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Abstract: Reducing phosphate fertilizer inputs while increasing food nutritional quality has been
posited as a major challenge to decrease human undernourishment and ensure food security. In this
context, quinoa has emerged as a promising crop due to its ability to tolerate different stress conditions
and grow in marginal soils with low nutrient content, in addition to the exceptional nutritional quality
of its grains. However, there is scarce information about the phosphorus acquisition capacity of
quinoa roots. This work aimed to provide new insights into P acquisition and functional root traits,
such as root biomass, rhizosphere pH, carboxylate exudation, and acid phosphatase activity of thirty
quinoa genotypes grown under P limiting conditions (7 mg P kg~!). Significant genotypic variation
was observed among genotypes, with average P accumulation ranging from 1.2 to 11.8 mg. The
shoot biomass production varied more than 14 times among genotypes and was correlated with the P
accumulation on shoots (r = 0.91). Despite showing high variability in root traits, only root biomass
production highly correlated with P acquisition (r = 0.77), suggesting that root growth/morphology
rather than the measured biochemical activity possesses a critical role in the P nutrition of quinoa.

Keywords: Chenopodium quinoa; phosphorus nutrition; root growth; root exudates; volcanic soil

1. Introduction

One of the most important challenges for modern agriculture is to reduce under-
nourishment and ensure global food security without expanding arable land—in order to
preserve natural ecosystems and, at the same time, reduce agricultural inputs, especially
the non-renewable ones such as phosphate fertilizers [1]. Unlike nitrogen, which can be
fixed from the atmosphere through biological and industrial processes—a virtually infinite
reservoir, the dependence on phosphate fertilizers is unsustainable, as it is manufactured
from phosphate rocks, which have finite stocks [2]. In addition, phosphate rock reserves
are unevenly distributed worldwide, being concentrated in a few countries [3]. Although
estimates of the global phosphorus (P) reserves vary widely, recent reassessments suggest
that they may be depleted even within this century [2,4], highlighting the need for more
efficient use of this resource.

Among the widely suggested approaches to accomplishing future food security, im-
proving the nutritional value of food has been recognized for its global coverage and
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long-term cost-effectiveness [5]. In this context, while sustainable biofortification of tradi-
tional crops remains a challenge, the use of “forgotten” highly nutritious crops which are
adapted to grow in marginal soils emerges as an opportunity to produce quality food [5-7].

Quinoa (Chenopodium quinoa Willd.) has gained interest as a promising crop to fill
this gap due to its capacity to tolerate a wide range of stress conditions, including its
ability to grow in soils with low nutrient content and under conditions of drought, plus the
exceptional nutritional quality of its grains [6,8]. Although some agronomical practices such
as sowing date, plant density, and control of weeds and diseases, among others, have been
studied in recent years [9-12], there is not enough information about nutrient management
in this crop, especially regarding low-mobile plant nutrients such as phosphorus. In detail,
there is a lack of information about the P-acquisition capacity of quinoa roots and their
genotypic variability to promote sustainable use of P resources for this species.

Roots perform essential functions throughout plant development, such as providing
anchorage into the soil, resource storage, synthesis of essential metabolites, supporting
soil microbial communities, water uptake, and acquisition of nutrients—especially for
those with low mobility in soils such as P [13]. Accordingly, selecting for root traits that
maximize nutrient and water uptake efficiency has been indicated as a key target for a
“Second Green Revolution” due to their potential to achieve more sustainable agricultural
production [14-16].

A great variety of regulatory mechanisms are displayed by roots to enhance resource
acquisition under non-optimal conditions [17]. In the case of P, the main root adaptations
for increasing its uptake have been intensively reviewed [18-20] and include: (i) greater
carbon allocation to root biomass production, modifications in root system architecture,
and morphological adaptations [21,22]; (ii) “mining” strategies, through actively changing
soil pH, the activity of nutrient releasing enzymes, such as phosphatases, and exudation of
carboxylates [23]; and (iii) association with soil microorganisms, especially mycorrhizal
fungi [24]. However, considering that quinoa is a non-mycorrhizal plant (or with a very
low dependency on this symbiosis) [25], the other strategies should have a relative greater
importance in increasing the acquisition of nutrients with low mobility in soil, especially P,
which allows quinoa plants to grow in marginal soils that warrant more studies.

Finally, the complex of southern Chilean lowland quinoa ecotypes represents a unique
genetic reservoir of plants adapted from the Mediterranean to temperate climates [9,26],
which, due to their ancestral origin adapted to volcanic high P-fixing soils, would allow the
selection of efficient genotypes able to produce high-quality grains with fewer P inputs. This
study aimed to provide one of the first insights into the P-acquisition strategies developed
by quinoa roots grown under low P availability and their phenotypic variability on a set of
Chilean lowland quinoa accessions.

