : P1 → P1 admitting 〈a, b〉 ∼= Dq as its deck group, such that Π(∞) = Π(0) = λ and

Π(ωk
2q) =

{
∞ if k is odd;
0 if k is even.

It is straightforward to check that Π(z) = λ · z2q−2zq+1
z2q+2zq+1 is the desired map, and the proof follows directly 

after noticing that

{α1, . . . , α2q} = Π−1(1). �
Remark 1. As we shall see later (see Theorem 5) among the members of the family Fq there are some of 
them which admit anticonformal involutions. In this case, the previous result can also be obtained as a 
consequence of the results of [5].

Theorem 2. Let λ ∈ Ω. In the algebraic model of Theorem 1 the full automorphism group of Sλ is generated 
by the transformations

r(x, y) = (ωqx, ω2qy) and s(x, y) = ( 1
x ,

y
xq+1 )

where ωt = exp(2πi
t ).

Proof. The fact that the transformations r and s are indeed automorphisms of Sλ follows from an easy 
computation. Note that s has order two, r has order 2q and

sr(x, y) = ( 1
ωqx

, y
ω2qxq+1 )

has order two; thus, r and s generate a group of order 4q isomorphic to D2q.
The proof of the theorem follows after noticing that the stabilizer subgroup of each ramification point 

of the regular covering map associated to the action of 〈r, s〉 is conjugate to the group generated by either 
s, sr−2, rq or rq+2. In fact:

(a) each power of rq+2 has two fixed points with stabilizer subgroup 〈r〉,
(b) rq has 2q fixed points with stabilizer subgroup 〈rq〉,
(c) if t is odd then the involution srt does not have fixed points, and
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(d) if t is even then the involution srt has four fixed points; the G-orbit of each of them has cardinality 2q, 
and the stabilizer subgroup of each point in this orbit is conjugate to 〈s〉.

The proof is done. �
We anticipate the fact that the Jacobian variety JSλ decomposes, up to isogeny, as a product of an 

elliptic curve Eλ and (two copies of) the Jacobian of a Riemann surface of genus q−1
2 .

The next proposition describes algebraically the elliptic curve Eλ.

Proposition 1. Let λ ∈ Ω, and consider the following subgroup of G

H4 = 〈r−2, sr−1〉 ∼= Dq.

Then the quotient Riemann surface Eλ given by the action of H4 on Sλ has genus one, and it is endowed 
with a two-fold regular covering map over the projective line which ramifies over ∞, 0, 1 and λ. In particular, 
Eλ is isomorphic to the Riemann surface defined by the elliptic curve

y2 = x(x− 1)(x− λ).

Proof. The normality of H4 as a subgroup of G implies that the quotient group H := G/H4 ∼= Z2 acts on 
Eλ. Let

π1 : Sλ → Eλ and π2 : Eλ → P1

denote the branched regular covering maps given by the action of H4 on Sλ, and by the action of H on Eλ

respectively. The following diagram commutes:

Sλ

P1 Eλ

πG π1

π2

Following the same notations used in the proof of Theorem 1, we can assert that:

(a) the 2q different points β′
1, . . . , β

′
2q (γ′

1, . . . , γ
′
2q and α′

1, . . . , α
′
2q, respectively) lying over ∞ (over 0 and 

over 1, respectively) by πG are not ramification points of π1 and therefore they are sent to one point in 
Eλ. Thereby, ∞ (0 and 1, respectively) is a branch value of π2 marked with two,

(b) the two different points α′
2q+1 and α′

2q+2 lying over λ by πG are ramification points of π1; the intersection 
of their stabilizer subgroup with H4 having order q. Thus, they are sent to one point in Eλ, and λ is a 
branch value of π2 marked with two.

