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1. Introduction

In this paper we investigate the Galois group of the Galois cover of the composition
of étale double coverings Y — X of cyclic covers X — P! of prime degree p. For p = 2,
Mumford shows in [6] that Y — P! is Galois with Galois group the Klein group of order
4 and the Prym variety P(Y/X) is isomorphic as a principally polarized abelian variety

to either a Jacobian or the product of 2 Jacobians.
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For p = 3, the trigonal construction tells us the principally polarized P(Y/X) is
isomorphic to a Jacobian of a tetragonal curve. In Section 2 we study the Galois group
of the Galois closure Z — P! of Y — P! for an odd prime p. The main result of this
section is

Theorem 2.6. Let p be an odd prime, Y — X an étale double cover and X — P! a cyclic
cover of degree p. Then'Y — Pl is not Galois. Denoting by Z — P its Galois closure,
its Galois group G is

G=NxUP

where N = Zg_l and P = Z,, and X = Z/N,Y = Z/H, with H a mazimal subgroup
of N.

There are 2°~! —1 maximal subgroups of N. The group P acts on them by conjugation
and there are m := %(2”’1 — 1) conjugacy classes of such subgroups.
Let {Y; - X | i =1,...,m} be the corresponding double covers. It is easy to see that
they are all étale. If T := Z/P, there is a natural homomorphism

a: ﬁP(Y;/X) — JT.
=1

Our main result is:

Theorem 3.1. « : HP(Yi/X) — JT is an isogeny with kernel in the 2P~2-division
i=1
points.

As an immediate consequence we get examples of Jacobians with arbitrarily many
isogeny factors of the same dimension. For p = 3 this is not yet the trigonal construction,
which, however, is an easy consequence, as we show in Section 4.

For the sake of completeness, we also consider the case p = 2, i.e., we give a proof of
Mumford’s theorem mentioned above. Note that Mumford gives only a short sketch of
proof leaving the details to the reader. It seems to us that our proof is different from the
one Mumford had in mind.

2. Etale covers of cyclic p-gonal covers
2.1. The structure of the Galois group

Let p be a prime and ¢ : X — P! be a cyclic covering of degree p ramified over 3
points of P!, with 8 > 3. Observe that if p = 2 then 8 must be even.
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Let 1 : Y — X be an étale double cover and ¢ : Z — P! the Galois closure of the
composed map ¢ o 9. Let G denote the Galois group of ¢ and H and N the subgroups
of G corresponding to Y and X. So we have the following commutative diagram

Z (2.1)
Y =Z/H
2:1\L1l) @
X =Z/N
@
p:l
Pl

In this section we determine the structure of G.

Lemma 2.1. The permutation representation p of G on the right cosets of H in G has its
image in the alternating group As, of degree 2p, and the non-trivial elements of G fizing
points in Z have order p. Moreover, the representation p : G — As, is injective.

Proof. Recall that Y — X is the double covering corresponding to the embedding H C
N. Since ¢ is cyclic of prime degree, the local monodromy of each of its branch points is a
cycle of length p. Since ¥ is an étale double cover, every local monodromy of ¢ o1 above
a branch point is the product of two disjoint cycles of length p and hence in As,. Since
G is generated by these products, this gives the first assertion. The second assertion is
clear. O

Corollary 2.2. If p = 2, the covering ¢ o is Galois with Galois group G the Klein group
of order 4. In particular Z =Y .

Proof. According to Lemma 2.1, G is a subgroup of Ay, generated by elements which are
products of two disjoint cycles of length 2. Hence G is the Klein group of order four. 0O

Proposition 2.3. Suppose p is an odd prime. Then the covering ¢ ot : Y — P! cannot
be Galois.

Proof. Since groups of order 2p cannot be generated by elements of order p, the covering
po1:Y — P! cannot be Galois. O

For the rest of this section we assume that p is an odd prime; hence the covering Y —
P! is not Galois, so Z # Y and H and N are the proper subgroups of G corresponding
to Y and X respectively, as in Diagram (2.1).
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Let {1 = g1,92,...,9p} denote a complete set of representatives of right cosets of N
in G and {1 = ny,ny} denote a complete set of representatives of right cosets of H in N.
Then the set {n;g; : i = 1,...,p,j = 1,2} is a complete set of representatives of right
cosets of H in G.

