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1. Introduction

In this paper we investigate the Galois group of the Galois cover of the composition 
of étale double coverings Y → X of cyclic covers X → P 1 of prime degree p. For p = 2, 
Mumford shows in [6] that Y → P 1 is Galois with Galois group the Klein group of order 
4 and the Prym variety P (Y/X) is isomorphic as a principally polarized abelian variety 
to either a Jacobian or the product of 2 Jacobians.
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For p = 3, the trigonal construction tells us the principally polarized P (Y/X) is 
isomorphic to a Jacobian of a tetragonal curve. In Section 2 we study the Galois group 
of the Galois closure Z → P 1 of Y → P 1 for an odd prime p. The main result of this 
section is

Theorem 2.6. Let p be an odd prime, Y → X an étale double cover and X → P 1 a cyclic 
cover of degree p. Then Y → P 1 is not Galois. Denoting by Z → P 1 its Galois closure, 
its Galois group G is

G = N � P

where N ∼= Zp−1
2 and P ∼= Zp, and X = Z/N , Y = Z/H, with H a maximal subgroup 

of N .

There are 2p−1−1 maximal subgroups of N . The group P acts on them by conjugation 
and there are m := 1

p (2p−1 − 1) conjugacy classes of such subgroups.
Let {Yi → X | i = 1, . . . , m} be the corresponding double covers. It is easy to see that 
they are all étale. If T := Z/P , there is a natural homomorphism

α :
m∏
i=1

P (Yi/X) → JT.

Our main result is:

Theorem 3.1. α :
m∏
i=1

P (Yi/X) → JT is an isogeny with kernel in the 2p−2-division 

points.

As an immediate consequence we get examples of Jacobians with arbitrarily many 
isogeny factors of the same dimension. For p = 3 this is not yet the trigonal construction, 
which, however, is an easy consequence, as we show in Section 4.

For the sake of completeness, we also consider the case p = 2, i.e., we give a proof of 
Mumford’s theorem mentioned above. Note that Mumford gives only a short sketch of 
proof leaving the details to the reader. It seems to us that our proof is different from the 
one Mumford had in mind.

2. Étale covers of cyclic p-gonal covers

2.1. The structure of the Galois group

Let p be a prime and ϕ : X → P 1 be a cyclic covering of degree p ramified over β
points of P 1, with β ≥ 3. Observe that if p = 2 then β must be even.
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Let ψ : Y → X be an étale double cover and ϕ̃ : Z → P 1 the Galois closure of the 
composed map ϕ ◦ ψ. Let G denote the Galois group of ϕ̃ and H and N the subgroups 
of G corresponding to Y and X. So we have the following commutative diagram

Z

ϕ̃

Y = Z/H

2:1 ψ

X = Z/N

ϕ

p:1

P 1

(2.1)

In this section we determine the structure of G.

Lemma 2.1. The permutation representation ρ of G on the right cosets of H in G has its 
image in the alternating group A2p of degree 2p, and the non-trivial elements of G fixing 
points in Z have order p. Moreover, the representation ρ : G → A2p is injective.

Proof. Recall that Y → X is the double covering corresponding to the embedding H ⊂
N . Since ϕ is cyclic of prime degree, the local monodromy of each of its branch points is a 
cycle of length p. Since ψ is an étale double cover, every local monodromy of ϕ ◦ψ above 
a branch point is the product of two disjoint cycles of length p and hence in A2p. Since 
G is generated by these products, this gives the first assertion. The second assertion is 
clear. �
Corollary 2.2. If p = 2, the covering ϕ ◦ψ is Galois with Galois group G the Klein group 
of order 4. In particular Z = Y .

Proof. According to Lemma 2.1, G is a subgroup of A4, generated by elements which are 
products of two disjoint cycles of length 2. Hence G is the Klein group of order four. �
Proposition 2.3. Suppose p is an odd prime. Then the covering ϕ ◦ ψ : Y → P 1 cannot 
be Galois.

