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Abstract: In this work, we present a novel camera array that exploits the electronic rolling
shutter to achieve high speed compressive temporal imaging. Traditional compressive temporal
imaging makes use of mechanical coded apertures, despite implementation and calibration
challenges. Instead, we propose to model the inherent spatial and temporal coding provided by
the distinctive rolling shutter sampling from each camera of the array as a compressive temporal
imaging system matrix. Thus, we can recover a high speed video from a set of snapshots from
the camera array by using compressive sensing reconstruction algorithms. We present both
simulation and experimental results for a 4-camera array system with different orientation angles,
reconstructing up to 56 high-speed sub-frames from a set of simultaneously triggered snapshots
from the array, achieving a compression rate of up to 14X.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

For most video applications, a temporal resolution of 30fps is often enough since human vision
is not able to distinguish fast changes or movements beyond that. However, there are many
applications where a higher temporal resolution analysis is highly desired for better understanding
of natural and artificial processes [1-3]. Over the last forty years, the CCD sensor [4] has been
widely used in the vast majority of imaging applications and all sorts of research, while the
CMOS sensor [5] has been mostly adopted as a low-cost, low-quality alternative for consumer
cameras. Nonetheless, recent improvements in semiconductor fabrication processes, plus a
variety of intrinsic advantages offered by the CMOS sensor technology [6], has turned it into a
viable and popular alternative not only for consumer imaging, but also for highly demanding
scientific imaging [7].

One of the main issues found in CMOS sensors is related to its readout circuitry—mostly due
to the time-multiplexing needed for reading every pixel row—named as Rolling Shutter (RS).
In essence, the RS reads different rows of the detector at different moments within the global
integration time of the detector, creating a variety of unwanted distortions when imaging dynamic
events such as skew, wobble, and aliasing, among others. These distortions arise from either
global or local movements such as fast camera movements or fast moving objects, respectively.
Even though the RS can be seen as a nuisance to the imaging pipeline, some research has taken
advantage of it to increase the overall temporal resolution by synchronizing a massive CMOS
camera array [8], delivering a temporal resolution of up to 1560fps. Another alternative proposed
in [9] was the direct modification to the readout circuitry in the CMOS sensor to swap sampling
rows and also define a different exposure time per row, allowing to apparently increase the
temporal resolution by better sampling the space-time datacube. However, as simple as it may
sound, it is not yet an off-the-shelf CMOS detector solution.

On the other hand, another alternative to increase the temporal sampling of the imaging system
is through the use of compressed sensing [10]. For example, Llull et al. [11] proposed a modified
imaging system by adding a moving coded aperture that encodes the high-speed scene within the
integration time of the detector. By properly calibrating the space-time sampling of the coded
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aperture, several video frames can be reconstructed from a single snapshot using compressed
sensing reconstruction techniques. Also, Pournaghi et al. [12] introduced a compressive camera-
array system with various sampling methods to overcome the temporal limitations of the system.
With advances in compressive video sensing, Zhang et al. [13] proposed a pixel-wise code
exposure sensor for temporal imaging, which can output 100fps videos from 5fps measurements.
Lately, another attempt for compressive temporal imaging has been proposed in [14], revisiting
the opportunities brought by the RS while using a lensless computational imaging system based
on a diffuser that acts as a pseudorandom mask, spatially spreading the scene such that the
information of the entire scene is encoded in each row, dramatically increasing the temporal
resolution for simple video scenes.

In this work, we present a novel camera array that exploits the electronic rolling shutter to
achieve high speed compressive temporal imaging. Instead of using traditional compressive
temporal imaging techniques that makes use of mechanical coded apertures, nor making any
modification to the optics, we propose to exploit the inherent spatial and temporal coding provided
by the rolling shutter itself at distinctive camera orientations, improving the sampling of the
space-time datacube. Our contributions are the development of a forward matrix modeling of
the RS acquisition process to simulate distortions in dynamic scenes and solve the compressive
reconstruction problem posed by the proposed novel compressive temporal imaging system that
exploits the built-in electronics of cheap off-the-shelf CMOS cameras, without the need of optical
modifications neither coded apertures.