Thus, Eλ is endowed with a two-fold regular covering map over the projective line, with four branch 
values. As the genus of Eλ is one (Riemann–Hurwitz formula), the result follows. �
4. The group algebra decomposition of JS

In this section we consider the Jacobian variety JSλ and study the group algebra decomposition of it 
with respect to its full automorphism group G. In order to state the results, we start by studying the 
representations of G and the generating vectors representing the action of G on Sλ.
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It is well-known that the dihedral group

G = 〈r, s : r2q = s2 = (sr)2 = 1〉

has, up to equivalence, 4 complex irreducible representations of degree one; namely,

V1 :
{

r → 1
s → 1

V2 :
{

r → 1
s → −1

V3 :
{

r → −1
s → 1

V4 :
{

r → −1
s → −1

and q − 1 complex irreducible representations of degree two; namely,

Vk+4 : r �→ diag(ωk
2q, ω̄

k
2q), s �→

( 0 1
1 0

)
for 1 ≤ k ≤ q − 1 and ωt = exp(2πi

t ).

Lemma 1.

(1) The rational irreducible representations of G, up to equivalence, are:
(a) four of degree 1; namely Wi := Vi for 1 ≤ i ≤ 4 and
(b) two of degree q − 1; namely

W5 = ⊕σ∈G5V
σ
5 and W6 = ⊕σ∈G6V

σ
6

where G5 and G6 denote the Galois group associated to the extensions Q ≤ Q(ω2q + ω̄2q) and 
Q ≤ Q(ωq + ω̄q) respectively, and ωt = exp(2πi

t ).
(2) Let λ ∈ Ω. The group algebra decomposition of JSλ with respect to G is

JSλ ∼G B1 ×B2 ×B3 ×B4 ×B2
5 ×B2

6

where Bj stands for the factor associated to the representation Wj.

Proof. The proof of part (1) follows directly from the way in which the rational irreducible representations 
of a group are constructed (see Subsection 2.5). The proof of part (2) is a direct consequence of (1) together 
with the group algebra decomposition theorem (see Subsection 2.6). �

As anticipated in the introduction of this article, to compute the dimension of the factors Bj (which may 
be zero) we need to choose a generating vector representing the action of G on Sλ; the following lemma 
provides all those possible choices.

Lemma 2. Let σ be a generating vector of G of type (2, 2, 2, 2q). Then there exist integers e1, e2 with e1 − e2
even and not congruent to 0 modulo 2q, such that

σ = (sre1 , sre2 , rq, re1−e2+q)

up to the action of the symmetric group S3 over the first three entries.

Proof. Let us suppose that

σ = (g1, g2, g3, g4 = (g1g2g3)−1)
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is a generating vector of G of type (2, 2, 2, 2q). It is not difficult to see that G has exactly three conjugacy 
classes of elements of order two; namely

C1 = {srn : 0 ≤ n < 2q even}, C2 = {srm : 1 ≤ m < 2q odd}

and C3 = {rq}. Moreover, there are q−1
2 conjugacy classes of elements of G of order 2q; namely {rt, r−t}

for each odd integer 1 ≤ t < q.
Since g1, g2 and g3 must generate G and since their product g−1

4 must have order 2q, it is straightforward 
to see that:

(a) the elements g1, g2 and g3 cannot belong simultaneously to only one of the conjugacy classes C1, C2 or 
C3,

(b) the elements g1, g2 and g3 cannot belong to three different conjugacy classes C1, C2 and C3, and
(c) one (and only one) of the elements g1, g2 or g3 must belong to the conjugacy class C3.

Hence, up to a permutation in S3, we may assume σ to be of the form

(sre1 , sre2 , rq, re1−e2+q)

where 0 ≤ e1, e2 < 2q are simultaneously odd or simultaneously even. As e1 − e2 + q must be coprime with 
2q, the difference e1 − e2 is not congruent with zero modulo 2q. The proof is done. �
Remark 2.

(a) We should mention that the proof of the previous lemma could be derived from the proof of Theorem 7 
in [6].

(b) Following [6, Remark 8] there is a unique topological class of action of D2q on Riemann surfaces of 
genus q with signature (2, 2, 2, 2q); consequently, every generating vector of G of the desired type can 
be chosen to represent the action of G on Sλ.