Proof. Since groups of order 2p cannot be generated by elements of order p, the covering 
ϕ ◦ ψ : Y → P 1 cannot be Galois. �

For the rest of this section we assume that p is an odd prime; hence the covering Y →
P 1 is not Galois, so Z �= Y and H and N are the proper subgroups of G corresponding 
to Y and X respectively, as in Diagram (2.1).
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Let {1 = g1, g2, . . . , gp} denote a complete set of representatives of right cosets of N
in G and {1 = n1, n2} denote a complete set of representatives of right cosets of H in N . 
Then the set {nigj : i = 1, . . . , p, j = 1, 2} is a complete set of representatives of right 
cosets of H in G.

For i = 1, . . . , p consider

Δi := {Hn1gi, Hn2gi}

as a set of two elements. Then the right action of G on the right cosets of H in G induces 
a transitive action of G on the set

Ω := Δ1 ∪ Δ2 ∪ · · · ∪ Δp.

This is just the right action of G on the right cosets of N in G. Now denote for i = 1, . . . , p,

Hi := g−1
i Hgi. (2.2)

Clearly each Hi is a normal subgroup of index 2 in N .

Lemma 2.4.

(i) Any element of Hi stabilizes each of the two points of Δi;
(ii) N is the stabilizer of each set Δi.

Proof. For (i) use that H is normal in N . By definition, N is the normal subgroup of 
G corresponding to the covering X → P 1. Since the Δi represent a right coset of N in 
G, this implies (ii). One can also see this directly: suppose n ∈ N . For any i, 1 ≤ i ≤ p

there is an n′
i ∈ N such that n = g−1

i n′
igi. Then we have

Δin = {Hn1gi, Hn2gi}g−1
i n′

igi = {Hn1n
′
igi, Hn2n

′
igi} = Δi.

Since G does not stabilize Δi and N has prime index in G, we conclude that N is the 
stabilizer of Δi. �

Recall the representation ρ : G → A2p. Since N is a normal subgroup of index p in 
G, we may enumerate the right cosets Δi of N in G in such a way that we can identify 
the set Δi with the set {i, p + i} and the action of G on the Δi corresponds to the 
permutation (right-)action of the group A2p on the set {1, . . . , 2p}. Moreover, fixing a 
branch point, we may enumerate its branches in such a way that the local monodromy 
around this point is given by the cycle

σ := (1, 2, . . . , p)(p + 1, p + 2, . . . , 2p).
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Lemma 2.5.

N ∼= (Z2)p−1.

Proof. Consider, for i = 1, . . . , p, the transposition ti := (i, p + i). Certainly ti is not 
contained in G, since G ⊂ A2p. However, we have

s1 := t1t2 ∈ N,

since it stabilizes each set {(i, p +i)} and so is in N by Lemma 2.4 and the identifications. 
Moreover,

σ−1t1t2σ = t2t3 =: s2 ∈ N

σ−2t1t2σ
2 = t3t4 =: s3 ∈ N

· · · (2.3)

· · ·
σ−(p−1)t1t2σ

p−1 = tpt1 =: sp ∈ N

which gives

p∏
i=1

si = (t1t2)(σ−1t1t2σ)(σ−2t1t2σ
2) · · · (σ−(p−1)t1t2σ

p−1) = 1.

Since the cycles si pairwise commute, and clearly there is no non-trivial relation between 
the cycles s1, s2, . . . sp−1, this implies

2p−1 = |〈s1, s2, . . . , sp〉| ≤ |N |.

Since a non-trivial element of H1∩H2∩ ... ∩Hp−1 would be the transposition exchanging 
the two points of Δp, which is not in A2p, we have H1 ∩H2 ∩ ... ∩Hp−1 = {1}. Consider 
the group homomorphism

Φ′ : N → N/H1 ×N/H2 × . . .×N/Hp−1

defined by Φ′(n) = (H1n, H2n, . . . , Hp−1n). Since ker(Φ′) =
p−1⋂
i=1

Hi = {1}, we have 

N ∼= N/ ker Φ′ � (Z2)p−1. Hence N ∼= (Z2)p−1. �
Theorem 2.6. Let X → P 1 be a cyclic covering of degree an odd prime p, and Y → X be 
an étale double covering. Let Z → P 1 be the Galois closure of the composition Y → P 1

with Galois group G. With the notation of above, if P denotes the subgroup of G generated 
by the cycle σ, then G is the semi-direct product
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G = N � P � Zp−1
2 � Zp.