2. Rolling shutter modeling

No matter what class of array detector is being used, the acquisition process for a single detector
row is mostly dominated by three temporal factors: the reset time, the exposure time, and the
readout time. As shown in Fig. 1, if the three steps are simultaneous, then we are in presence
of a Global (electronic) Shutter (GS). On the other hand, during the CMOS Rolling Shutter
acquisition the timing for each row is displaced to assure that only one row is being read at a
given time.

(a) Global Shutter (b) Rolling Shutter
sensor sensor
row frame row frame
—— —— —
L §p | — _
I | I _
| — — _
- ] —— _
time time
I Reset time B Exposure time I Readout

Fig. 1. Comparative representation of the acquisition system in detector arrays. (a) Global
shutter; (b) Rolling shutter.

The acquisition system for an imaging detector can be modeled as a temporal integral at the
sensor plane such that

P()C,y) = j;m V(x,y,t)-S(x,y,t)dt, (1)

where (x,y) are the discrete pixel indices of the sensor, V(x,y, ) is the time-varying optical
intensity distributed on the image sensor plane (i.e. space-time datacube), S(x,y,f) € {0, 1}
represents the binary shutter function. The characteristics of S(x,y, r) are determined by the
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acquisition parameters of the RS sensor: The readout time #,, which is determined by the reading
circuit clock speed. The exposure time f,, which most of the sensors on the market allow to
control. The delay time 74, which is the time between each frame. Finally, the pixel size of the
sensor (Ary, Ary), as well as the detector resolution—or selected Region-of-Interest (ROI)-also
plays a role.

Typically, the reset time is rather short (around ~ 0.7us [15]) and, for simplicity, it is neglected.
Also an isometric pixel geometry is assumed (Ary = Ary). As shown in Fig. 2, a continuous
dynamic scene can be quantized in time to generate sub-frame values as determined by Atr.
Moreover, the value Ny = [f,/t,] represent the number of rows exposed during Az. With this
in consideration, the frame of a RS CMOS detector can be seen as the collapsed space-time
datacube in the temporal axis. For short exposure times (e.g. Figure 2(a)), the multiplexing
between sub-frames of the scene is low, while for longer exposures there is a greater number of
pixels sampled from more sub-frames.

(a) Short exposure time (b) Long exposure time

= M Exposure time =
At M Readout time At

Fig. 2. Quantized representation of the Rolling Shutter acquisition. (a) Short exposure time
(te ~ tr); (b) Long exposure time (t,>1;).

With the scheme presented in Fig. 2, it is easy to understand that when observing high-speed
moving objects, these can be distorted depending on their direction relative to the readout of the
sensor rows (scanline). Generally, for global movements (e.g. camera motion), distortions can be
interpreted as purely geometric deformations. Nonetheless, for local movements different sorts
of distortions can appear and may no longer be easily modeled.

In the discrete domain, we can reformulate Eq. (1) as the image formation of the m X n image /
as follows

T
I(x,y) = Z S(x,y,sAt, f) © V(x,y, sAt, f), 2)

s=1

where © represents the Hadamard product and T all the sub-frames within the frame f €
{1,2,...,F} for F the total number of frames. In this approximation, all the temporal information
in [sAt, (s + 1)At] is integrated and not recoverable. For the model to work properly, At > ¢, since
At<t, it will only add redundancy into the sub-frames. For simplicity, and for being the smaller
value to be chosen without falling into redundancies, we use Af = ¢,.