Fori=1,...,p consider

A; = {Hn1g;, Hnog;}

as a set of two elements. Then the right action of G on the right cosets of H in G induces
a transitive action of G on the set

Q:=A1UA U UA,.
This is just the right action of G on the right cosets of N in G. Now denote fori =1,...,p,
H; :=g; 'Hg;. (2:2)
Clearly each H; is a normal subgroup of index 2 in .
Lemma 2.4.

(i) Any element of H; stabilizes each of the two points of A;;
(ii) N is the stabilizer of each set A;.

Proof. For (i) use that H is normal in N. By definition, N is the normal subgroup of
G corresponding to the covering X — PL. Since the A; represent a right coset of N in
G, this implies (ii). One can also see this directly: suppose n € N. For any i,1 <i <p
there is an n), € N such that n = g; 'n/g;. Then we have

A = {Hnag;, Hnag;}g; 'nigi = {Hninjg;, Hnonjg;} = A;.
Since G does not stabilize A; and N has prime index in G, we conclude that N is the
stabilizer of A;. O

Recall the representation p : G — Ag,. Since N is a normal subgroup of index p in
G, we may enumerate the right cosets A; of N in G in such a way that we can identify
the set A; with the set {i,p + i} and the action of G on the A; corresponds to the
permutation (right-)action of the group As, on the set {1,...,2p}. Moreover, fixing a
branch point, we may enumerate its branches in such a way that the local monodromy
around this point is given by the cycle

0= (1,277p)(p+1ap+2772p)
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Lemma 2.5.
N = (Z,)P~L.

Proof. Consider, for i« = 1,...,p, the transposition t; := (i,p + i). Certainly ¢; is not
contained in G, since G C Ag,. However, we have

s1:=t1ty € N,

since it stabilizes each set {(¢,p+4)} and so is in N by Lemma 2.4 and the identifications.
Moreover,

O'iltthO' =tgt3 =150 €N
0'_2t1t202 =t3ty =: 53 € N

(2.3)

o~ PVt tgoP = bty = s, €N

which gives

p
H si = (tite) (0 M1tao) (0 2t1ta0?) -+ - (0~ P Diytao? ™) = 1.
i=1

Since the cycles s; pairwise commute, and clearly there is no non-trivial relation between
the cycles sy, sg,...5p_1, this implies

271 = |(s1,5,...,5,)| < |N|.

Since a non-trivial element of Hy N HyN...N Hp_; would be the transposition exchanging
the two points of A, which is not in Ay, we have H;1 N HaN...N Hy_1 = {1}. Consider
the group homomorphism

& :N — N/Hy x N/Hy % ... x N/H,_;

p—1
defined by ®'(n) = (Hin,Han,...,Hp_1n). Since ker(®') = ﬂ H; = {1}, we have
i=1

N = N/ker ® < (Z3)P~!. Hence N = (Z2)P~L. O

Theorem 2.6. Let X — P! be a cyclic covering of degree an odd prime p, and Y — X be
an étale double covering. Let Z — P be the Galois closure of the composition Y — P!
with Galois group G. With the notation of above, if P denotes the subgroup of G generated
by the cycle o, then G is the semi-direct product
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G=NxP~Zt'%Z,

Proof. Since N is a normal subgroup of index p in G and |[N| = 2P~ we have G =
NxP. O

A presentation of G is given as

p
G={(s1,...,8p,0| Hsizl,a”zl, si=1,0'sjo=sjforj=1,....,p—1).
i=1

(2.4)
2.2. The subcovers of Z

Let p denote an odd prime. According to a well-known result of elementary number
theory, the number

m = %(2?‘1 —1) (2.5)

is an integer. The abelian group IV has exactly m conjugacy classes of maximal subgroups
with respect to the action of P. For each 1 < j < m consider R; a representative of the
corresponding conjugacy class of maximal subgroups of N. Here R; = H.

To each subgroup R; corresponds a double covering of X. Let
Y;:=Z/R; for j=1,....m

denote the corresponding curves. In particular, Y; =Y.
Denoting moreover T := Z/P, we have the following diagram
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Lemma 2.7. The map Z — X of degree 2P~ ' is étale. In particular, all covers Y; — X
of the above diagram are étale.