We now proceed to analyze how the choice of the generating vector changes the dimension of the factors 
arising in the group algebra decomposition of JSλ with respect to G. To accomplish this task, it is convenient 
to bring in the following equivalence relation:

Definition 1. Two generating vectors σ1 and σ2 are termed essentially equal with respect to the action of G
on Sλ if dimτ1(Bj) = dimτ2(Bj) for all j, where τi is the geometric signature associated to σi.

Lemma 3. Each generating vector of G of type (2, 2, 2, 2q) is essentially equal to

σ0 = (s, sr−2, rq, rq+2) or to σ1 = (sr, sr−1, rq, rq+2).

Proof. Let σ be a generating vector of G of type (2, 2, 2, 2q) for the action of G on Sλ. By Lemma 2 we can 
suppose

σ = (sre1 , sre2 , rq, re1−e2+q)

for some integers e1, e2 with e1 − e2 even and not congruent to 0 modulo 2q, up to the action of S3 on the 
first three entries. The action of ι ∈ S3 over the three first entries produces the following change on the 
fourth one:
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re1−e2+q �→ ι(re1−e2+q) = r±(e1−e2+q)

sending re1−e2+q into either itself or its inverse. Hence, in spite of the fact that the corresponding geo-
metric signature changes under permutations in S3, the dimension of the each factor Bj remains the same 
(ι permutes the summands in the sum (2.7)); thus the generating vectors σ and ι(σ) are essentially equal.

We remark the obvious observation that the geometric signature associated to a given generating vector 
is kept invariant under inner automorphisms of the group. Now, after conjugating every element in σ by

{
r−e1/2 if e1 and e2 are even;
r−(e1+1)/2 if e1 and e2 are odd,

we obtain normalized generating vectors

σ0,n := (s, sr−n, rq, rq+n) and σ1,n := (sr, sr1−n, rq, rq+n)

for e1, e2 even, and for e1, e2 odd respectively, where n = e1 − e2.
Note that if n and m are distinct even numbers, then σ0,n and σ0,m are essentially equal, and σ1,n and 

σ1,m are essentially equal.
Hence, the result follows after verifying that σ0 = σ0,2 and σ1 = σ1,2 are not essentially equal; this follows 

from dimτ0(B3) = 0 and dimτ1(B3) = 1. �
Proposition 2. Let λ ∈ Ω, and consider the group algebra decomposition of JSλ with respect to G

JSλ ∼G B1 ×B2 ×B3 ×B4 ×B2
5 ×B2

6 .

If τ0 denotes the geometric signature associated to σ0 = (s, sr−2, rq, rq+2) then

dimτ0(Bj) =

⎧⎪⎨
⎪⎩

0 if j = 0, 1, 2, 3, 6
1 if j = 4

q−1
2 if j = 5

If τ1 denotes the geometric signature associated to σ1 = (sr, sr−1, rq, rq+2), then

dimτ0(Bj) =

⎧⎪⎨
⎪⎩

0 if j = 0, 1, 2, 4, 6
1 if j = 3

q−1
2 if j = 5

In particular, JSλ contains an elliptic curve.

Proof. The genus of the quotient S/G is zero; thus, dimτ0(B1) = dimτ1(B1) = 0. The table below summa-
rized the dimension of the vector subspaces of each Vj fixed under the cyclic subgroup 〈g〉, for each g arising 
in the signatures σ0 and σ1.

〈s〉 〈sr〉 〈sr−2〉 〈sr−1〉 〈rq〉 〈rq+2〉
V2 0 0 0 0 1 1
V3 1 0 1 0 0 0
V4 0 1 0 1 0 0
V5 1 1 1 1 0 0
V6 1 1 1 1 2 0

Now, the result follows directly as an application of (2.7). �
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Theorem 3. Let λ ∈ Ω. The group algebra decomposition of JSλ with respect to G does not depend on the 
choice of the generating vector.