In the context of RS, we first focus on a given row y = k to define the temporal related variables
as shown in Fig. 3, where we have the exposure time 7, and reset time 7., plus the delay time
variable 74, which is the time between frames f. In a CMOS detector, the delay time can be
chosen such that the exposure of the first row may start even before the readout of the last row
of the previous frame. We will consider that the row readout time never overlaps each other,
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so t; > mt, —t,. The auxiliary variable 7, is the start acquisition time, which will be used to
synchronize the proposed camera array in section 4.

rows
y | te ot g
k__
k+11 , : :
ta b o e o e e e o e e e e [ - F]
1 } 1 t } % ;
sAt (s+1)At (s+2)At time

Fig. 3. Definition of the temporal parameters for the RS cycle.

Now, lets define the shutter function S as follows

S(x,y =k, sAt,f) = Ma(x, y = k., f), 3)

where My, is a binary mask with values defined by the conditions imposed by Eq. (4). This
mask is the sampling matrix of the space-time datacube, and it is defined as

1, if SAt€ [ty te+tq]+ k=Dt +1t45(f—1)
MsAt(-x’y = k»f) = (4’)

0. otherwise

With the proposed model, it is possible to simulate real conditions of high-speed scenes
acquired with an RS sensor with great accuracy. For example, in Fig. 4(a) we have one frame of
a rotating object captured with GS, while in Fig. 4(b) we have the same moving scene captured
with RS. Using the GS image in Fig. 4(a) with the proposed shutter model together with the
knowledge of the exact RS parameters used in the real RS snapshot of Fig. 4(b), we simulated
what would be the resulting RS image as shown in Fig. 4(c), presenting great similarity to the
originally captured RS image. By changing the high-speed input video V to the simulator, it is
possible to generate all the distortions associated with the RS, and by controlling the exposure
time we can make the simulation to naturally include motion blur, saturation and signal to noise.

Fig. 4. Example of a black belt moving from right to left. (a) real GS snapshot; (b) real
CMOS RS image at #, = 26us; (c) simulated RS image starting from (a) and using the same
parameters of the RS detector in (b).
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3. Compressive temporal imaging

Compressive temporal imaging enables high-speed imaging using normal speed detectors by
modulating the space-time datacube with a dynamic coding aperture. As originally proposed
in the CACTI system [11], the coding was implemented at a relayed image plane by a moving
random aperture mask that acted over the full spatial span of the scene within the exposure time
t.. The forward model for the acquisition of a single-shot measurement is as follows

T
glx,y) = Z S(x,y, sAt) © V(x,y, sAt) + n(x, y), (5)
s=1
where n represent the noise of the system, and S is the coded aperture of the random shifted mask.
Figure 5 shows a graphical representation of both the RS acquisition model and the CACTI. After
comparing the image formation models in either Egs. (2) and (5), it can be stated that they share
an analog mathematical model, while having a different design for the sampling matrix S.

(a) RS sampling mask (b) CACTI sampling mask

..-="Collapsed "Cgllapsed
g datacube datacube

Fig. 5. Comparison of the RS (a) and CACTI (b) imaging systems. The final image / in
each case correspond to the collapse in the time domain of the sampled datacube S © V. (a)
S comes from the RS model; (b) S is a shifting spatial random mask.

We consider the spacetime datacube in lexicographical form as f € R™T*!  the measured
image [ as g € R™™1 and the noise n € R™*!, Now, the vectorized form of S becomes the
forward matrix H € R"™™>""T leading to the following linear forward model

g =Hf +n, (6)
which represents the classic sensing model in compressed sensing [16]. Now, if the individual
sampling matrices hg for each coded frame are obtained by

h, ¥ diag ([S(1, 1,5A7) S2, 1,5A0) - - S(m, m,sAD)]), s=1,....T, 0)

then, the forward matrix H is defined as follows

H; < [hyhy - hy]. ®)
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When comparing the forward matrices for the RS and CACTI imaging systems, we can notice
that the sampling of the RS is uniform, allowing only a particular row to be sampled at a given
sub-frame, while for the CACTI pixels are sampled from all over the image. As seen in Fig. 6(a),
the number of pixels sampled by the RS correspond to n X N;. On the other hand, by using
a random mask with transmittance of 50% (as in the example of Fig. 6(b)), the CACTI has
0.5 - m x n pixels sampled at every sub-frame.

