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1. Introduction

Automorphism groups of compact Riemann surfaces have been extensively studied, going back to Wiman,
Klein and Hurwitz, among others.

It is classically known that the full automorphism group of a Riemann surface of genus g > 2 is finite; its
size is bounded by 84(g — 1). Moreover, there are infinitely many integers g for which this bound is attained;
see [36].

Usually when additional conditions are imposed on a group of automorphisms, a smaller bound for its
order is obtained; for example, classical results assert that in the abelian and cyclic case these bounds are
49 + 4 and 4g + 2 respectively.

It is an interesting problem to understand the extent to which the order of the full automorphism group
determines the Riemann surface; see for example [32], [33] and [39].

Very recently, Costa and Izquierdo have proved that the maximal order of the form ag+b (for fixed integers
a and b) of the full automorphism group of equisymmetric and one-dimensional families of Riemann surfaces
of genus g > 2 appearing in all genera is 4g + 4. Moreover, they constructed explicit families attaining this
bound; see [11]. The second possible largest order is 4g.
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Bujalance, Costa and Izquierdo have recently determined all those Riemann surfaces of genus g > 2 with
exactly 4¢ automorphisms. More precisely, following [6, Theorem 7], if g is different from the exceptional
values 3,6,12,15 and 30, then the Riemann surfaces of genus g admitting exactly 4¢g automorphisms form
an equisymmetric one-dimensional family, denoted by F,. Moreover, if S is a Riemann surface in F, then
its full automorphism group G is isomorphic to a dihedral group, and the corresponding quotient S/G has
genus zero.

The present article is devoted to study further properties of each member S of the family F, and of its
Jacobian variety J.S. In spite of the fact that the results of this paper might be stated for each integer g > 2
different from 3,6,12,15 and 30, for the sake of simplicity we shall restrict to the case g = ¢ > 5 prime.

This paper is organized as follows.

In Section 2 we shall introduce the basic background; namely, group actions on Riemann surfaces, com-
plex tori and abelian varieties, representation of groups, and the group algebra decomposition theorem for
Jacobians.

In Section 3 we shall take advantage of the hyperellipticity of the Riemann surfaces in the family F,
(see [6, Remark 9]) to determine explicit algebraic descriptions of them. In addition, with respect to these
models, we will provide realizations of their full automorphism groups.

If a finite group G acts on a Riemann surface S, then this action induces a G-equivariant isogeny de-
composition of JS into a product of abelian subvarieties, of the form JS ~¢ II7_, B!*. This decomposition
(known as the group algebra decomposition of JS with respect to Gj; see [8] and [34]) only depends on the al-
gebraic structure of the group; however, further information such as the dimension of each factor B; depends
on the geometry of the action. Following [44], the dimension of each B; is explicitly given after choosing a
generating vector of G representing the action on S. Because of this dependence, the general question arises
about how the choice of such a generating vector affects the group algebra decomposition of JS.

In Section 4 we shall give a complete answer to the aforementioned question, for each Riemann surface
S in the family F,. To prove this result, we shall begin by proving some lemmata concerning the rational
representations of G, and the possible generating vectors representing the action. We shall also prove that
each Jacobian JS contains an elliptic curve, and that it decomposes into a product of Jacobians of quotients
of S.

In Section 5 we shall explore the fields of definition of the Riemann surfaces S in the family F,. More
precisely, we shall give a characterization for when S and JS can be defined, as projective algebraic varieties,
by polynomials with real coefficients, and by polynomials with algebraic coefficients. Furthermore, in the
latter case we prove that JS decomposes in terms of abelian subvarieties which can also be defined by
polynomials with algebraic coefficients. We shall also observe that S and JS can be defined over the field
of moduli of S.

Finally, in Section 6 we shall compute the dimension of a special variety in the moduli space A, of
principally polarized abelian varieties of dimension ¢ associated to each Riemann surface S in the family
Fy, called the Shimura family; see [54]. Moreover, for the particular case ¢ = 5, we will be able to describe
its elements — by exhibiting period matrices — as members of a three-dimensional family in A5 admitting a
fixed action of the dihedral group of order 20.

Acknowledgments. The author wishes to express his gratitude to Anita M. Rojas for sharing her SAGE
routines with him.

2. Preliminaries
2.1. Group actions on Riemann surfaces

Let S be a compact Riemann surface and let G be a finite group. We denote by Aut(S) the full auto-
morphism group of S, and say that G acts on S if there is a group monomorphism 3 : G — Aut(S). The
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space of orbits S/G of the action of G = ¢)(G) on S is naturally endowed with a Riemann surface structure
in such a way that the natural projection 7 : S — S/G is holomorphic. The degree of 7 is the order |G| of
G and the multiplicity of 7 at p € S is |G|, where G, denotes the stabilizer of p in G. If |G,| # 1 then p is
called a branch point and its image by w is a branch value.

Let {p1,...,pi} be a maximal collection of non-G-equivalent branch points of 7. The signature of the
action of G on S is the tuple (y;mq,...,m;) where v is the genus of the quotient S/G and m; = |G,,|.
If v = 0 we write (my,...,m,) for short. The branch value 7 (p;) is said to be marked with m;. The
Riemann—Hurwitz formula relates these numbers, the order of G and the genus g of S; namely

20 —2=|G|(2v - 2) + |G| - Si_y (1 - =),
A 2y +1 tuple (a1,...,ay,b1,...,by,c1,..., ;) of elements of G is called a generating vector of G of type
(v;ma,...,my) if the following conditions are satisfied:

(a) G is generated by the elements a1,...,ay,b1,...,by,c1,..., ¢,
(b) order(c;) =m; for 1 <i <1, and
(¢) TD_[a;,b;]T!_ c; = 1, where [a;, bi] = asbia; 'b; .

Riemann’s existence theorem ensures that the group G acts on a Riemann surface of genus g with
signature (y;m1,...,m;) if and only if the Riemann—Hurwitz formula is satisfied and G has a generating
vector of type (y;mq,...,my). See [4].