2. Results and Discussion

A significant and considerable variation among genotypes was found for P accu-
mulation in biomass (p < 0.001; F-value = 2.9; Figure 1A). After determining the mean
and standard deviation of the group of accessions for P accumulation, the quinoa ac-
cessions were classified into four categories based on a modified categorization from
Meier et al. (2021) [27], as follows: high P acquisition capacity (HPAC), medium P acqui-
sition capacity (MPAC), low P acquisition capacity (LPAC), and deficient P acquisition
capacity (DPAC) (Figure 1A). Accordingly, a 4.6-fold difference was found for average P
accumulation between genotypes with higher P acquisition (ICC 116, ICC 389, and ICC 391)
and those with deficient P acquisition (ICC 131, ICC 46, ICC 7, and ICC 3).



Plants 2022, 11, 3043 30f10

>

N
o
1

B orac [ tpac [ mpac [l HPAC I

-
[}
1

o
o
L

..I
_|
_|
_|

P accumulation (mg plant-")
]
1
—
—
|

Shoot weight (g plant-")

R=0.91,p<0.001

e [o)]
1 1

Shoot weight (g plant-")
N

o
1

0 5 10 15
P accumulation (mg plant-")

Figure 1. Growth and P accumulation of thirty Chilean quinoa accessions after 13 weeks of plants
growing on a volcanic soil with low available P. Graphs representing phosphorus accumulation in
biomass per plant (A), shoot biomass production per plant (B), and Pearson correlation analysis
among both variables (C). Error bars result from the mean of four biological replicates (+SE). Bars in
(A,B) represent least significant difference (LSD) at p = 0.05 among genotypes. Abbreviations: high
P acquisition capacity (HPAC), medium P acquisition capacity (MPAC), low P acquisition capacity
(LPAC), and deficient P acquisition capacity (DPAC).
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Average shoot biomass production per accession was in the range of 0.34-4.9 g of
dry matter (Figure 1B). Shoot growth was significantly different among the P acquisition
classes (p < 0.001; F-value = 4.8) and directly correlated with P accumulation (r = 0.91,
p < 0.001; Figure 1C). Accordingly, genotypes with DPAC showed the lowest shoot biomass
production, while ICC 116 and ICC 389, classified as HPAC, achieved the highest values.
Together, these results suggest that a greater P acquisition capacity is an essential trait
for sustaining quinoa growth under low available P levels. On the other hand, ICC 126
and ICC 117, which were classified as MPAC accessions, showed greater shoot biomass
production than ICC 391, an HPAC genotype (Figure 1B). The former could be related to a
higher internal P use efficiency of these genotypes, which may require less P for producing
biomass compared to ICC 391 [28].

Root biomass production varied greatly among genotypes and differed significantly
between the distinct P acquisition classes (p < 0.001; F-value = 2.6; Figure 2a). The three
genotypes classified as HPAC showed the highest root biomass production (>1.7 g per
plant), whereas the four genotypes belonging to the DPAC class presented the lowest
values (<0.4 g per plant) (Figure 2a). Root biomass showed the highest correlation with
P acquisition among the analyzed root traits in this study (r = 0.77; p < 0.001; Figure 2f).
Root-to-shoot ratio showed less variability compared to their individual components (i.e.,
root or shoot biomass production), ranging from 0.2 to 0.45, except for ICC 6, which
presented a root-to-shoot ratio of 0.64 (Figure 2b). No significant differences were found in
the root-to-shoot ratio among the different P acquisition classes.
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Figure 2. Main root traits of the Chilean quinoa accessions belonging to the different P acquisition
classes after 13 weeks of plants growing on a volcanic soil with low available P. Boxplots representing
root biomass per plant (a), root-to-shoot ratio (b), pH in the rhizosphere (1:2.5 soil:water) (c), acid
phosphatase activity in the rhizosphere (d), oxalate concentration in the rhizosphere (e), and Pearson
correlation analysis between root weight and P accumulation (f). Means with different letters are
significantly different according to the Tukey HSD test (p < 0.05). Abbreviations: high P acquisition
capacity (HPAC), medium P acquisition capacity (MPAC), low P acquisition capacity (LPAC), and
deficient P acquisition capacity (DPAC).