Proof. Since N is a normal subgroup of index p in G and |N | = 2p−1 we have G =
N � P . �

A presentation of G is given as

G = 〈s1, . . . , sp, σ |
p∏

i=1
si = 1, σp = 1, s2

1 = 1, σ−1sjσ = sj+1 for j = 1, . . . , p− 1〉.

(2.4)

2.2. The subcovers of Z

Let p denote an odd prime. According to a well-known result of elementary number 
theory, the number

m := 1
p
(2p−1 − 1) (2.5)

is an integer. The abelian group N has exactly m conjugacy classes of maximal subgroups 
with respect to the action of P . For each 1 ≤ j ≤ m consider Rj a representative of the 
corresponding conjugacy class of maximal subgroups of N . Here R1 = H.
To each subgroup Rj corresponds a double covering of X. Let

Yj := Z/Rj for j = 1, . . . ,m

denote the corresponding curves. In particular, Y1 = Y .
Denoting moreover T := Z/P , we have the following diagram

Z

2p−2:1

p:1

T

2p−1:1

Y1

2:1

· · · Ym

X

p:1

P 1

(2.6)
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Lemma 2.7. The map Z → X of degree 2p−1 is étale. In particular, all covers Yi → X

of the above diagram are étale.

Proof. This follows immediately from Lemma 2.1. �
Proposition 2.8. Let β denote the number of branch values of X → P 1, with β ≥ 3. Then 
the genera of the curves in the above diagram are:

• g(X) = p−1
2 (β − 2);

• g(Yi) = (p − 1)(β − 2) − 1;
• g(Z) = 2p−2(p − 1)β − (p2p−1 − 1);
• g(T ) = 2p−1−1

p (p−1
2 β − p).

Proof. The first 3 assertions are obvious, since X → P 1 is totally ramified and Z → X

is étale. For the last assertion note that over each branch value of T → P 1 there are 
m = 2p−1−1

p branch points of index p − 1 and one point étale over P 1. So the Hurwitz 
formula gives the assertion. �

As an immediate consequence we obtain the following result.

Corollary 2.9. If P (Yi/X) denotes the Prym variety of Yi/X, we have

m∑
i=1

dimP (Yi/X) = dim JT.

This suggests that there is a relation between the Prym varieties P (Yi/X) and the 
Jacobian JT . The aim of this paper is to study the relation.

2.3. The rational representations of G

We follow [9, Section 8.2] to determine the irreducible representations of a semidirect 
product G = N � P . Let N̂ be the character group of N . The group P acts on N̂ in 
the usual way. The stabilizer in P of the trivial character χ0 of N is P itself, whereas 
the stabilizer of any non-trivial complex irreducible character of N consists of {1} only. 
Hence there are exactly 1 + m orbits of the action of P on N̂ , with m as in (2.5). Let 
χ0, χ1, . . . , χm be a system of representatives of these orbits, ρ0, . . . , ρp−1 (ρ0 the trivial 
representation) the irreducible representations of the cyclic group P and η the trivial 
character of {1}.

According to [9, Proposition 25]

{χ0 ⊗ ρj , IndG
N (χi ⊗ η) / 0 ≤ j ≤ p− 1, 1 ≤ i ≤ m}
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is the set of all complex irreducible representations of G. The next result follows imme-
diately.

Corollary 2.10. The rational irreducible representations of G are exactly the trivial repre-
sentation ρ0 = χ0⊗ρ0, the representations θi = IndG

N (χi⊗η) of degree p for i = 1, . . . , m, 
and the representation ψ := (χ0 ⊗ ρ1) ⊕ · · · ⊕ (χ0 ⊗ ρp−1) of degree p − 1.

According to [1, Proposition 13.6.1] the rational irreducible representations of G corre-
spond canonically and bijectively to a set of G-stable abelian subvarieties of the Jacobian 
JZ of Z such that the addition map is an isogeny. If the abelian subvariety of JZ corre-
sponding to the rational irreducible representation ρ of G is denoted by Jρ, the isotypical 
decomposition of JZ is the isogeny given by the addition map

Jρ0 × Jψ × Jθ1 × · · · × Jθm → JZ.