If we denote by Cj the conjugacy class of the subgroup G, in G then, the tuple (v; [my,C1], ..., [mq, C))
is called a geometric signature for the action of G on S. This concept was introduced in [44] in order to
control the behavior of the intermediate coverings (S — S/H for a subgroup H of G) and the dimension of
the factors arising in the group algebra decomposition of JS (see Subsection 2.6).

We shall say that the geometric signature (y; [my, C1],. .., [m, Ci]) is associated to the generating vector
(@1,...,ay,b1,...,by,c1,...,c) because the subgroup of G generated by ¢; is in the conjugacy class C;.

2.2. Topologically equivalent actions

Let Hom™ (S) denote the group of orientation preserving homeomorphisms of S. Two actions ¢, and ),
of G on S are topologically equivalent if there exist w € Aut(G) and h € Hom™(S) such that

¥a(g) = hpr(w(g))h™! forall g € G. (2.1)

In terms of Fuchsian groups, the action of G on S can be constructed by means of a pair of Fuchsian
groups I' < A such that S = H/T', with H denoting the upper half-plane, and an epimorphism 6 : A — G
with kernel I'. The group I is torsion-free and isomorphic to the fundamental group of S. It is also known
that A has a presentation given by generators o, ..., o, 81,..., By, 71, .- .,7 and relations

W= = =1 ey, Bl = 1

Note that there is a bijective correspondence between the set of generating vectors of G of type
(v, m1,...,my) and the set . of epimorphism of groups A — G with torsion-free kernel.

Each orientation preserving homeomorphism h satisfying (2.1) yields a group automorphism h* of A; we
denote by % the subgroup of Aut(A) consisting of them. The group Aut(G) x £ acts on % by

((w,h*),0) —wofo(h*)!
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and therefore it also acts on the set of generating vectors of G of type (y,my,...,my).
Let 01 and o9 be two generating vectors of type (v, my, ..., m;) of G. Then o1 and o9 define topologically
equivalent actions if and only if o1 and o9 are in the same (Aut(G) x £)-orbit (see [4]; also [22] and [35]).
We refer to the classical articles [48] and [49] for more details concerning the relationship between Riemann
surfaces, generating vectors and Fuchsian groups.

2.8. Abelian varieties

A g-dimensional complex torus X = V/A is the quotient of a g-dimensional complex vector space V by a
lattice A. Each complex torus is an abelian group and a g-dimensional compact connected complex analytic
manifold.

Complex tori can be described in a very concrete way, as follows. Choose bases

By = {v;}?_, and BA:{)\j}?il (2.2)

of V' as a C-vector space, and of A as a Z-module, respectively. Then there are complex constants {m;;}
such that \; = ¥¢_, m;;v;. The matrix

IT = (m;) € M(g x 2g,C)

represents X, and is known as the period matriz for X with respect to (2.2).

A homomorphism between complex tori is a holomorphic map which is also a homomorphism of groups.
We shall denote by End(X) the ring of endomorphism of X. An automorphism of a complex torus is a
bijective homomorphism into itself.

Special homomorphisms are isogenies: these are surjective homomorphisms with finite kernel; isogenous
tori are denoted by X; ~ X5. The isogenies of a complex torus X into itself are the invertible elements of
the ring of rational endomorphisms

Endg(X) := End(X) ®z Q.

An abelian variety is a complex torus which is also a projective algebraic variety. Each abelian variety
X = V/A admits a polarization; namely, a non-degenerate real alternating form © on V such that for all
v,w eV

O(iv,iw) = O(v,w) and O(A x A) C Z.

If the elementary divisors of ©|psxa are {1,.9.,1}, where g is the dimension of X, then the polarization
O is called principal and the pair (X, ©) is called a principally polarized abelian variety (from now on we
write ppav for short).
Let (X =V/A,©) be a ppav of dimension g. Then there exists a basis for A such that the matrix for ©
with respect to it is
- (%)

with I, denoting the g x g identity matrix; such a basis is termed symplectic. Furthermore, there exist a
basis for V' and a symplectic basis for A which respect to which the period matrix for X is II = (I, Z),
where Z belongs to the Siegel space

Hy={Z € M(g,C): Z = Z"and Im(2) > 0},

with Z* denoting the transpose matrix of Z.
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2.4. Moduli space of ppavs

An isomorphism between ppavs is an isomorphism of the underlying complex torus structures that
preserves the polarizations.

Let (X;,0;) be a ppav of dimension g, and let II; = (I, Z;) be the period matrix of X; with respect to
chosen basis, for ¢ = 1,2. Each isomorphism between (X7,0;) and (X2, ©2) is given by a pair of matrices

M € GL(g,C) and R € GL(2¢9,7Z)
(corresponding to the analytic and rational representations, respectively) such that
M(I, 22) = (I, Z2)R. (2.3)
Since R preserves the principal polarizations, it belongs to the symplectic group
Sp(2¢9,7Z) = {R € M(29,Z) : R'"JR = J}.
Now, it follows from (2.3) that the correspondence
Sp(29,Z) x #, — Ay ((48).Z2)— (A+2C)"Y(B + ZD)
defines an action which identifies period matrices representing isomorphic ppavs. Hence, the quotient
My — Ag = Hy/Sp(29,2)

is the moduli space of isomorphism classes of ppavs of dimension g.
We refer to [3] and [12] for more details on abelian varieties.

2.5. Representations of groups

Let G be a finite group and let p : G — GL(V) be a complex representation of G. Abusing notation, we
shall also write V' to refer to the representation p. The degree dy of V is the dimension of V' as complex
vector space, and the character xy of V is the map obtained by associating to each g € G the trace of the
matrix p(g). Two representations V; and Va are equivalent if and only if their characters agree; we write
V1 2 V;. The character field Ky of V is the field obtained by extending the rational numbers by the values
of the character xy. The Schur index sy of V is the smallest positive integer such that there exists a field
extension Ly of Ky of degree sy over which V can be defined.