Proof. By Lemmata 2 and 3, we only need to compare the decompositions associated to σ0 and σ1. By 
Proposition 2, these decompositions are

JSλ ∼G,σ0 B4 ×B2
5 and JSλ ∼G,σ1 B3 ×B2

5

respectively, showing that B3 and B4 are isogenous. We claim that, in addition, B4 and B5 are equal. Indeed, 
note that the generating vectors σ0 and σ1 are identified by the action of the outer automorphism Φ of G
defined by r �→ r, s �→ sr.

Accordingly, at the level of rational irreducible representations, W3 is sent by Φ to W4. As a matter 
of fact, this shows that the roles played by B3 and B4 are interchanged according to the choice of the 
generating vector employed to compute the dimensions.

The proof is done. �
Remark 3. The independence of the group algebra decomposition on the choice of the generating vector when 
there is a unique topological class of action is not new and was firstly noticed by Rojas in [44, Example 4.3]
when she considered the Weyl group Z3

2 � S3 acting on a Riemann surface of genus three with signature 
(2, 4, 6).

Very recently, the same phenomenon has been noticed by Izquierdo, Jiménez and Rojas itself in [29]
when they studied a two-dimensional family of Riemann surfaces of genus 2n − 1 with action of D2n with 
signature (2, 2, 2, 2, n).

It is worth recalling that in the two aforementioned cases as well as in the case of the family Fq, the 
existence of outer automorphisms of the group is the key ingredient. Based on the evidence of explicit 
examples, it seems reasonable to ask if this is the general situation; however, according to the knowledge of 
the author, it has not been proved a general result on this respect.

From now on, we assume the action of G on Sλ to be determined by the generating vector σ0 and, in 
consequence, the group algebra decomposition of JSλ with respect to G to be of the form

JSλ ∼G B4 ×B2
5 .

The following result shows that the factors B4 and B5 have a geometric meaning.

Theorem 4. Let λ ∈ Ω. Consider the subgroups H4 = 〈r−2, sr−1〉 and H5 = 〈s〉 of G, and the quotient 
Riemann surfaces Eλ and Cλ given by the action of H4 and of H5 on Sλ, respectively. Then

B4 ∼ JEλ and B5 ∼ JCλ.

In particular, JSλ decomposes into a product of Jacobians as follows:

JSλ ∼G JEλ × JC2
λ.

Proof. The dimension of the complex vector subspaces of V4 and V5 fixed under the subgroups H4 and H5
are

dH4
V = dH5

V = 1 and dH5
V = dH4

V = 0.

4 5 4 5
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Thus, the result follows after applying the criterion to identify factors in the group algebra decomposition 
of JSλ as Jacobians of quotients of Sλ (as explained in Subsection 2.6; see equations (2.5) and (2.6)) together 
with Proposition 2. �
Remark 4. Note that Cλ is an irregular 2q-gonal Riemann surface of genus q−1

2 . An explicit algebraic 
description of Eλ has been obtained in Proposition 1.

5. Fields of definition

Let Gal(C) denote the group of field automorphisms of C. Let X ⊂ Pn be a (smooth algebraic) variety 
and σ ∈ Gal(C). We shall denote by Xσ the variety defined by the polynomials obtained after applying σ
to the coefficients of the polynomials which define X.

Let k be a subfield of C and let Gal(C/k) be the subgroup of Gal(C) consisting of those automorphisms 
which fix the elements in k. We shall say that X is defined over k if X = Xσ for all σ ∈ Gal(C/k). We shall 
say that X can be defined over k (or that k is a field of definition for X) if there exists an isomorphism 
X → Y into a variety Y ⊂ Pm which is defined over k.

By considering the explicit algebraic description of Sλ provided in Theorem 1, in this section we derive 
results concerning the field of definitions of Sλ according to the value of λ.

5.1. Real Riemann surfaces

An algebraic variety is called real if it can be defined over the field of the real numbers; equivalently, if 
it admits an anticonformal involution (i.e. an anticonformal automorphism of order two).