Furthermore, according to [1, Proposition 13.6.2] and [2], for each rational irreducible 
representation ρ of G there exist abelian subvarieties Bρ of Jρ such that Bnρ

ρ is isogenous 
to Jρ, with

nρ = dimVρ

mρ
,

where Vρ is a complex irreducible representation of G Galois associated to ρ and mρ is 
the Schur index of Vρ.

The subvarieties Bρ are, in general, determined only up to isogeny, with Bρ0 = Jρ0 =
J(Z/G). In our case, we have mρ0 = mψ = mθj = 1, dim(V0) = dim(Vψ) = 1 and 
dim(Vθj ) = p, hence

Bψ = Jψ , Jθj ∼ Bp
θj

, Jρ0 = JP 1 = 0

where ∼ denotes isogeny.
Furthermore, it follows from [2, Corollary 5.6] that

Bθj ∼ P (Yj/X) and Jψ ∼ J(X).

Therefore the group algebra decomposition of JZ is given by

JX ×
m∏
j=1

P (Yj/X)p → JZ.

3. The isogeny α

Let the notation be as in Section 1 and for i = 1, . . . , m denote

νi : Z → Yi and μ : Z → T,
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the maps of diagram (2.6), so that ν∗i : JYi → JZ and Nmμ : JZ → JT are the 
induced homomorphisms of the corresponding Jacobians. Then the addition map gives 
a homomorphism

α :=
m∑
i=1

Nmμ ◦ ν∗i :
m∏
i=1

P (Yi/X) → JT. (3.1)

According to Corollary 2.9, 
m∏
i=1

P (Yi/X) and JT are of the same dimension. The aim 

of this section is the proof of the following theorem.

Theorem 3.1. α :
m∏
i=1

P (Yi/X) → JT is an isogeny with kernel contained in the 

2p−2-division points.

For this we use the following result (for the proof see [8, Corollary 2.7]).

Proposition 3.2. Let f : Z → X := Z/N be a Galois cover of smooth projective curves 
with Galois group N and H ⊂ G a subgroup. Denote by ν : Z → Y := Z/H and 
ϕ : Y → X the corresponding covers. If {g1, . . . , gr} is a complete set of representatives 
of G/H, then we have

ν∗(P (Y/X)) = {z ∈ JZH |
r∑

i=1
gi(z) = 0}0.

Now denote for i = 1, . . . , m,

Ai := ν∗i (P (Yi/X))

and let

A :=
m∑
i=1

Ai and B := μ∗(JT ).

Recall from (2.4) that G = N � P with

N =
{

p−1∏
i=1

sjii | 0 ≤ ji ≤ 1, i = 1, . . . , p− 1
}

and P = 〈σ〉

with si and σ as in Section 1. The group P acts by conjugation on the elements of N by

σ−1siσ = si+1 for i = 1, . . . , p− 1 with sp =
p−1∏

si. (3.2)

i=1
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Recall furthermore that Ri is the subgroup of N giving the cover Yi → X. Then it is 
easy to see that we have the following commutative diagram

A

∑p−1
i=0 σi

Nm μ

B

∑m
i=1

∑
h∈Ri

h

β

A

∏m
i=1 P (Yi/X)

α

∑m
i=1 ν∗

i

JT
β◦μ∗

μ∗ ∏m
i=1 P (Yi/X)

∑m
i=1 ν∗

i

(3.3)

with β = (Nm ν1, Nm ν2, . . . , Nm νm).
For i = 1, . . . , m consider the following subdiagram

Ai

∑p−1
i=0 σi

Nm μ

Bi

∑
h∈Ri

h

Nm νi

Ai

P (Yi/X)
αi

ν∗
i

Ci
Nm νi◦μ∗

μ∗

P (Yi/X)
ν∗
i

(3.4)

with αi := Nmμ ◦ ν∗i , Ci := Nmμ(Ai) and Bi := μ∗(Ci).

Proposition 3.3. For i = 1, . . . , m the map Nm νi ◦ μ∗ ◦ αi : P (Yi/X) → P (Yi/X) is 
multiplication by 2p−2.