It is a known fact that for each rational irreducible representation W of G there is a complex irreducible
representation V' of G such that

S

W@ C = (9,V)a - &(@:V7) = sy (9,V7),
where the sum @, is taken over the Galois group associated to the extension Q < Ky . We say that V is
associated to W.

We refer to [47] for further basic facts related to representations of groups.
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2.6. Group algebra decomposition theorem for Jacobians

Let S be a Riemann surface of genus g. Let us denote by #1°(S,C) the g-dimensional complex vector
space of the holomorphic 1-forms on S, and by H; (.5, Z) the first homology group of S. The Jacobian variety
of S is the ppav of dimension g defined as

JS = (A#10(S.C))" [ Hi (S, Z),

endowed with the principal polarization given by the geometric intersection number.

The relevance of the Jacobian variety lies in the well-known Torelli’s theorem, which asserts that two
compact Riemann surfaces are isomorphic if and only if their Jacobians are isomorphic as ppavs.

Let G be a finite group and let Wy, ..., W, be its rational irreducible representations. It is known that
each action of G on S induces a Q-algebra homomorphism ® : Q[G] — Endg(JS). Each a € Q[G] defines
an abelian subvariety of J.S; namely,

Ay i=Im(a) = ®(la)(JS) C IS,

where [ is some positive integer chosen such that la € End(JS).
The decomposition 1 =e; + - - - + e, € Q[G], where e; is a central idempotent (uniquely determined and
canonically computed from W;) yields an isogeny

JS ~ Ae, XX A,

which is G-equivariant; this is called the isotypical decomposition of JS. See [34].

Additionally, there are idempotents fi1, ..., fin, such that e; = fi1 + -+ + fin, where n; = dy, /sy,, with
Vi being a complex irreducible representation associated to W;. These idempotents provide n; subvarieties
of JS which are isogenous to each other; let B; be one of them, for each i. Then

JS ~g By X -+ x B'" (2.4)

which is called the group algebra decomposition of JS with respect to G. See [8].

If W1 denotes the trivial representation, then n; =1 and By ~ J(S/G).

Let H be a subgroup of G. It was proved in [8] that the group algebra decomposition (2.4) of JS with
respect to G yields the following isogeny decomposition:

J(S/H) ~ B;L{{ X e X B?f where n!’ =d{l /sy, (2.5)

with d‘}/{ denoting the dimension of the vector subspace ViH of V; consisting of those elements which are
fixed under H.

The previous result provides a criterion to identify if a factor in (2.4) is isogenous to the Jacobian of
a quotient of S (cf. [30]). Namely, if a subgroup N of G satisfies d{)’i = sy, for some fixed 2 < i < r and
d{y =0 for all  # i such that B; # 0, then

B; ~ J(S/N). (2.6)

Let us now suppose that 7 = (v;[mq,C1], ..., [my, Ci]) is the geometric signature of the action of G on S.
Let G}, be a representative of the conjugacy class Cy, for 1 < k <. In [44] it was proved that the dimension
of the factor B; in (2.4) is

dim(B;) = ki(dv, (v = 1) + 3551 (dv; — di;*)) (2.7)
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where k; is the degree of the extension Q < Ly,. To avoid confusion, we shall write dim,(B;) instead of
dim(B;) to refer to the dependence on 7.

For decompositions of Jacobians with respect to special groups, see, for example, the articles [7], [9], [24],
[29], [31], [40], [42], [43] and [46].

3. Algebraic description of F,
Let ¢ > 5 be a prime number. Let S denote a Riemann surface in the family 7, and let
G=(rs:1% =35%=(sr)? = 1) 2 Dy,

denote its full automorphism group. We recall that the quotient Riemann surface S/G has genus zero, and
that the associated 4¢-fold branched regular covering map

76 S — S/G P!

ramifies over four values; three ramification values marked with 2 and one ramification value marked with
2q. We can assume the action to be represented by the generating vector (s, sr=2, 7%, r9+2). In addition, up
to a Mobius transformation, we can assume the branch values to be 0o, 0,1 marked with 2 and A € C—{0,1}
marked with 2q.

As we will discuss later (see Remark 5), A must be different from the exceptional values —1, %, 2,7, 7>
where 3 = —1. If we denote by

Q:=C-{0,£1,1,2,7,7%}

the set of admissible parameters, then the family 7, can be understood by means of an everywhere maximal
rank holomorphic map

h:Fqg—=Q
in such a way that the fibers of h agree with the Riemann surfaces in 7. See, for example, Section 6.2 in
[27].

We denote by Sy the Riemann surface h=1(\) and by G = G its full automorphism group.

Theorem 1. Let \ € Q). Then Sy is isomorphic to the Riemann surface defined by the normalization of the
hyperelliptic algebraic curve

g2 = (a1 21820 1 1),
Proof. Following [6, Remark 9], the Riemann surface S is hyperelliptic; the hyperelliptic involution being
represented by 79. In other words, the Riemann surface Ry := S)/(r?) has genus zero, and the associated
two-fold branched regular covering map

T S)\ — Ry

ramifies over 2q + 2 values; let us denote these values by a1, ..., aq42. Let

Tyt Ry — Ry/K = S,/G = P!
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denote the 2¢-fold branched regular covering map associated to the action of the quotient group K =
G/(r?) = D, on Ry. The following diagram commutes

Sx

N\

P! = R

Claim. The ramification values of m are: oo marked with two, 0 marked with two, and A marked with gq.
Moreover, among the ramification values of 71 only two of them are ramification points of 75, these points
lying over A by .

We proceed to study carefully the ramification data associated to the coverings in the previous commu-
tative diagram. To do that, we follow [44, Section 3.1].