(a) RS sampling mask

Fig. 6. Space-time sampling masks comparison. (a) RS system; (b) CACTI system.

To improve the sampling diversity provided by a single RS camera, we propose the use of an
array of RS cameras at different orientations for compressive temporal image.

4. RS camera array

The fact that the RS provides with a mechanism to sample the space-time datacube, turns it into
a potential candidate for compressive temporal imaging. Nevertheless, the main limitation of
the RS acquisition system is the lack of diversity and the low number of pixels sampled at any
particular sub-frame. To overcome this issue, we extend the single RS sampling (previously
shown in Fig. 2) to handle an array of RS cameras oriented with different angles a; relative to a
reference camera.

In particular, we show in Fig. 7 the proposed scheme for an arrangement of four RS cameras
placed at a distance z from the scene and spaced at a distance d between them, being the red camera
the selected reference one. The angles «; for each camera in the array are [0° 90° 180° 270°],
respectively.

The sampling mask for the space-time datacube displayed in Fig. 7 is subject to the cameras
having the same Field of View (FoV) and with a distance to the scene z > d to avoid distortions
due to changes in perspective determined by the adjacent but different positions of the cameras.
Moreover, a tilt adjustment is applied so that the projections coincide at the common FoV.
Consequently, extending the linear system in Eq. (6) to model the proposed camera array structure
leads to the concatenated measurements

g=1 . =Hf +n, 9)

gc



Vol. 29, No. 9/26 April 2021/ Optics Express 12793

Optics EXPRESS

Sampling mask Cameras scanlines

Fig. 7. Representation diagram of the proposed RS camera array displaying the relative
position and dynamics of the scanlines within the space-time datacube. The sampling mask
is represented by different colors (red, blue, brown and green) for each camera.

with the new forward matrix H defined as follows

H;

H,
HE | 7|, (10)

Hc

where H; represent each individual forward matrix for the i camera. In particular, Eq. (10)
requires the following conditions:

* The same optics is used in each camera so that the geomtric projections have the same
characteristics.

* The same optical aperture is set in the lenses to keep the same photon flux, otherwise a
scale factor must be applied to match the throughput of each H;

* Spatial calibration of each camera pose to adjust for the common ROI is performed to
guarantee that each H; is acquiring the same scene f

* The acquisition is properly synchronized using controlled triggers for all cameras

* The characteristics of the detectors are similar in terms of readout noise, gain, and quantum
efficiency [17-19]), and if not, they must be compensated by a proper detector calibration.
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5. Results

5.1.  Proposed reconstruction algorithm

Given the forward lineal model presented in Eq. (9) for the RS camera array, the reconstruction
of the compressed space-time datacube is presented as the following unconstrained optimization
problem

f= argmfin||g—§f||§ + AR(f), an

where R is the regularization function and A the regularization weight parameter. In compressive
temporal imaging, the regularization R is used to enforce sparsity on the reconstructed datacube
f by using a representation basis for the spatial domain—such as Wavelet, DCT, or the Total
Variation (TV) operator—where the redudancies are well studied. Even though there are several
new algorithms for state-of-the-art compressive video reconstruction [20], the use of generalized
alternating projection [21] (GAP), based on the alternating direction method of multipliers [22]
(ADMM) algorithm, can achieve satisfactory results [20,23-25] with a reduced computational
complexity. Therefore, the following results were rendered using the ADMM algorithm coupled
with a TV regularization approach (ADMM-TV [26]), which can be described as the combination
of the following optimization problems:

gl = arg?nn%”g—gfll% + g - (6" +b)|]5, (12)
2

0™*! = argmin! ”0 - (f”‘ - b’) + ATV(8), (13)
0 2 2

bt+l — bt _ (ft+l _ 0t+l) (14)

where f*1) is updated as an euclidean projection of %) as follows

fD = (0" + ') + H' (15)