Following [6, Section 6], when we consider the family Fq as a complex subvariety of the moduli space Mq of 
compact Riemann surfaces of genus q, it is isomorphic to the projective line minus three points. Furthermore, 
Fq ⊂ Mq admits an anticonformal involution whose fixed point set consists of points representing real 
Riemann surfaces.

The following result shows that among the Riemann surfaces Sλ in Fq, the real ones can be easily 
recognized according to the value of λ. More precisely:

Theorem 5. Let λ ∈ Ω. Then the following statements are equivalent:

(a) Sλ is a real Riemann surface.
(b) JSλ is a real algebraic variety.
(c) λ ∈ {λ̄, 1 − λ̄, 1/λ̄, ̄λ/(1 − λ̄)}

Proof. The equivalence between the first two statements is well-known; indeed, following [37, Theorem 1.1], 
a Riemann surface and its Jacobian variety can be defined over the same fields.

We now proceed to prove the equivalence between the statements (a) and (c).
Let us assume that Sλ is a real Riemann surface or, equivalently, that Sλ admits an anticonformal 

involution, denoted by fλ : Sλ → Sλ. It is clear that fλGf−1
λ = G and therefore fλ gives rise to an 

anticonformal involution gλ : Oλ → Oλ, where Oλ denotes the Riemann orbifold given by the action of G
on Sλ.

We recall that Oλ has genus zero and four marked points: 0, 1 and ∞ marked with 2, and λ marked with 
2q. It follows that gλ is an extended Möbius transformation, i.e. gλ(z) = (az̄ + b)/(cz̄ + d) with a, b, c, d ∈ C

and ad − bc �= 0, satisfying

gλ(λ) = λ and gλ({∞, 0, 1}) = {∞, 0, 1}.
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We only have four possibilities:

(1) gλ fixes ∞ and permutes 0 and 1. In this case gλ(z) = 1 − z̄ showing that λ = 1 − λ̄.
(2) gλ fixes 0 and permutes 1 and ∞. In this case gλ(z) = z̄

1−z̄ showing that λ = λ̄/(1 − λ̄).
(3) gλ fixes 1 and permutes ∞ and 0. In this case gλ(z) = 1

z̄ showing that λ = 1/λ̄.
(4) gλ fixes ∞, 0 and 1. In this case gλ(z) = z̄ showing that λ = λ̄.

Hence, λ is as in statement (c).
Conversely, if λ is as in statement (c), to construct explicitly an anticonformal involution is an easy task, 

and the proof is done. �
Remark 5. Following [6, Theorem 14], the real Riemann surfaces in the family Fq form three (one-real-
dimensional) arcs. In addition, in order to compactify the union of these arcs in the Deligne–Mumford 
compactification of Mg, it was proved that it is enough to add to Fq three points: these points representing 
two nodal Riemann surfaces, and the Wiman surface of type II (this is the unique compact Riemann surface 
of genus q admitting an automorphism of order 4q; see [52]).

The aforementioned results were obtained by using Teichmüller theory and Fuchsian groups, among other 
techniques. Here, by considering the algebraic description of the Riemann surfaces in Fq given in Theorem 1, 
we are able to recover partly these results in a very explicit way as follows.

The Riemann surfaces Sλ1 and Sλ2 are isomorphic if and only if λ2 = T (λ1) for some

T ∈ G = 〈z �→ 1
z , z �→ 1

1−z 〉 ∼= S3. (5.1)

Observe that for the exceptional values −1, 12 , 2, γ and γ2 where γ3 = −1, the Riemann surface Sλ has more 
than 4q automorphisms.

Thus, the family Fq is isomorphic to the quotient of the parameter space

Ω = C− {0,±1, 1
2 , 2, γ, γ

2}

up to the action of G. Namely: Ω → Ω/G ∼= Fq
∼= C − {0, 1}.

According to Theorem 5, the complex numbers λ ∈ Ω representing Riemann surfaces Sλ which are real 
can be represented in the diagram below; the colored red points represent Riemann surfaces with more than 
4q automorphisms (and therefore they do not belong to Fq).