(a) The fiber over co by m¢ consists of 2¢ different points, say 51, ..., 35,. The stabilizer subgroup of 3} in
G is of the form (sr=2) for a suitable choice of t. Now, as |[{(sr=2!) N (r?)| = 1 for each choice of ¢, it

follows that ﬂ§- is not a branch point of m;. Thus, over co by 7y there are exactly ¢ different points, say

{Bla'“vﬂq} = ﬂ—l({ﬁiv"wﬂéq})v

showing that oo is a ramification value of mo marked with two.
(b) The fiber over 0 by 7 consists of 2¢ different points, say 71,...,75,. As argued in (a), 7} is not a
branch point of m; and over 0 by o there are exactly ¢ different points, say

{717"'77(1} = Wl({PYi""vPYéq})a

showing that 0 is a ramification value of w5 marked with two.

(c) The fiber over 1 by ¢ consists of 2q different points, say o}, ..., aj,. The stabilizer subgroup of o in
G is (r?) and therefore o is a branch point marked with two of 71 for each j. Thus, over 1 by my there
are exactly 2¢q different points, say

aj =m(af), forje{l,...,2q}

showing that 1 is not ramification value of 5.

(d) The fiber over A by mg consists of 2 different points, say a5, ; and aj, . The stabilizer subgroup of
g,y and ab, o in G is (r). Now, as [(r) N (r?)| = 2, it follows that a5, ; and a4, are branch points
of m; marked with 2. Thus, over A by 7y there are exactly two different points:

! !/
Q2g4+1 = T (a2q+1) and  agqq2 =M (O‘2q+2)’
showing that A is a ramification value of 7o marked with gq.

The proof of the claim is done.
Then, without loss of generality, we can suppose K to be generated by

a(z) = wng and b(z) =1

where w; = exp(2), and that:
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(a) the ¢ branch points of 7y over oo are 3; = wgg_l for 1 <j <gq.

(b) the ¢ branch points of w5 over 0 are v; = wgg for 0 <j <gq.
(c) the two branch points of w2 over A are agg1 = 0 and agqqo = 0.

It follows that S is isomorphic to the Riemann surface defined by the normalization of the hyperelliptic
algebraic curve

y? = x(x—a) - (z— ag),

and it only remains to prove that ay,..., oy, are the 2¢ different solutions of the polynomial equation
2% —1—2%2" +1=0.

Now, by virtue of the claim, to accomplish this task we need to exhibit a 2¢-fold branched regular covering
map II: P! — P! admitting (a,b) = D, as its deck group, such that II(co) = I1(0) = A and

if k£ is odd;
II k _ oo 1 )
(w2q) { 0 if k is even.

It is straightforward to check that II(z) = A- zz:gijﬂ is the desired map, and the proof follows directly

after noticing that

{0617...7052(1}:11_1(1). O

Remark 1. As we shall see later (see Theorem 5) among the members of the family F, there are some of
them which admit anticonformal involutions. In this case, the previous result can also be obtained as a
consequence of the results of [5].

Theorem 2. Let \ € Q. In the algebraic model of Theorem 1 the full automorphism group of Sy is generated
by the transformations

T(.]?,y) = (wqanqu) and 8(33,y) = (%7 %)
where wy, = exp(2L).

Proof. The fact that the transformations r and s are indeed automorphisms of S follows from an easy
computation. Note that s has order two, r has order 2¢ and

sr(x,y) = (wifbv quﬂ)

has order two; thus, r and s generate a group of order 4¢ isomorphic to Dy,.

The proof of the theorem follows after noticing that the stabilizer subgroup of each ramification point
of the regular covering map associated to the action of (r, s) is conjugate to the group generated by either
5,572,712 or r?12, In fact:

a) each power of 912 has two fixed points with stabilizer subgroup (r),
g

(b) r? has 2¢ fixed points with stabilizer subgroup (r?),

(c) if t is odd then the involution srt does not have fixed points, and
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(d) if ¢ is even then the involution sr! has four fixed points; the G-orbit of each of them has cardinality 2¢,
and the stabilizer subgroup of each point in this orbit is conjugate to (s).

The proof is done. 0O

We anticipate the fact that the Jacobian variety J.S) decomposes, up to isogeny, as a product of an

elliptic curve E) and (two copies of) the Jacobian of a Riemann surface of genus %.

The next proposition describes algebraically the elliptic curve E.
Proposition 1. Let A € 2, and consider the following subgroup of G
Hy=(r2sr ) =D,
Then the quotient Riemann surface Ey given by the action of Hy on Sy has genus one, and it is endowed
with a two-fold reqular covering map over the projective line which ramifies over 00, 0,1 and A. In particular,
E is isomorphic to the Riemann surface defined by the elliptic curve

y? =x(x —1)(z — \).

Proof. The normality of Hy as a subgroup of G implies that the quotient group H := G/H4 = Zy acts on
E)\. Let

m:Sy—= Fy and my: Ey, — P!

denote the branched regular covering maps given by the action of Hy on Sy, and by the action of H on E)
respectively. The following diagram commutes:

NN

B,

Following the same notations used in the proof of Theorem 1, we can assert that:

(a) the 2q different points 31,..., B3, (V1,---,75, and af, ..., a5, respectively) lying over oo (over 0 and
over 1, respectively) by m¢ are not ramification points of 7r; and therefore they are sent to one point in
E,. Thereby, oo (0 and 1, respectively) is a branch value of w5 marked with two,

(b) the two different points a5, ; and af, 5 lying over A by ¢ are ramification points of 7r1; the intersection
of their stabilizer subgroup with H, having order ¢. Thus, they are sent to one point in Ey, and A is a
branch value of my marked with two.

Thus, E) is endowed with a two-fold regular covering map over the projective line, with four branch
values. As the genus of F) is one (Riemann—-Hurwitz formula), the result follows. O

4. The group algebra decomposition of J S
In this section we consider the Jacobian variety JSy and study the group algebra decomposition of it

with respect to its full automorphism group G. In order to state the results, we start by studying the
representations of G and the generating vectors representing the action of G on Sy .
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It is well-known that the dihedral group
G=(rs:r*=s"=(sr)>=1)

has, up to equivalence, 4 complex irreducible representations of degree one; namely,

AR IOHUR PR Varel S P
and ¢ — 1 complex irreducible representations of degree two; namely,
Viga: 7 diag(wlgq,@é“q), s (? (1))
for1<k<g-—1andw = exp(%).