Proof. Since ν∗i : P (Yi/X) → Ai is an isogeny, it suffices to show that the composition

Φi :=
∑
h∈Ri

h ◦
p−1∑
i=0

σi : Ai → Ai

is multiplication by 2p−2.
Now from Proposition 3.2 we deduce

Ai = {z ∈ JZ | hz = z for all h ∈ Ri and nz = −z for all n ∈ N \Ri}0 (3.5)

since any n ∈ N \ Ri induces the non-trivial involution of Yi/X and Ai is the image of 
P (Yi/X).

Now for any z ∈ Ai,

Φi(z) =
∑
h∈Ri

h(z) +
∑
h∈Ri

h

p−1∑
k=1

σk(z).

By equation (3.5) we have
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∑
h∈Ri

h(z) = |Ri|z = 2p−2z

and for k = 1, . . . , p − 1, ∑
h∈Ri

hσk(z) = σk
∑

h∈σ−kRiσk

h(z) = 0,

since Ri �= σ−kRiσ
k and considering that half of the elements of the subgroup σkRiσ

k

belong to Ri, hence fix z, and the other half belongs to N \Ri and hence sends z to −z. 
Together this completes the proof of the proposition. �
Proof of Theorem 3.1. Since

β ◦ μ∗ ◦ α =
m∏
i=1

(Nmνi
◦μ∗ ◦ αi),

Proposition 3.2 implies that β ◦μ∗ ◦α is multiplication by 2p−2. In particular α has finite 

kernel. But according to Corollary 2.9, 
m∏
i=1

P (Yi/X) and JT have the same dimension. 

So α is an isogeny. �
Corollary 3.4. Given any positive integer N , there exist smooth projective curves Y whose 
Jacobian is isogenous to the product of m ≥ N principally polarized abelian varieties of 
the same dimension.

Proof. Choose a prime p such that 1
p (2p−1 − 1) ≥ N . This is equivalent to 2p−1 > pN . 

Hence there are infinitely many primes with this property. According to Theorem 3.1, 
the Jacobian JT has the property of the corollary. �

We thank the referee for suggesting the following remark and Elham Izadi for the 
contents of it.

Remark 3.5. There is a slight relation of Corollary 3.4 and a question of Ekedahl and 
Serre [3], whether for any positive integer g there is a smooth curve of genus g whose 
Jacobian is isogenous to a product of elliptic curves. Izadi showed in [4] that, if there 
is a complete subvariety of codimension g in the moduli space, then there exist smooth 
curves of genus g whose Jacobian is isogenous to the product of elliptic curves. As 
was later proved by Keel and Sadun however in [5], there are no such subvarieties in 
characteristic 0.

4. The case p = 3

In this case we have m = 1, so let Y1 =: Y , ν1 =: ν and A1 =: A. Moreover, the 
subgroup N is the Klein group of order 4. Diagram (2.6) simplifies to
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Z

ν
2:1

μ

3:1

T

4:1

Y

2:1

X

3:1

P 1

(4.1)

Theorem 4.1. The map α = ν∗ ◦ Nmμ : P (Y/X) → JT is an isogeny with kernel the 
group P (Y/X)[2] of all two-division points.

Proof. From Theorem 3.1 we know that kerα ⊆ P (Y/X)[2]. On the other hand, μ∗ is 
injective, since μ : Z → T is ramified. Hence from diagram (3.4) we have ker(Nmμ|A) =
ker(1 + σ + σ2)|A). So we get

kerα = {z ∈ P (Y/X)[2] | (1 + σ + σ2)(ν∗(z)) = 0}.

Let γ : Y → X denote the double covering and ε : Z → X the composition

ε = γ ◦ ν.

Since N is a normal subgroup of G, the automorphism σ descends to an automorphism 
σ : X → X, also of order 3. This is the automorphism giving the cyclic covering X → P 1.

Suppose η is the two-division point of JX giving the double cover γ and let η⊥ be 
the subgroup of JX[2] orthogonal with respect to the Weil form e2λ associated to twice 
the canonical polarization λ of JX. Then from [6] we know that

P (Y/X)[2] = γ∗(η⊥).

This gives

kerα = γ∗{x ∈ η⊥ | (1 + σ + σ2)ε∗(x) = 0}

= γ∗{x ∈ η⊥ | ε∗(1 + σ + σ2)(x) = 0}.