Note that a fundamental region for the action of G on Ω is given by

{z ∈ C : |z| < 1,Re(z) < 1
2}

and, consequently, the subsets of Fq given by
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Π({eiθ : π < θ < π
2 }), Π({z : |z − 1| = 1, |z| < 1}) and Π(] − 1, 0[)

are the three arcs in Fq (denoted in [6] by a2, a1 and b respectively) corresponding to real Riemann surfaces 
in Fq.

Note that the limit point of Fq which connects the arcs a2 and b correspond to S−1 and therefore, by 
Theorem 1, can be algebraically described by

y2 = x(x2q + 1).

The map (x, y) �→ (−ω4qx, ω8qy) where ωt = exp(2πi
t ), induces an isomorphism between S−1 and the 

curve

y2 = x(x2q − 1);

this is the Wiman surface of type II.

Remark 6. After proving that an algebraic variety is real, to find explicit defining equations with real 
coefficients is, in general, a difficult problem. If λ is real then a model for Sλ in terms of equations with 
real coefficients is provided by Theorem 1. In the remaining cases, the construction of real equations can be 
done by applying the results of [25].

5.2. Arithmetic Riemann surfaces

An algebraic variety is called arithmetic if it can be defined over a number field or, equivalently, over the 
algebraic closure Q of the field of the rational numbers.

A well-known result due to Belyi ensures that a Riemann surface is arithmetic if and only if it admits 
a non-constant meromorphic function with three critical values; see [2]. For arithmetic complex surfaces 
an analogous result to Belyi’s theorem was proved by González-Diez in [16] by considering the so-called 
Lefschetz maps. For the case of arithmetic families of Riemann surfaces we refer to the articles [18] and [19].

We mention that arithmetic Riemann surfaces (also known as Belyi curves) have attracted much attention 
ever since Grothendieck noticed, in his famous Esquisse d’un Programme, interesting relations between them 
and bipartite graphs embedded in a topological surface; see [20].

As in the case of real Riemann surfaces, arithmetic Riemann surfaces among the Riemann surfaces in 
the family Fq can be easily identified.

Theorem 6. Let λ ∈ Ω. Then the following statements are equivalent:

(a) Sλ is an arithmetic Riemann surface.
(b) JSλ is an arithmetic algebraic variety.
(c) λ is an algebraic complex number.

Proof. As in the proof of Theorem 5, the equivalence between the first two statements follows from [37, 
Theorem 1.1].

We denote by Oλ the Riemann orbifold given by the action of Gλ on Sλ, and by

πGλ
: Sλ → Oλ

the associated covering map.
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Let us assume that Sλ is arithmetic. Then there exists an algebraic model S′
λ of Sλ defined by equations 

whose coefficients belong to the field of the algebraic numbers. Let us denote by G′
λ the automorphism group 

of S′
λ, by O′

λ the Riemann orbifold given by the action of G′
λ on S′

λ, and by πG′
λ

the associated covering 
map.

As a consequence of [17, Proposition 3.3], both each element of G′
λ and the projection πG′

λ
are algebraic 

(i.e. defined over Q̄). In particular, the branch values of πG′
λ

are also algebraic. Let μ0, μ1, μ∞ and μλ denote 
these values, where μ0, μ1, μ∞ are marked with 2 and μλ is marked with 2q.

Now, the existence of an isomorphism fλ : Sλ → S′
λ guarantees the existence of an isomorphism gλ :

Oλ → O′
λ such that πG′

λ
◦ fλ = gλ ◦ πGλ

. It follows that gλ is a Möbius transformation satisfying that

gλ(μλ) = λ and gλ({μ∞, μ0, μ1}) = {∞, 0, 1}.

Thus,

gλ(z) = T
(

(μ1−μ∞)(z−μ0)
(t1−t0)(z−μ∞)

)
for some T ∈ G as in (5.1), and therefore

λ = T
(

(μ1−μ∞)(μλ−μ0)
(μ1−μ0)(μλ−μ∞)

)
.