Lemma 1.

(1) The rational irreducible representations of G, up to equivalence, are:
(a) four of degree 1; namely W; :==V; for 1 <i <4 and
(b) two of degree ¢ — 1; namely

W5 = @O'Ecg, ‘/50 and W6 = @UEGG VGU
where G5 and Gg denote the Galois group associated to the extensions Q < Q(weq + W2q) and
Q < Q(wq + @y) respectively, and wy = emp(?).
(2) Let X € Q. The group algebra decomposition of JSy with respect to G is
JSy ~g By x By x By x By x B2 x B2

where B; stands for the factor associated to the representation Wj.

Proof. The proof of part (1) follows directly from the way in which the rational irreducible representations
of a group are constructed (see Subsection 2.5). The proof of part (2) is a direct consequence of (1) together
with the group algebra decomposition theorem (see Subsection 2.6). O

As anticipated in the introduction of this article, to compute the dimension of the factors B; (which may
be zero) we need to choose a generating vector representing the action of G on Sy; the following lemma
provides all those possible choices.

Lemma 2. Let o be a generating vector of G of type (2,2,2,2q). Then there exist integers ey, e with e; — ey
even and not congruent to 0 modulo 2q, such that

sre2 pd pere2ta)

up to the action of the symmetric group Sz over the first three entries.

Proof. Let us suppose that

o= (91,9293 91 = (g19293) ")
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is a generating vector of G of type (2,2,2,2¢q). It is not difficult to see that G has exactly three conjugacy
classes of elements of order two; namely

Cr={sr":0<n<2qeven}, Cy={sr™:1<m <2qodd}

and C3 = {r?}. Moreover, there are % conjugacy classes of elements of G of order 2¢; namely {rt r—'}
for each odd integer 1 <t < q.
Since g1, g2 and g3 must generate G and since their product g4_1 must have order 2q, it is straightforward

to see that:

(a) the elements g1, g2 and g3 cannot belong simultaneously to only one of the conjugacy classes Cy, Cs or
Cs,

(b) the elements g1, g2 and g3 cannot belong to three different conjugacy classes C1, Cy and C3, and

(c) one (and only one) of the elements gi, g2 or g3 must belong to the conjugacy class Cs.

Hence, up to a permutation in S, we may assume ¢ to be of the form
(sret, sre2 rd per—e2ta)

where 0 < e1, e5 < 2q are simultaneously odd or simultaneously even. As e; — es + ¢ must be coprime with
2q, the difference e; — es is not congruent with zero modulo 2q. The proof is done. O

Remark 2.

(a) We should mention that the proof of the previous lemma could be derived from the proof of Theorem 7
in [6].

(b) Following [6, Remark 8] there is a unique topological class of action of Ds, on Riemann surfaces of
genus ¢ with signature (2,2,2,2q); consequently, every generating vector of G of the desired type can
be chosen to represent the action of G on S).

We now proceed to analyze how the choice of the generating vector changes the dimension of the factors
arising in the group algebra decomposition of JS) with respect to G. To accomplish this task, it is convenient
to bring in the following equivalence relation:

Definition 1. Two generating vectors o and o9 are termed essentially equal with respect to the action of G
on Sy if dim,, (B;) = dim,, (B,) for all j, where 7; is the geometric signature associated to o;.

Lemma 3. Each generating vector of G of type (2,2,2,2q) is essentially equal to
oo = (5,57 2,70 r12)  orto oy = (sr,sr e, i),

Proof. Let o be a generating vector of G of type (2,2,2,2q) for the action of G on Sy. By Lemma 2 we can
suppose

o = (sr, sre2, rd perc2ta)
for some integers eq, e with e; — es even and not congruent to 0 modulo 2¢, up to the action of S3 on the
first three entries. The action of ¢« € Sz over the three first entries produces the following change on the

fourth one:
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per—e2tq L(rel—ez-i—fI) — p(ei—e2+q)

sending r°*~¢2%4 into either itself or its inverse. Hence, in spite of the fact that the corresponding geo-
metric signature changes under permutations in S3, the dimension of the each factor B; remains the same
(¢ permutes the summands in the sum (2.7)); thus the generating vectors o and ¢(o) are essentially equal.
We remark the obvious observation that the geometric signature associated to a given generating vector
is kept invariant under inner automorphisms of the group. Now, after conjugating every element in o by

re1/2 if e; and ey are even;
r—(€1+t1)/2if 1 and e, are odd,

we obtain normalized generating vectors

Oom = (8,87 ", 0 r™) and oy, i= (sr,srt T pd 0T
for ey, es even, and for e1, es odd respectively, where n = e; — es.
Note that if n and m are distinct even numbers, then oy, and o, are essentially equal, and o, and
o1,m are essentially equal.
Hence, the result follows after verifying that og = 092 and 01 = 07 2 are not essentially equal; this follows
from dim,,(B3) = 0 and dim, (B3) =1. O

Proposition 2. Let A\ € Q, and consider the group algebra decomposition of JSy with respect to G
JSx\ ~q By x By x B3 x By x B2 x B}.
If 7o denotes the geometric signature associated to oo = (s,sr=2,79,7972) then

0 ifj=0,1,2,36
1 ifj=4

s

dim, (BJ) =

If 71 denotes the geometric signature associated to o1 = (sr,sr=1,r?, ri*2) then

In particular, JSy\ contains an elliptic curve.

Proof. The genus of the quotient S/G is zero; thus, dim,,(B;) = dim,, (B;) = 0. The table below summa-
rized the dimension of the vector subspaces of each V; fixed under the cyclic subgroup (g), for each g arising
in the signatures oy and o7.