But JX = ker(1 + σ + σ2). In particular for all x ∈ η⊥ we have ε∗(1 + σ + σ2)(x) = 0. 
Together this implies kerα = P (Y/X)[2]. �
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As an immediate consequence we get a version of the trigonal construction in the 
special case of an étale cover of a cyclic trigonal cover X → P 1.

Corollary 4.2. Let the notation be as in Theorem 4.1. The isogeny α : P (Y/X) → JT

induces an isomorphism of principally polarized abelian varieties

α : ̂P (Y/X) → JT

where ̂ denotes the dual abelian variety.

Proof. Let λP denote the polarization on P (Y/X) induced by the canonical polarization 
of JY . It is twice a principal polarization. According to Theorem 4.1, α has kernel 
P (Y/X)[2] which coincides with the kernel of the polarization λP . Hence α factors as 
follows, with α an isomorphism,

P (Y/X) α

λP

JT

̂P (Y/X)
α

�

(4.2)

It remains to show that α respects the principal polarizations. If we denote by λ1 the 
polarization of ̂P (Y/X) induced via α from the canonical polarization λJT of JT , we 
may complete diagram 4.2 to the following one.

P (Y/X) α

λP

JT

λJT

̂P (Y/X)

λ1

α

�

ĴT

�

α̂

P (Y/X)

It now follows from the commutativity of this diagram that λ1 is principal and that 
ker(λ1 ◦ λP ) = P (Y/X)[2]. Hence λ1 is the canonical principal polarization on ̂P (Y/X)
as claimed. �
5. Estimate of the kernel of α for odd p

We show that the same proof as in the last section gives for any odd prime p a lower 

bound for the order of the kernel of the isogeny α :
m∏
i=1

P (Yi/X) → JT . We have the 

following result.
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Proposition 5.1. With the notation of above we have for any odd prime p,

m∏
i=1

P (Yi/X)[2] ⊂ Kerα ⊂
m∏
i=1

P (Yi/X)[2p−2].

Furthermore, for p > 3, Kerα cannot be equal to 
m∏
i=1

P (Yi/X)[2].

Proof. For the first assertion it suffices to see that Kerαi contains P (Yi/X)[2]. But 
since μ∗ is injective, μ being ramified of prime degree, it follows from diagram (3.4) and 
Theorem 3.1 that

Kerαi = {z ∈ P (Yi/X)[2p−2] |
p−1∑
i=0

σi(ν∗i (z)) = 0}

Hence for the proof of the first assertion it suffices to show that for any z ∈ P (Yi/X)[2]
we have

p−1∑
i=0

σi(ν∗i (z)) = 0.

This follows with the same proof as in the proof of Theorem 4.1 for p = 3.

Finally, if we had Kerα =
m∏
i=1

P (Yi/X)[2], the same proof as for Corollary 4.2 would 

provide an isomorphism of principally polarized abelian varieties 
m∏
i=1

̂P (Yi/X) � JT . 

For p > 3, i.e. m > 1, this contradicts the fact that the canonical polarization of JT is 
irreducible. �
6. The case p = 2

Let Y → X be an étale double covering of a double covering X → P 1. According to 
Corollary 2.2, the composition Y → P 1 is Galois, with Galois group the Klein group

G = 〈r, s | r2 = s2 = (rs)2 = 1〉.

Denoting Yr := Y/〈r〉 and similarly Ys and Yrs, we have the following diagram of double 
coverings,
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Y
νs νrs

νr

X = Ys

2:1

Yr Yrs

P 1

(6.1)

We assume that νs is étale and Ys → P 1 is ramified over 2β points of P1, with β ≥ 3 (so 
that dimP (Y/Ys) > 0). Each branch point of Ys → P 1 is a branch point of exactly one 
of the maps Yr → P 1 and Yrs → P 1. So if 2βr respectively 2βrs denote the number of 
branch points of Yr → P 1 respectively Yrs → P 1, we have

β = βr + βrs.

The genera of the curves are:

g(Ys) = β − 1; g(Y ) = 2β − 3; g(Yr) = βr − 1; g(Yrs) = βrs − 1.