Finally, as each T ∈ G is defined over Q and the points μ0, μ1, μ∞, μλ are algebraic, we are in position 
to conclude that the complex number λ must be algebraic.

The converse follows directly from Theorem 1, and the proof is done. �
Corollary 1. Let λ ∈ Ω. Then JSλ is an arithmetic algebraic variety admitting a group algebra decomposition 
in which each factor is arithmetic as well.

Proof. Following [17, Theorem 4.4], if S is an arithmetic Riemann surface then any Riemann surface S′ for 
which there is a covering map S → S′ is arithmetic as well. Thus, the result follows directly from Theorems 4
and 6. �
Remark 7.

(a) It is worth observing that Theorem 6 and Corollary 1 can be easily generalized from Q̄ to any alge-
braically closed subfield k of the field of the complex numbers.

(b) In addition, Corollary 1 can also be generalized from each Sλ in Fq to any Riemann surface S defined 
over k whose Jacobian variety admit a group algebra decomposition in which every factor is isogenous 
to the Jacobian of a quotient of S.

5.3. Riemann surfaces defined over the field of moduli

The field of moduli M(S) of a compact Riemann surface S is by definition the fixed field of the group

I(S) = {σ ∈ Gal(C) : Sσ ∼= S}.

Proposition 3. Let λ ∈ Ω. Then

Q(j(λ)) ≤ M(S) ≤ Q(λ)

where j denotes the invariant function for elliptic curves, in the Legendre form.
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Proof. We recall that, as a consequence of Theorem 1 and Proposition 1,

(Sλ)σ = Sσ(λ) and (Eλ)σ = Eσ(λ)

for all σ ∈ Gal(C), where Eλ = Sλ/〈r−2, sr−1〉.
Now, if σ ∈ I(S) then there is an isomorphism Sλ → Sσ(λ) which induces an isomorphism Eλ → Eσ(λ). 

In particular,

j(λ) = j(σ(λ)) = σ(j(λ))

showing that σ ∈ Gal(C/Q(j(λ))); it follows that Q(j(λ)) ≤ M(S).
The other inclusion follows from Theorem 1, and from the fact that the field of moduli is contained in 

every field of definition. The proof is done. �
Weil in [51] provided necessary conditions for S to admit its field of moduli as a field of definition; these 

conditions hold trivially if S does not have non-trivial automorphisms. On the other extreme, following [53], 
if S/Aut(S) is an orbifold with signature of type (a, b, c) then S can be defined over its field of moduli.

By results of Dèbes–Emsalem [13] (see also Hammer–Herrlich [21]) there is a field of definition of S which 
is an extension of finite degree of its field of moduli.

In general, the determination of whether the field of moduli is a field of definition is a difficult task; 
see, for example [14], [23], [26], [41] and [50]. By contrast, in the hyperelliptic case it is possible to decide, 
in a very simple way, if the field of moduli is a field of definition. In fact, following [28], if the reduced 
automorphism group of a hyperelliptic Riemann surface is not cyclic, then it can be defined over its field of 
moduli. It follows immediately the following:

Proposition 4. Let λ ∈ Ω. The field of moduli of Sλ is a field of definition for Sλ and for JSλ.

6. A three-dimensional family of ppavs with D10-action

Let S be a compact Riemann surface of genus g ≥ 2, and let

JS = (H 1,0(S,C))∗/H1(S,Z)

be its Jacobian variety. We recall that, after fixing a symplectic basis of H1(S, Z), both a period matrix 
(Ig ZS) with ZS ∈ Hg for JS, and a rational representation of LS := EndQ(JS) are determined, up to 
equivalence.

If S is hyperelliptic, then the symplectic representation

ρr : G → Sp(2g,Z)

of the automorphism group G of S induces an isomorphism

G ∼= G := {R ∈ Sp(2g,Z) : R · ZS = ZS}.