(s)  (sm)  (srT?H) (srTh)  (rT)  (r1TP)
Va 0 0 0 0 1 1
Vs 1 0 1 0 0 0
Vi O 1 0 1 0 0
Vs 1 1 1 1 0 0
Ve 1 1 1 1 2 0

Now, the result follows directly as an application of (2.7). O
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Theorem 3. Let A € Q). The group algebra decomposition of JSy with respect to G does not depend on the
choice of the generating vector.

Proof. By Lemmata 2 and 3, we only need to compare the decompositions associated to oy and o7. By
Proposition 2, these decompositions are

JS\ ~G.0o Ba ¥ Bg and JS) ~g,, B3 % B§

respectively, showing that B and B, are isogenous. We claim that, in addition, B4 and By are equal. Indeed,
note that the generating vectors op and o, are identified by the action of the outer automorphism @ of G
defined by r — 7, s > sr.

Accordingly, at the level of rational irreducible representations, W3 is sent by ® to Wy. As a matter
of fact, this shows that the roles played by Bz and B, are interchanged according to the choice of the
generating vector employed to compute the dimensions.

The proof is done. 0O

Remark 3. The independence of the group algebra decomposition on the choice of the generating vector when
there is a unique topological class of action is not new and was firstly noticed by Rojas in [44, Example 4.3]
when she considered the Weyl group Z3 x S3 acting on a Riemann surface of genus three with signature
(2,4,6).

Very recently, the same phenomenon has been noticed by Izquierdo, Jiménez and Rojas itself in [29]
when they studied a two-dimensional family of Riemann surfaces of genus 2n — 1 with action of Dy, with
signature (2,2,2,2,n).

It is worth recalling that in the two aforementioned cases as well as in the case of the family F, the
existence of outer automorphisms of the group is the key ingredient. Based on the evidence of explicit
examples, it seems reasonable to ask if this is the general situation; however, according to the knowledge of
the author, it has not been proved a general result on this respect.

From now on, we assume the action of G on Sy to be determined by the generating vector oy and, in
consequence, the group algebra decomposition of JSy with respect to G to be of the form

JS)\ ~G B4 X Bg
The following result shows that the factors By and By have a geometric meaning.

Theorem 4. Let A € Q. Consider the subgroups Hy = (r=2 sr=') and Hs = (s) of G, and the quotient
Riemann surfaces Ex and Cy given by the action of Hy and of Hs on S, respectively. Then

B4NJE)\ and B5NJC)\.
In particular, JSy decomposes into a product of Jacobians as follows:
JS)\ ~G JE)\ X JC%.

Proof. The dimension of the complex vector subspaces of V; and V5 fixed under the subgroups Hy and Hj
are

Hy _ jHs _ Hs __ jHy _
Al —aff> =1 and dff = dll = 0.
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Thus, the result follows after applying the criterion to identify factors in the group algebra decomposition
of JS) as Jacobians of quotients of Sy (as explained in Subsection 2.6; see equations (2.5) and (2.6)) together
with Proposition 2. O

q—1

Remark 4. Note that C) is an irregular 2¢-gonal Riemann surface of genus %5=. An explicit algebraic

description of F) has been obtained in Proposition 1.
5. Fields of definition

Let Gal(C) denote the group of field automorphisms of C. Let X C P™ be a (smooth algebraic) variety
and o € Gal(C). We shall denote by X the variety defined by the polynomials obtained after applying o
to the coeflicients of the polynomials which define X.

Let k be a subfield of C and let Gal(C/k) be the subgroup of Gal(C) consisting of those automorphisms
which fix the elements in k. We shall say that X is defined over k if X = X¢ for all 0 € Gal(C/k). We shall
say that X can be defined over k (or that k is a field of definition for X) if there exists an isomorphism
X — Y into a variety Y C P™ which is defined over k.

By considering the explicit algebraic description of Sy provided in Theorem 1, in this section we derive
results concerning the field of definitions of Sy according to the value of A.

5.1. Real Riemann surfaces

An algebraic variety is called real if it can be defined over the field of the real numbers; equivalently, if
it admits an anticonformal involution (i.e. an anticonformal automorphism of order two).

Following [6, Section 6], when we consider the family F, as a complex subvariety of the moduli space .#, of
compact Riemann surfaces of genus ¢, it is isomorphic to the projective line minus three points. Furthermore,
Fq C My admits an anticonformal involution whose fixed point set consists of points representing real
Riemann surfaces.

The following result shows that among the Riemann surfaces Sy in F,, the real ones can be easily
recognized according to the value of A\. More precisely:

Theorem 5. Let A € Q). Then the following statements are equivalent:

(a) Si is a real Riemann surface.
(b) JSy is a real algebraic variety.
() Ae {1 —=XN1/A0/(1—-N}

Proof. The equivalence between the first two statements is well-known; indeed, following [37, Theorem 1.1],
a Riemann surface and its Jacobian variety can be defined over the same fields.

We now proceed to prove the equivalence between the statements (a) and (c).

Let us assume that S is a real Riemann surface or, equivalently, that Sy admits an anticonformal
involution, denoted by fy : Sy — S\. It is clear that fAGf;1 = G and therefore f\ gives rise to an
anticonformal involution gy : Oy — O), where O, denotes the Riemann orbifold given by the action of G
on S).

We recall that Oy has genus zero and four marked points: 0,1 and co marked with 2, and A\ marked with
2q. Tt follows that gy is an extended Mobius transformation, i.e. gx(z) = (azZ+b)/(cz +d) with a,b,¢,d € C
and ad — be # 0, satisfying

g(A) =X and gx({c0,0,1}) = {0,0,1}.
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We only have four possibilities:

1) gx fixes oo and permutes 0 and 1. In this case g)(z) = 1 — z showing that A =1 — .

-2 4
3) g fixes 1 and permutes oo and 0. In this case gx(z) = L showing that A = 1/)\.

z

4) g fixes 00,0 and 1. In this case g)(z) = z showing that A = A.