R

g -[H@E+p)], g -[H@E+)],]
n+yi ’ n+Yn ’

which can be calculated using the i/ element-wise division g~ [E (0’ +b') ]l. /(m — ;) where
can be derived as

T w2
k=1 hk,l,i,i

T 2
Z:k:I hk,2,i,i

P =

(16)

T 2
Zk=1 hk,C,i,i

Finally, the TV operator is used to solve ) — b) through the Chambolle’s minimization
algorithm [27].

5.2. Simulation results

By taking into account the linear model presented in Eq. (9) and the ADMM-TV reconstruction
algorithm, we performed simulations of the acquisition and reconstruction processes for a variety
of short image sequences, such as the Milk dataset, which is a slow motion video of an object
falling into a glass of milk, and the Car dataset, which is a video of a toy car crashing against
a wall, to name a few. In order to reduce the memory load and better match the experimental
setup, the resolution of each datacube was fixed to small resolution images of (50x50) at 80
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frames, ensuring a good sampling density of the datacube in space and time. We used both the
peak signal to noise ratio (PSNR) and structural similarity index measure (SSIM) metrics for
the evaluation of the image quality of the reconstructed videos with respect to the ground truth
video. Figure 8 shows the average reconstruction results when using a single RS camera and
the proposed RS camera array using from two up to eight cameras. Each camera added to the
array is included with a rotation angle with respect to the reference camera following the order
[0°,90°,180°,270°,45°,135°,225°,315°].

Reconstruction quality given the number of cameras for 8 datasets

20 0.8
18 | 07+
16
) 0.6 [
TSl =
P 14 @
zZ 05t
a 12
10 04 r
8 ' - ' : ' : ' : 0.3 - ' : - ' : - '
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Number of cameras (C) Number of cameras (C)

Fig. 8. Compressive reconstruction quality in terms of average PSNR and SSIM given the
number of cameras in the RS camera array observing eight different moving scenes.

When considering only a single camera as a compressive temporal camera, the method
struggles to provide with good results, which is expected due to the poor sampling. However,
increasing the number of cameras helps to considerably increase the quality of the reconstructions.
Overall, using more cameras is better, although the greatest impact is found when adding the first
four cameras. Note that using more cameras would decrease the effective compression ratio.

Since the experimental results will be performed using a 4-camera array, we present several
samples from the reconstructed videos for the simulated system in Fig. 9. With a mixture of
simple and more complex movements, it can be seen that—for some scenes—the reconstruction
is better when there is more sampling density or the speed of the scanline is comparable to the
speed of the motion. Nonetheless, all reconstructed videos are able to show some degree of
motion within the scene, which is not always easy to identify by solely observing the acquired
static frames. After inspecting the video, the best result is achieved in the Milk dataset with a
PSNR = 18.56dB for the sub-frame 48, moment when the object falls into the liquid, which
can be fully appreciated. Another highlight is in the Traffic dataset, where the details of the
trucks without any of the distortions associated with the RS can be observed, presenting a natural
correction for the RS nuisance.

In addition, we present in Fig. 10 an analysis of the reconstruction of the Milk dataset
when compared with 3D interpolation in both the temporal and spatial domains. Despite the
reconstruction being far from perfect given the limited sampling of the rolling shutter camera
array, we can notice that results are considerably better when using an sparse reconstruction
algorithm in contrast with plain interpolation, demonstrating the compression ability of our
proposed sampling scheme.
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(c) Reconstruction

(a) Measurements (b) Ground truth (c) Reconstruction (a) Measurements (b) Ground truth

Fig. 9. Simulation results for eight datasets (see Visualization 1). (a) Simulation of the
acquired snapshots with a 4-camera array with #, = 0.18 ms, 7 = 35us, generating Ny = 5.
(b) Sample of the real video frames. (c) Sample of the reconstructed video frames with
A =20, n = 30 and 200 iterations.