Proof. This follows immediately from Lemma 2.1. O

Proposition 2.8. Let 3 denote the number of branch values of X — P, with 3 > 3. Then
the genera of the curves in the above diagram are:

Yz):( *1)(ﬁ*2)*1;
) = 22— 1) — (321 — 1)
T) = EZ_=L(2515 - p).

Proof. The first 3 assertions are obvious, since X — P! is totally ramified and Z — X

is étale. For the last assertion note that over each branch value of T — P! there are
-1

m = 21}}% branch points of index p — 1 and one point étale over P!. So the Hurwitz

formula gives the assertion. 0O
As an immediate consequence we obtain the following result.

Corollary 2.9. If P(Y;/X) denotes the Prym variety of Y;/ X, we have

> dim P(Y;/X) = dim JT.

=1

This suggests that there is a relation between the Prym varieties P(Y;/X) and the
Jacobian JT'. The aim of this paper is to study the relation.

2.8. The rational representations of G

We follow [9, Section 8.2] to determine the irreducible representations of a semidirect
product G = N x P. Let N be the character group of N. The group P acts on N in
the usual way. The stabilizer in P of the trivial character xo of N is P itself, whereas
the stabilizer of any non-trivial complex irreducible character of N consists of {1} only.
Hence there are exactly 14 m orbits of the action of P on N, with m as in (2.5). Let
X0, X1;-- -, Xm be a system of representatives of these orbits, po, ..., pp—1 (po the trivial
representation) the irreducible representations of the cyclic group P and 7 the trivial
character of {1}.

According to [9, Proposition 25]

{xo®p;, mdf(x;®n) / 0<j<p—1, 1<i<m}
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is the set of all complex irreducible representations of G. The next result follows imme-
diately.

Corollary 2.10. The rational irreducible representations of G are exactly the trivial repre-
sentation pg = xo®po, the representations 6; = Indg()@(@n) of degreep fori=1,...,m,
and the representation ¥ := (xo @ p1) D -+ @ (x0 @ pp—1) of degree p — 1.

According to [1, Proposition 13.6.1] the rational irreducible representations of G corre-
spond canonically and bijectively to a set of G-stable abelian subvarieties of the Jacobian
JZ of Z such that the addition map is an isogeny. If the abelian subvariety of JZ corre-
sponding to the rational irreducible representation p of G is denoted by J,, the isotypical
decomposition of JZ is the isogeny given by the addition map

Jpo X Jy X Jg, X -+ x Jp, — JZ.

Furthermore, according to [1, Proposition 13.6.2] and [2], for each rational irreducible
representation p of G there exist abelian subvarieties B, of J, such that B, is isogenous
to J,, with

_ dim V,

n
p ;
mp

where V), is a complex irreducible representation of G' Galois associated to p and m,, is
the Schur index of V.

The subvarieties B, are, in general, determined only up to isogeny, with B,, = J,, =
J(Z/G). In our case, we have m,, = my = my, = 1, dim(Vp) = dim(Vy) = 1 and
dim(Vp,) = p, hence

By =Jy , Jo,~ By, Jpy=JP =0

where ~ denotes isogeny.
Furthermore, it follows from [2, Corollary 5.6] that

By, ~ P(Y;/X) and Jy ~ J(X).

Therefore the group algebra decomposition of JZ is given by

JX x [[P(Y;/X)P = JZ.
j=1

3. The isogeny «
Let the notation be as in Section 1 and for i = 1,..., m denote

vi:Z—=Y;, and u:2Z—T,
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the maps of diagram (2.6), so that v} : JY; = JZ and Nmypy : JZ — JT are the
induced homomorphisms of the corresponding Jacobians. Then the addition map gives
a homomorphism

m

m
a;:ZNmuoyf: HP(Yi/X)—h]T. (3.1)
i=1 i=1

According to Corollary 2.9, H P(Y;/X) and JT are of the same dimension. The aim

i=1
of this section is the proof of the following theorem.

Theorem 3.1. « : HP(Y;/X) — JT' is an isogeny with kernel contained in the
i=1
2P—2_division points.

For this we use the following result (for the proof see [8, Corollary 2.7]).