(1)
(2) ga fixes 0 and permutes 1 and oco. In this case gx(z) = %= showing that A = 5\/(1 — 5\).
(3)
(4)

Hence, ) is as in statement (c).
Conversely, if A is as in statement (c), to construct explicitly an anticonformal involution is an easy task,
and the proof is done. O

Remark 5. Following [6, Theorem 14], the real Riemann surfaces in the family F, form three (one-real-
dimensional) arcs. In addition, in order to compactify the union of these arcs in the Deligne-Mumford
compactification of .#j;, it was proved that it is enough to add to F, three points: these points representing
two nodal Riemann surfaces, and the Wiman surface of type II (this is the unique compact Riemann surface
of genus ¢ admitting an automorphism of order 4q; see [52]).

The aforementioned results were obtained by using Teichmiiller theory and Fuchsian groups, among other
techniques. Here, by considering the algebraic description of the Riemann surfaces in F; given in Theorem 1,
we are able to recover partly these results in a very explicit way as follows.

The Riemann surfaces Sy, and Sy, are isomorphic if and only if Ay = T'(A1) for some

TeEG=(z—~1z2—1)=8S; (5.1)

Observe that for the exceptional values —1, %, 2,7 and 72 where v3 = —1, the Riemann surface S, has more
than 4¢ automorphisms.

Thus, the family 7, is isomorphic to the quotient of the parameter space
Q=C—-{0,£1,3,2,7,7%}

up to the action of G. Namely: Q — Q/G = F, = C — {0, 1}.

According to Theorem 5, the complex numbers A € €2 representing Riemann surfaces Sy which are real
can be represented in the diagram below; the colored red points represent Riemann surfaces with more than
4q automorphisms (and therefore they do not belong to Fy).

Note that a fundamental region for the action of G on € is given by
{z€C:|z] <1,Re(z) < 1}

and, consequently, the subsets of F, given by



S. Reyes-Carocca / Journal of Pure and Applied Algebra 223 (2019) 2125-2144 2139

O{e" :m<0<Z}), O{z: ]z — 1] = 1,]2| < 1}) and TI(] — 1,0])

are the three arcs in F; (denoted in [6] by as,a; and b respectively) corresponding to real Riemann surfaces
in Fy.

Note that the limit point of F; which connects the arcs az and b correspond to S_; and therefore, by
Theorem 1, can be algebraically described by

y? = x(z? + 1),

The map (z,y) — (—wae@, wsqy) where w, = exp(2F), induces an isomorphism between S_; and the

curve

this is the Wiman surface of type II.

Remark 6. After proving that an algebraic variety is real, to find explicit defining equations with real
coefficients is, in general, a difficult problem. If A is real then a model for Sy in terms of equations with
real coefficients is provided by Theorem 1. In the remaining cases, the construction of real equations can be
done by applying the results of [25].

5.2. Arithmetic Riemann surfaces

An algebraic variety is called arithmetic if it can be defined over a number field or, equivalently, over the
algebraic closure Q of the field of the rational numbers.

A well-known result due to Belyi ensures that a Riemann surface is arithmetic if and only if it admits
a non-constant meromorphic function with three critical values; see [2]. For arithmetic complex surfaces
an analogous result to Belyi’s theorem was proved by Gonzilez-Diez in [16] by considering the so-called
Lefschetz maps. For the case of arithmetic families of Riemann surfaces we refer to the articles [18] and [19].

We mention that arithmetic Riemann surfaces (also known as Belyi curves) have attracted much attention
ever since Grothendieck noticed, in his famous Esquisse d’'un Programme, interesting relations between them
and bipartite graphs embedded in a topological surface; see [20].

As in the case of real Riemann surfaces, arithmetic Riemann surfaces among the Riemann surfaces in
the family F, can be easily identified.

Theorem 6. Let A € Q). Then the following statements are equivalent:
(a) Sy is an arithmetic Riemann surface.
(b) JSy is an arithmetic algebraic variety.
(¢) X is an algebraic complex number.
Proof. As in the proof of Theorem 5, the equivalence between the first two statements follows from [37,
Theorem 1.1].
We denote by O, the Riemann orbifold given by the action of G on Sy, and by

TG :S)\—>0)\

the associated covering map.
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Let us assume that S is arithmetic. Then there exists an algebraic model S of Sy defined by equations
whose coefficients belong to the field of the algebraic numbers. Let us denote by G the automorphism group
of 54, by O) the Riemann orbifold given by the action of G\ on S}, and by 7 the associated covering
map.

As a consequence of [17, Proposition 3.3], both each element of G\ and the projection T, are algebraic
(i.e. defined over Q). In particular, the branch values of Tgy are also algebraic. Let fug, p11, ftoo and px denote
these values, where g, 41, too are marked with 2 and p) is marked with 2gq.

Now, the existence of an isomorphism fy : Sy — S§ guarantees the existence of an isomorphism gy :
Ox — O such that gy © fa = g o Tg, . It follows that gy is a Mobius transformation satisfying that

g)\(u)\) =)\ and g)\({:u’oonU'Ov/jfl}) = {O0,0, 1}
Thus,
() =T (i)
for some T' € G as in (5.1), and therefore

_ (1 —proo ) (Hr—po)
A=T (wl—uo)w—um)) :

Finally, as each T' € G is defined over Q and the points g, (41, oo, 4x are algebraic, we are in position
to conclude that the complex number A must be algebraic.
The converse follows directly from Theorem 1, and the proof is done. O

Corollary 1. Let A € Q. Then JS) is an arithmetic algebraic variety admitting a group algebra decomposition
in which each factor is arithmetic as well.

Proof. Following [17, Theorem 4.4], if S is an arithmetic Riemann surface then any Riemann surface S’ for
which there is a covering map S — S’ is arithmetic as well. Thus, the result follows directly from Theorems 4
and 6. O

Remark 7.

(a) Tt is worth observing that Theorem 6 and Corollary 1 can be easily generalized from Q to any alge-
braically closed subfield k& of the field of the complex numbers.

(b) In addition, Corollary 1 can also be generalized from each Sy in F, to any Riemann surface S defined
over k whose Jacobian variety admit a group algebra decomposition in which every factor is isogenous
to the Jacobian of a quotient of S.