Frame 25 Frame 65 Milk dataset V' (15,45, sAt) Milk dataset V' (z, 41, 25A¢t)
06
1) —— P _ @)
2 o, ! X 04
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1= = \
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20 40 60 80 0 10 20 30 40 50
Milk dataset V (35,8, sAt) Milk dataset V' (3, yk, 65At)
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Pixel
3D Interpolation ‘

ADMM-TV reconstruction

Fig. 10. Reconstruction analysis for the Milk dataset. Frame 25 and 65 (a) ground truth, (b)
reconstructed with 3D interpolation and (c) reconstructed with ADMM-TV; (d) Temporal
evolution of pixel (15,45); (e) Temporal evolution of pixel (35,8); (f) Spatial horizontal line
of frame 25; (i) Spatial vertical line of frame 65.
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5.3. Experimental results

To validate the proposed system for compressive temporal imaging, we built a 4-camera array test
bed. The proof-of-concept imaging system is composed of four Basler Acal300-30gm CMOS
sensors with hybrid shutter, which have the option of selecting either global or rolling shutter as
required, mounted with standard C-mount CCTV 25mm lenses, capturing images at 67 frames
per second. The cameras were rotated following the proposed scheme in Fig. 7. The target scene
consists of the light beam from an analog oscilloscope, which produces a relatively continuous
movement without the need to worry about the screen refresh rate as in digital oscilloscopes,
allowing to control the speed of the beam and its trajectory. The ROI calibration is performed
with the help of four black points marked on the oscilloscope screen at the corners of the scene to
be recorded. The camera setup also allows for a small tilt of the cameras which helps in putting
the scene in the center of each camera, thus diminishing optical distortion differences. Then,
ROIs are selected for each camera in order to have the marks imaged on the corner pixels.

As a first experiment, we present the results when using only two of the four available cameras,
using as a scene a straight line beam movement with a slight inclination. One camera was
oriented 90 degrees with respect to the other, selecting a common ROI from the scene of 40 x 40.
The exposure time was set to #, = 200us and the readout time was experimentally measured to
be 26us, generating a value N; of 7. From the two acquired snapshots shown in Fig. 11(a), we
reconstructed 51 video frames using ADMM-TV as shown in Fig. 11(b). After visualizing the
companion video, we can see that the beam is properly reconstructed crossing the scene in the
right direction.

Fig. 11. Experimental results of a simple moving scene captured with a two-camera array
(see Visualization 2). (a) RS captured images with the camera oriented with angles of 0°
and 90°, respectively; (b) 24 out of 51 reconstructed frames with 2 = 20, = 20 and 450
iterations.

Finally, we acquired sample data using the 4-camera array system using identical temporal
parameters as the last experiment. Two dynamic scenes using a triangular and a sinusoidal
signal generated in the oscilloscope were captured. The oscilloscope was at a distance of 3
meters to minimize the differences between projections on the sensors and the time sweep of
the oscilloscope beam was fixed at 20ms/DIV. With these parameters, the tangential speed
of the beam is approximately 0.5m/s, compared to a calculated scanline speed of ~ 0.2m/s.
The acquired snapshots are shown in Fig. 12(a) and 12(c), while 21 of the 58 ADMM-TV
reconstructed video frames (now of 50 x 50 pixels) are shown on Fig. 12(b) and 12(d).