All quinoa genotypes acidified the rhizosphere soil, except ICC 135, whose rhizosphere
pH remained at 5.58 (Figure 2c). The pH on the rhizosphere ranged from 5.31 to 5.58
among accessions; that is, quinoa plants reduced rhizosphere soil pH up to 0.27 units. A
similar pH reduction has been observed for other plant species, such as lupins, maize,
rice, and alfalfa [29-31]. Plants-induced changes in soil pH are often attributed to root
respiration, carboxylate exudation, and/or cationic-anionic equilibrium in soil solution due
to preferential nutrient uptake of a given ionic form [30-32]. Accordingly, soil pH is a key
factor determining P availability for plants; however, species-specific optimum pH for root
P uptake does not always match with maximum P availability dependent on soil pH [18].
No significant differences were observed between the P acquisition capacity classes.

A 1.7-fold difference in acid phosphatase (Pase) activity in the rhizosphere was ob-
served among the 30 genotypes, with average values per accession ranging from 131.2 to
224.8 pg PNP g~ h~! of rhizosphere soil (Figure 2d). Organic P forms can comprise up to
80% of total P in some soils [33]; thus, it has been suggested that greater P mineralization
through Pases could represent an important approach for reducing P fertilizer inputs [34].
However, greater phosphatase activity does not always imply improved plant P acquisi-
tion, as their effectiveness depends on many factors, mainly soil mineralogy [35]. Here,
Pase activity in the rhizosphere of quinoa plants did not significantly differ between the
P-acquisition capacity classes.

Oxalate was the predominant carboxylate found in the rhizosphere of the quinoa acces-
sions, with a 14.4-fold difference between genotypes (Figure 2e). Oxalate concentration was
in the range of 8-115 umol g*1 of rhizosphere soil. Six accessions (ICC 100, ICC 98, ICC 38,
ICC 259, ICC 6, and ICC 7) had the highest levels of oxalate concentration (>100 pmol g~1),
whereas four accessions (ICC 142, ICC 390, ICC 46, and ICC 391) had the lowest values
(<10 pmol g 1). High carboxylate exudation is a well-known root adaptation for mobiliz-
ing sparingly available P forms, especially on severely impoverished and/or high P-fixing
soils [36]. Notwithstanding, in our study, oxalate concentration in the rhizosphere soil
negatively correlated with P acquisition (r = —0.23; p < 0.05; not shown) and was greater on
LPAC genotypes. This negative relationship was also observed in other studies [37-39] and
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could be related, among other factors, to a stronger organic P mobilization than inorganic
readily absorbable P when soil organic matter is high, as in our case [40].

The Principal Component Analysis (PCA) based on seven traits of 30 quinoa geno-
types explained 63.6% of the total variance in the first two components (Figure 3). The first
component represented 43.8% of the variability and was mainly affected by root biomass,
shoot P accumulation, and shoot biomass. The second component represented 19.8% of the
variance and accounted primarily for root-to-shoot ratio, rhizosphere pH, phosphatase ac-
tivity (Pase), and oxalate concentration. PCA visualization tended to generate homogenous
groups between individuals and suggested a continuous divergence among the different P
acquisition capacity accessions (Figure 3).
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Figure 3. Principal component analysis of seven traits of 30 Chilean quinoa genotypes grown for
13 weeks in a volcanic soil with low available P. Biplot vectors are trait factor loadings, whereas the
position of individual plants is shown. Abbreviations: high P acquisition capacity (HPAC), medium
P acquisition capacity (MPAC), low P acquisition capacity (LPAC), and deficient P acquisition
capacity (DPAC).

This study showed that Chilean lowland quinoa accessions possess a high genotypic
variability regarding P acquisition capacity under restricted available-P conditions. The
former could be related to differences in root morphological /architectural traits associated
with root biomass production rather than their biochemical activity. However, it is impor-
tant to point out that a single trait may not invariably explain higher P accumulation, as
the diversity of P forms present in soils, different edaphoclimatic site-specific conditions,
and the trade-offs on carbon cost in the root traits spectrum must be properly accounted.
Further studies have to be carried out to deepen understanding of the mechanisms related
to the P acquisition of quinoa plants as well as the responsiveness of contrasting genotypes
to increasing soil P levels and their genetic background.