Proposition 3.2. Let f : Z — X := Z/N be a Galois cover of smooth projective curves
with Galois group N and H C G a subgroup. Denote by v : Z — Y := Z/H and

¢ :Y — X the corresponding covers. If {g1,...,9r} is a complete set of representatives
of G/H, then we have

v (PY/X)) = {2 € JZ" | 3 gulz) = 0.
i=1
Now denote for i =1,...,m,
Ai = v (P(Yi/ X))
and let
A:=>"A; and B:=p*(JT).
i=1
Recall from (2.4) that G = N x P with
p—1
N = {Hsfl |0<j; < l,izl,...,p—l} and P = (o)
i=1
with s; and o as in Section 1. The group P acts by conjugation on the elements of N by
p—1

(Flsicr:siﬂ for i=1,...,p—1 with s, = Hs, (3.2)
i=1
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Recall furthermore that R; is the subgroup of N giving the cover Y; — X. Then it is
easy to see that we have the following commutative diagram

Sy ot 2t Xher, b (3.3)
/:n 1 ’L
H Y/X w* Hz 1 P Y/X
with f = (Nmvq,Nmvs, ..., Nmw,).
For ¢ =1,...,m consider the following subdiagram
Rk Srem ! (3.4)
/ Nm\\ g l\m /
P(Y;/X) P(Y;/X)
Nm vop™

with a; := Nmp o v}, C; := Nm u(A;) and B; := p*(C;).

Proposition 3.3. For i = 1,...,m the map Nmy; o u* o o; : P(Y;/X) — P(Y;/X) is
multiplication by 2P~2.

Proof. Since v} : P(Y;/X) — A; is an isogeny, it suffices to show that the composition
p—1
= Z hOZai:Ai%Ai
hER; i=0

is multiplication by 2P~2.
Now from Proposition 3.2 we deduce

Ai={2€JZ|hz=zforallh€ R;andnz = —z for alln € N\ R;}° (3.5)

since any n € N \ R; induces the non-trivial involution of Y;/X and A; is the image of
P(Y;/X).
Now for any z € A;,

= > h(2) ZhZo

hEeER; heER; =

By equation (3.5) we have
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Z h(z) = |Ri|z = 20722

heER;

and for k=1,....,p—1,

Z ho*(z) = o Z h(z) =0,

heR; h€o—kR;oF

since R; # 0 *R;o" and considering that half of the elements of the subgroup o*R;o*
belong to R;, hence fix z, and the other half belongs to N \ R; and hence sends 2z to —z.
Together this completes the proof of the proposition. O

Proof of Theorem 3.1. Since

m

i=1

Proposition 3.2 implies that 3o u* o« is multiplication by 2°~2. In particular « has finite

kernel. But according to Corollary 2.9, HP(YZ- /X) and JT have the same dimension.
i=1
So « is an isogeny. O

Corollary 3.4. Given any positive integer N, there exist smooth projective curves Y whose
Jacobian is isogenous to the product of m > N principally polarized abelian varieties of
the same dimension.

Proof. Choose a prime p such that %(27"_1 — 1) > N. This is equivalent to 2P~ > pN.
Hence there are infinitely many primes with this property. According to Theorem 3.1,
the Jacobian JT has the property of the corollary. 0O

We thank the referee for suggesting the following remark and Elham Izadi for the
contents of it.

Remark 3.5. There is a slight relation of Corollary 3.4 and a question of Ekedahl and
Serre [3], whether for any positive integer g there is a smooth curve of genus g whose
Jacobian is isogenous to a product of elliptic curves. Izadi showed in [4] that, if there
is a complete subvariety of codimension g in the moduli space, then there exist smooth
curves of genus g whose Jacobian is isogenous to the product of elliptic curves. As
was later proved by Keel and Sadun however in [5], there are no such subvarieties in
characteristic 0.

4. The case p = 3

In this case we have m = 1, so let Y7 =: Y, v;1 =: v and A; =: A. Moreover, the
subgroup N is the Klein group of order 4. Diagram (2.6) simplifies to
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z (4.1)
m
3:1
v 2:1 T
Y
Q:I\L 4:1
X
o\

Pl

Theorem 4.1. The map o = v* oNmy : P(Y/X) — JT is an isogeny with kernel the
group P(Y/X)[2] of all two-division points.