After visualizing the video, we can appreciate that both beams trajectory and speed are
well reconstructed. In particular, the triangular beam exhibit a better reconstruction than the
sinusoidal beam, despite the fact that the beam changes dramatically in direction. Note that
none of the presented results would actually surpass what can be achieved by state-of-the-art
compressive temporal imaging devices. Nonetheless, we intended to demonstrate the great


https://doi.org/10.6084/m9.figshare.13519979

Research Article Vol. 29, No. 9/26 April 2021/ Optics Express 12798

Optics EXPRESS

Fig. 12. Experimental results for two different scenes using the 4-camera array (see
Visualization 3). (top) Sine wave scene measurements (a) and reconstructed frames (b) with
A =30, n = 20 and 300 iterations; (bottom) Triangular wave scene measurements (c) and
reconstructed frames (d) with A = 50, = 22 and 400 iterations.

advantage posed by using the RS as an electronic coding element at the hardware level, without
needing optical/mechanical coding elements that often pose tough calibration challenges and
a higher cost. Instead, for the proposed RS camera array, only a synchronized snapshot of the
cameras and the previous characterization and knowledge of the RS parameters are needed to
increase the temporal resolution, which could be of great usefulness for simple but fast motion
within a scene.

Moreover, from the experimental results we can realize that the reconstruction quality is
benefited when the velocity of the scene is comparable to the speed of the RS, which at a first
glance limit the system ability, but it also opens the possibility of thinking in redesigning and better
thinking the CMOS sensor to allow the control of the row/column addressing, somehow inspired
to what was proposed in [9]), but this time with compressed sensing in mind. In traditional
compressive temporal imaging systems, the number of sub-frames collapsed in the measurement
depends on the number of coded apertures generated by a DMD or discrete movement of a shifting
mask. However, for the system proposed in this work, the number of sub-frames depends directly
on the sensor parameters T = [(¢, + nt, + t,)/Ar]. As can be seen in the presented simulation
and experimental results, the initial and final frames lack of relevant information since at the
beginning and end of the acquisition, the scanlines of each camera are on the edges, so they are
disregarded reducing the number of sub-frames to Ts,. In terms of compression ratio, the number
of sampled pixels is determined by N,; = mnC and the reconstructed pixels are N, = mnT,, for
the T, effective sub-frames, leading to a compression ratio of CR = Ty, /C. When using the
4-camera array, the compression ratio for all simulated datasets was approximately 9X, while for
the experimental results the compression ratio was 14X. Knowing that we are reconstructing 58
frames from the experimental RS camera array measurements, then if we were to continuously
reconstruct the video frames captured at 67 fps we could achieve a reconstructed frame rate of
67 X 58 = 3, 886 fps.
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6. Conclusion

We have proposed a compressive temporal imaging system based on a camera array of RS-based
CMOS cameras. The proposed compressive imaging system exploits the RS dynamics—often
considered as a nuisance—as a coding opportunity for the space-time datacube. Since a single RS
camera is not capable of performing a good recovery of the datacube due to the poor sampling
diversity, we proposed to use an array of differently oriented RS cameras to improve the temporal
resolution. By proper modeling and characterizing the RS of an off-the-shelf camera and the
camera array geometry, it is possible to generate a forward matrix used to then reconstruct a video
from a set of RS snapshots without the need of additional intervention to the imaging system,
as often performed by mechanical coded apertures or a DMD in other compressive temporal
imaging devices. Our simulation results indicated that using more cameras is beneficial for better
reconstruction quality, although the improvement turns to be incremental after 4 cameras. The
experimental results obtained with a 2- and 4-camera array finally demonstrated the ability of the
proposed system to reconstruct high-speed events with the proper direction and speed, which
are hard to recognize solely from the captured RS snapshots. Clearly, the presented results are
not comparable in quality to those obtained by state-of-the-art compressive temporal imaging
methods, which was never the aim of the presented work. On the other hand, we believe this work
shows a novel way to recover high speed events from RS snapshots by exploiting compressed
sensing, while also indicating a feasible path for tweaking the RS at the hardware level as the key
for achieving a competitive, low-cost, hardware-only compressive temporal imaging device.
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