We can now consider the complex submanifold of Hg

Hg(G) = {Z ∈ Hg : R · Z = Z for all R ∈ G}

consisting of those period matrices Z representing ppavs of dimension g admitting the given action of G. 
Clearly, ZS ∈ Hg(G).

In the case of the action of D10 on the Riemann surfaces in family F5, we can be much more explicit.
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Theorem 7. Consider the action of D10 with generating vector σ0.
There exists a three-dimensional family A5(D10) of principally polarized abelian varieties of dimension 

five admitting the given group action; it is given by the period matrices in H5 of the following form:

⎛
⎜⎜⎜⎝

2(u+v+u) −w−u −2v −v−w−u −v+u

−w−u −v− 1
2w+5

4u v− 1
2u w+1

2u v−u

−2v v− 1
2u u v w

−v−w−u w+1
2u v u −w

−v+u v−u w −w 2(u−v−w)

⎞
⎟⎟⎟⎠ (6.1)

for complex numbers u, v and w.
Furthermore, A5(D10) contains the one-dimensional family F5.

Proof. The proof is based on the results and routines in [1] (implemented in the open source computer 
algebra system SAGE).

By constructing a family of very special hyperbolic polygons that uniformize Riemann surfaces with a 
given group action, it was implemented, among others, routines to determine a symplectic representation 
of the group, and after that, those matrices which are invariant.

We consider the generating vector σ0 = (s, sr−2, r5, r7) of G = D10. By applying the routine P.symplec-
tic.generators, we obtain that, if ρ denotes the symplectic representation of G, then

ρ(r) = diag(R, (Rt)−1) and ρ(s) = diag(S, St),

where

R =

⎛
⎝

−1 0 1 −1 1
1 1 0 1 0
0 0 0 −1 0
1 0 0 1 −1
0 −2 0 1 −1

⎞
⎠ and S =

⎛
⎝−1 0 1 −1 1

0 −1 −1 1 −1
0 0 0 −1 0
0 0 −1 0 0
0 0 0 0 1

⎞
⎠

The problem of finding those period matrices in H5 which are invariant under the given action involves 
solving a system of nonlinear equations in fifteen variables. If we apply the routine P.moebius.invariant, the 
desired form is obtained. �

The automorphism group G of S can be canonically seen as a subgroup of LS. Thus, the variety Hg(G)
contains the complex submanifold H(LS) whose points are matrices representing ppavs containing LS in 
their endomorphism algebras; see [54, Section 3] and also [45, Sections 2 and 3] for a more general context. 
This is called the Shimura family of S and corresponds to a special subvariety of Ag (see [38, Section 3] for 
a precise definition).

Proposition 5. Let λ ∈ Ω. The dimension of the Shimura family of each Riemann surface Sλ in Fq is q+1
2 .

Proof. Following the results proved in [15] and Serre’s formula [47, Proposition 3], it can be seen that the 
dimension N of the Shimura family of Sλ is given by

1
8qΣg∈G[χ(g)2 + χ(g2)],

where χ stands for the character of the analytic representation ρa of G. Clearly, this dimension does not 
depend on λ; in fact, it only depends on the local monodromy of the action of G on Sλ.

Now, by using the classically known Chevalley–Weil formula [10], we obtain that

ρa ∼= W4 ⊕W5.
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The character of ρa is summarized in the following table:

Rep. of conj. class id s sr rq rt

Length 1 q q 1 2
Character q −1 1 −q 0

where 1 ≤ t ≤ q − 1. It follows that

N = 1
8q [(q2 + q) + (1 + q)q + (1 + q)q + (q2 + q)] = q+1

2 . �
Given a Riemann surface S, to provide an explicit description of the elements of H(LS) seems to be a 

difficult task. However, as a simple consequence of Theorem 7, we obtain the following direct corollary:

Corollary 2. Each element of the Shimura family associated to every member of the family F5 admits a 
period matrix of the form (6.1) for some u, v, w ∈ C.
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