Proof. From Theorem 3.1 we know that keraw C P(Y/X)[2]. On the other hand, p* is
injective, since p : Z — T is ramified. Hence from diagram (3.4) we have ker(Nm p|4) =
ker(1 + o + 02)]4). So we get

kera ={z€ P(Y/X)[2] | (1 + 0+ c*)(v*(z)) = 0}.
Let v: Y — X denote the double covering and € : Z — X the composition
€E=7yovr.

Since N is a normal subgroup of G, the automorphism o descends to an automorphism
T : X — X, also of order 3. This is the automorphism giving the cyclic covering X — PL.

Suppose 7 is the two-division point of JX giving the double cover v and let n* be
the subgroup of JX|2] orthogonal with respect to the Weil form ey associated to twice
the canonical polarization A of JX. Then from [6] we know that

P(Y/X)[2] = 7" ().
This gives

kera =y {z €nt | (1+0+0%)e*(z) =

}

0
0}.

={eent |¢1+7+7)(@) =
But JX =ker(1 +7 +2). In particular for all z € n* we have €*(1 +7 +7%)(x) = 0.
Together this implies keraw = P(Y/X)[2]. O
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As an immediate consequence we get a version of the trigonal construction in the
special case of an étale cover of a cyclic trigonal cover X — P!,

Corollary 4.2. Let the notation be as in Theorem 4.1. The isogeny o : P(Y/X) — JT
induces an isomorphism of principally polarized abelian varieties

—

a:PY/X)—JT
where” denotes the dual abelian variety.

Proof. Let Ap denote the polarization on P(Y/X) induced by the canonical polarization
of JY. It is twice a principal polarization. According to Theorem 4.1, « has kernel
P(Y/X)[2] which coincides with the kernel of the polarization Ap. Hence « factors as
follows, with @ an isomorphism,

P(Y/X) 22— JT (4.2)

,\pl B
@

o —

P(Y/X)

It remains to shomat @ respects the principal polarizations. If we denote by A; the
polarization of P(Y/X) induced via @ from the canonical polarization \;r of JT', we
may complete diagram 4.2 to the following one.

P(Y/X) 2 JT

)\P\L B . iAJT
(e}

o —

P(Y/X) JT

All = R
P(Y/X)
It now follows from the commutativity of this diagram that A\; is principal anit\hat

ker(A; o Ap) = P(Y/X)[2]. Hence \; is the canonical principal polarization on P(Y/X)
as claimed. O

5. Estimate of the kernel of o for odd p

We show that the same proof as in the last section gives for any odd prime p a lower
m

bound for the order of the kernel of the isogeny o : H P(Y;/X) — JT. We have the
i=1
following result.
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Proposition 5.1. With the notation of above we have for any odd prime p,

[[Pxi/X)2] € Kera c J]P(Yi/X)[2P72].

i=1 i=1

Furthermore, for p > 3, Ker v cannot be equal to HP(YZ-/X)[2].
i=1

Proof. For the first assertion it suffices to see that Ker«; contains P(Y;/X)[2]. But
since p* is injective, p being ramified of prime degree, it follows from diagram (3.4) and
Theorem 3.1 that

p—1
Kera; = {z € P(Vi/X)[272) | Y o' (v}(2)) = 0}
i=0

Hence for the proof of the first assertion it suffices to show that for any 2z € P(Y;/X)[2]
we have

S o (i (2)) = 0.
1=0

This follows with the same proof as in the proof of Theorem 4.1 for p = 3.
m

Finally, if we had Kera = H P(Y;/X)[2], the same proof as for Corollary 4.2 would
i=1

provide an isomorphism of principally polarized abelian varieties Hpm) ~ JT.

=1
For p > 3, i.e. m > 1, this contradicts the fact that the canonical polarization of JT is
irreducible. 0O

6. The case p = 2

Let Y — X be an étale double covering of a double covering X — P!. According to
Corollary 2.2, the composition Y — P! is Galois, with Galois group the Klein group

G=(rs|rt=s=(rs)? =1).