3. Materials and Methods

Thirty Chilean lowland quinoa accessions conserved in the Germplasm Bank of the
Regional Research Center Carillanca of the Institute of Agricultural Research (INIA) (Vilcun,
Chile) were used in this study. These genotypes were collected in Chile between —35° S
and —40° S, from O'Higgins to Los Rios regions, corresponding to Mediterranean and
Temperate climate zones. More details regarding the quinoa accessions are available in
Supplementary Table S1.
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Plastic pots (20 cm x 20 cm X 25 cm; width X length x depth) were filled with 5 kg of
air-dried agricultural volcanic soil (Barros Arana Series, medial, mesic, Typic Hapludand,
Ciren 2002) with 7 mg kg ! of available P (Olsen-P), which was previously ground to pass
through a 5mm sieve and thoroughly homogenized. Soil chemical characterization was
performed according to Sadzawka et al. (2006) [41] (Table 1). Nitrogen and potassium
were provided on an equivalent dose of 200 kg ha~! of N (split into two applications) and
140 kg ha~! of K,O as commercial fertilizers (calcium ammonium nitrate and polysulphate,
as sources of N and K, respectively). Each pot was planted with six seeds at 15 mm depth,
with four replicates per accession (1 = 120). Seedlings were thinned to one plant per pot 12 d
after sowing. Plants were grown under glasshouse conditions for 13 weeks from September
to December 2021 at the Regional Research Center Carillanca of the INIA, Vilcun, Chile
(38°41' S 72°25’ W), and were watered every other week.

Table 1. Main chemical properties of the soil used in the experiment.

Parameter Value

N (mg kg~1) 2 40.7
P (mgkg )P 7.0

K (mgkg1) ¢ 176.1
pH ¢ 5.58
Organic matter (%) © 21.0

2 Total Nitrogen by Kjeldahl method [42], P Available P by Olsen method [43], ¢ Extracted with ammonium acetate
(1 M) and determined by atomic absorption spectroscopy [41], ¢ Measured in H20, ¢ Determined by soil oxidation
according to Walkey-Black method [44].

At harvest, shoots were separated from roots, and loose soil was removed by gently
shaking the root system. The soil firmly attached to roots, hereafter defined as rhizosphere
soil, was carefully collected with forceps and stored at 4 °C for approximately two weeks
until further analysis. Immediately after harvest, roots and shoots were cleaned with
distilled water, oven-dried at 70 °C for 72 h, and weighed. Then, shoots were ground,
ashed, digested in an HNO3:HCIO4 solution, and P concentration was determined by
spectrophotometry using the vanado-molybdate method [45]. P accumulation per plant
was calculated by multiplying P concentration and shoot dry weight of each sample.

Rhizosphere soil pH was determined on 10 g of dried soil (1:2.5 soil:water). Acid
phosphatase activity in the rhizosphere was determined by incubating 1 g of rhizosphere
soil in the Modified Universal Buffer (pH 6.5) with 25 mM of p-nitrophenyl phosphate (PNP)
as substrate at 35 °C for 1 h [46]. The identification and quantification of carboxylates on
rhizosphere soil were performed as described in de Souza Campos et al. (2021) [47]. Briefly,
2 g of thizosphere soil were placed in a 50 mL tube containing 10 mL of CaCl, (0.2 mM),
shaken, centrifuged, filtered (0.22 um pore), and analyzed by high-performance liquid
chromatography with diode array detection (HPLC DAD) equipped with an LC-20AT
quaternary pump, a DGU-20A5R degassing unit, a CTO-20A oven, a SIL-20a autosampler,
and an array of UV visible detector diode (SPD M20A) (Shimadzu, Tokyo, Japan). Control
and data collection were performed using Lab Solutions software (Shimadzu, Duisburg,
Germany). The chromatographic separation method was performed based on what was
reported by Parada et al. [48].

Genotypes were classified into four categories based on their P acquisition capacity
using a modified classification method described in Meier et al. (2021) [27]. The genotypes
were assigned with HPAC if their mean P accumulation was higher than the mean plus
standard deviation of the total population of genotypes evaluated (>p + SD), MPAC if their
mean value was between p and p + SD, with LPAC if their mean value was between p and
pn — SD, and with DPAC if their mean P accumulation was lower than the mean less the
standard deviation of the entire population (<u — SD).

A one-way ANOVA was used to evaluate significant differences in P accumulation
and shoot biomass production among accessions. Then, another one-way ANOVA was
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performed to evaluate significant differences in root traits across P-acquisition capacity
classes, followed by the Tukey HSD test when suitable. Pearson correlations and Principal
Component Analysis were performed between the main variables under study. All analyses
were carried out using RStudio software (RStudio, Inc., version 2022.07.1, Boston, MA,
USA) using factoextra, factominer, corrr, ggpubr, car, and agricolae packages.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/plants11223043/s1, Table S1: Accession codes available on GRIN-
Global database.
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