5.3. Riemann surfaces defined over the field of moduli
The field of moduli M(S) of a compact Riemann surface S is by definition the fixed field of the group
I(S) = {o € Gal(C) : §7 = S}.
Proposition 3. Let A € Q. Then
QG(A) = M(5) <Q(A)

where j denotes the invariant function for elliptic curves, in the Legendre form.
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Proof. We recall that, as a consequence of Theorem 1 and Proposition 1,

(Sx)7 = S5n) and  (E)\)7 = By

for all o € Gal(C), where E) = S, /(r=2,sr=1).
Now, if o € I(S) then there is an isomorphism S\ — S,(x) which induces an isomorphism E\ — Ey(y).
In particular,

JA) = 3(e(N) = a(G(N)

showing that o € Gal(C/Q(j(N))); it follows that Q(j (X)) < M(S).
The other inclusion follows from Theorem 1, and from the fact that the field of moduli is contained in
every field of definition. The proof is done. O

Weil in [51] provided necessary conditions for S to admit its field of moduli as a field of definition; these
conditions hold trivially if S does not have non-trivial automorphisms. On the other extreme, following [53],
if S/Aut(S) is an orbifold with signature of type (a,b,c) then S can be defined over its field of moduli.

By results of Débes—Emsalem [13] (see also Hammer—Herrlich [21]) there is a field of definition of S which
is an extension of finite degree of its field of moduli.

In general, the determination of whether the field of moduli is a field of definition is a difficult task;
see, for example [14], [23], [26], [41] and [50]. By contrast, in the hyperelliptic case it is possible to decide,
in a very simple way, if the field of moduli is a field of definition. In fact, following [28], if the reduced
automorphism group of a hyperelliptic Riemann surface is not cyclic, then it can be defined over its field of
moduli. It follows immediately the following:

Proposition 4. Let A € Q. The field of moduli of Sy is a field of definition for Sy and for JSy.
6. A three-dimensional family of ppavs with D;g-action

Let S be a compact Riemann surface of genus g > 2, and let
JS = (s1°(8,C))*/H.(S,Z)

be its Jacobian variety. We recall that, after fixing a symplectic basis of H1(S,Z), both a period matrix
(I, Zs) with Zg € ;, for JS, and a rational representation of Lg := Endg(JS) are determined, up to
equivalence.

If S is hyperelliptic, then the symplectic representation

pr: G — Sp(29,2)
of the automorphism group G of S induces an isomorphism
G=2G:={ReSp(29,2Z): R-Zs = Zg}.
We can now consider the complex submanifold of J7
Hy(G)={ZeH :R-Z=2Zforall Re G}

consisting of those period matrices Z representing ppavs of dimension g admitting the given action of G.
Clearly, Zs € 7,(G).
In the case of the action of Dyy on the Riemann surfaces in family F5, we can be much more explicit.
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Theorem 7. Consider the action of D1g with generating vector og.
There exists a three-dimensional family As5(D1o) of principally polarized abelian varieties of dimension
five admitting the given group action; it is given by the period matrices in % of the following form:

2(utv+u) —w—u —20 —v—w—u —v+u
l..35 1 1
—w—u —v—2w+4u v=5U w+2u v—u
—2v v—%u u v w (61)
—Vv—w—1u w+%u v Uu —w
—vtu v—u w —w 2(u—v—w)

for complex numbers u,v and w.
Furthermore, A5(D1o) contains the one-dimensional family Fs.

Proof. The proof is based on the results and routines in [1] (implemented in the open source computer
algebra system SAGE).

By constructing a family of very special hyperbolic polygons that uniformize Riemann surfaces with a
given group action, it was implemented, among others, routines to determine a symplectic representation
of the group, and after that, those matrices which are invariant.

We consider the generating vector og = (s,sr=2,7°,r7) of G = Dyg. By applying the routine P.symplec-
tic.generators, we obtain that, if p denotes the symplectic representation of G, then

p(r) = diag(R, (R)™") and  p(s) = diag(5, S'),

where
-1 01-11 -10 1 -1 1
1 101 0 0 -1-11 -1
R= 0 00-10 and S = 00 0 —-10
1 001 —1 0 0-10 0
0 —20 1 —1 00 0 0 1

The problem of finding those period matrices in ¢ which are invariant under the given action involves
solving a system of nonlinear equations in fifteen variables. If we apply the routine P.moebius.invariant, the
desired form is obtained. 0O

The automorphism group G of S can be canonically seen as a subgroup of Lg. Thus, the variety /¢, (G)
contains the complex submanifold H(Lg) whose points are matrices representing ppavs containing Lg in
their endomorphism algebras; see [54, Section 3] and also [45, Sections 2 and 3] for a more general context.
This is called the Shimura family of S and corresponds to a special subvariety of Ay (see [38, Section 3| for
a precise definition).

Proposition 5. Let A € Q. The dimension of the Shimura family of each Riemann surface Sy in Fy is %.

Proof. Following the results proved in [15] and Serre’s formula [47, Proposition 3], it can be seen that the
dimension N of the Shimura family of S is given by

- 5gealx(9)” + x(9)],

where x stands for the character of the analytic representation p, of G. Clearly, this dimension does not
depend on A; in fact, it only depends on the local monodromy of the action of G on S).
Now, by using the classically known Chevalley—Weil formula [10], we obtain that

Pa = Wi Ws.
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The character of p, is summarized in the following table:

Rep. of conj. class id s sr rd rt
Length 1 q q 1 2
Character q -1 1 —q 0

where 1 <t < ¢q — 1. It follows that

N=gl@+a+1+qq+1+aqq+(+9]="% O

Given a Riemann surface S, to provide an explicit description of the elements of H(Lg) seems to be a
difficult task. However, as a simple consequence of Theorem 7, we obtain the following direct corollary:

Corollary 2. FEach element of the Shimura family associated to every member of the family Fs admits a
period matrix of the form (6.1) for some u,v,w € C.
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