Denoting Y, := Y/(r) and similarly Y; and Y,,, we have the following diagram of double
coverings,
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. /ii\

N

We assume that v, is étale and Y, — P! is ramified over 23 points of Py, with 8 > 3 (so
that dim P(Y/Y;) > 0). Each branch point of Y; — P! is a branch point of exactly one
of the maps Y, — P! and Y,, — P. So if 283, respectively 23, denote the number of
branch points of ¥;. — P! respectively Y., — P!, we have

(6.1)

3
ﬁ
»

1

B = Br+ Brs.
The genera of the curves are:
g(Yo)=pB—-1; g(Y)=28-3; g(Vi)=5 -1 g(Yrs)=PBrs—1
In particular, dim P(Y/Y;) = g(Y;.) + g(Yys).
Proposition 6.1. The following map is an isogeny,
a:JY, x JYre = P(Y/Yy), (x1,22) — vi(z1) + v (a2)
with kernel consisting at most of two-division points.

Proof. First we claim that Im(a) C P(Y/Y;). Note first that the automorphism s de-
scends to an automorphism 5 of Y,. and we have for any = € JY,

w
—~
ﬁt*
—~

8
~
~

Il

v (8(z)) = —v(2)

where the last equation follows from Proposition 3.2. An analogous equation is valid for
V.. So we have

(1 +s)(a(z1,22)) = (14 8) (v (1) + vy (22)) = 21 — 21 + 22 — 29 = 0,

which implies the assertion.
It remains to show that kera consists of 2-division points, since g(Y;) + g(Yys) =
dim P(Y/Y5s). For this it suffices to show that the composed map

* *

JY, x JY,s "5 gy

(Nm v,,Nm v;.5)
—

JYr X JYrs
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is multiplication by 2. But Nmuv, o v = degv, = 2 and the same is valid for v,,. This
completes the proof of the proposition. 0O

Proposition 6.1 implies

ker oo = {(z1, 22) € JY;[2] X JY,5[2] | vi(z1) = v} (22)}
= (v xvi) H(x,2) € JY x JY |z € v} IY,[2] Nvi, JY, (2]}

Since v, and v, are ramified, the homomorphisms v and v}, are injective. Hence we
get

dega = |V} JY, [2] N v} JY,s[2]]. (6.2)
The following theorem is due to Mumford (see [6, p. 356]).
Theorem 6.2. Let the notation be as above. Then we have:
(i) the map
a:JY, x JY,s = P(Y/Ys)

is an isomorphism;
(ii) the isomorphism « respects the canonical principal polarizations.

Proof. (i): According to (6.2) it suffices to show that the images of JY,[2] via v} and
JY,s[2] via v}, in JY[2] intersect only in 0 € JY. Now, fixing a theta characteristic
of JY, the 2-division points of JY correspond in a natural way bijectively to the theta
characteristics of Y. An analogous statement is valid for JY, and JY,. Using this, the
assertion follows from the fact that the theta characteristics of Y which are pullbacks
from theta characteristics of Y,. are disjoint from those which are pullbacks from theta
characteristics of Y.

But this follows from the fact that, according to what we have said right after the
diagram 6.1, the branch points by, ..., by of Y5 — P! can be enumerated in such a way
that by, ..., bag, are the branch points of Y, — P! and that b2, +1, - - - bag are the branch
points of Y,, — P!. For this, note only that all theta characteristics of a hyperelliptic
curve are sums of ramification points of the hyperelliptic covering (see for example [7,
Section III, 5]).

(ii): From the proof of Proposition 6.1 we know that the composition

JY, X JY,s =5 P(Y)Y,) =5 JY, x JY,,

with v := (Nmv,, Nm 1,4 ), is multiplication by 2. If 6 := 0 ;v « jv,.. denotes the canonical
polarization of JY, x JY,, this implies that (7o «a)~(8) = 46 (see [1, Corollary 2.3.6]).
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Since « is an isomorphism, it follows that y~1(6) is the fourth power of a principal
polarization, say v~ 1(0) = 4Z.

Now a : JY,. x JY,.; — P(Y/Y;) is an isomorphism. The canonical principal polar-
ization of JY restricts to v (JY;) as twice a principal one, and to v}, (JY,s) as twice
a principal one, the restriction to P(Y/Ys) is 2E. Then (ii) follows from the fact that
the map « is G-equivariant, since both varieties are the eigen-subvarieties of —1 for the
same element of G, namely 0. O
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