In particular, dimP (Y/Ys) = g(Yr) + g(Yrs).

Proposition 6.1. The following map is an isogeny,

α : JYr × JYrs → P (Y/Ys), (x1, x2) �→ ν∗r (x1) + ν∗rs(x2)

with kernel consisting at most of two-division points.

Proof. First we claim that Im(α) ⊂ P (Y/Ys). Note first that the automorphism s de-
scends to an automorphism s of Yr and we have for any x ∈ JYr

s(ν∗r (x)) = ν∗r (s(x)) = −ν∗r (x)

where the last equation follows from Proposition 3.2. An analogous equation is valid for 
ν∗rs. So we have

(1 + s)(α(x1, x2)) = (1 + s)(ν∗r (x1) + ν∗rs(x2)) = x1 − x1 + x2 − x2 = 0,

which implies the assertion.
It remains to show that kerα consists of 2-division points, since g(Yr) + g(Yrs) =

dimP (Y/Ys). For this it suffices to show that the composed map

JYr × JYrs
ν∗
r+ν∗

rs−→ JY
(Nm νr,Nm νrs)−→ JYr × JYrs
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is multiplication by 2. But Nm νr ◦ ν∗r = deg νr = 2 and the same is valid for νrs. This 
completes the proof of the proposition. �

Proposition 6.1 implies

kerα = {(x1, x2) ∈ JYr[2] × JYrs[2] | ν∗r (x1) = ν∗rs(x2)}
= (ν∗r × ν∗rs)−1{(x, x) ∈ JY × JY | x ∈ ν∗rJYr[2] ∩ ν∗rsJYrs[2]}

Since νr and νrs are ramified, the homomorphisms ν∗r and ν∗rs are injective. Hence we 
get

degα = |ν∗rJYr[2] ∩ ν∗rsJYrs[2]|. (6.2)

The following theorem is due to Mumford (see [6, p. 356]).

Theorem 6.2. Let the notation be as above. Then we have:

(i) the map

α : JYr × JYrs → P (Y/Ys)

is an isomorphism;
(ii) the isomorphism α respects the canonical principal polarizations.

Proof. (i): According to (6.2) it suffices to show that the images of JYr[2] via ν∗r and 
JYrs[2] via ν∗rs in JY [2] intersect only in 0 ∈ JY . Now, fixing a theta characteristic 
of JY, the 2-division points of JY correspond in a natural way bijectively to the theta 
characteristics of Y . An analogous statement is valid for JYr and JYrs. Using this, the 
assertion follows from the fact that the theta characteristics of Y which are pullbacks 
from theta characteristics of Yr are disjoint from those which are pullbacks from theta 
characteristics of Yrs.

But this follows from the fact that, according to what we have said right after the 
diagram 6.1, the branch points b1, . . . , b2β of Ys → P 1 can be enumerated in such a way 
that b1, . . . , b2βr

are the branch points of Yr → P 1 and that b2βr+1, . . . b2β are the branch 
points of Yrs → P 1. For this, note only that all theta characteristics of a hyperelliptic 
curve are sums of ramification points of the hyperelliptic covering (see for example [7, 
Section III, 5]).

(ii): From the proof of Proposition 6.1 we know that the composition

JYr × JYrs
α−→ P (Y/Ys)

γ−→ JYr × JYrs

with γ := (Nm νr, Nm νrs), is multiplication by 2. If θ := θJY×JYrs
denotes the canonical 

polarization of JYr × JYrs, this implies that (γ ◦ α)−1(θ) = 4θ (see [1, Corollary 2.3.6]). 
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Since α is an isomorphism, it follows that γ−1(θ) is the fourth power of a principal 
polarization, say γ−1(θ) = 4Ξ.

Now α : JYr × JYrs → P (Y/Ys) is an isomorphism. The canonical principal polar-
ization of JY restricts to ν∗r (JYr) as twice a principal one, and to ν∗rs(JYrs) as twice 
a principal one, the restriction to P (Y/Ys) is 2Ξ. Then (ii) follows from the fact that 
the map α is G-equivariant, since both varieties are the eigen-subvarieties of −1 for the 
same element of G, namely σ. �
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