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Abstract

It is known that members of the bacterial genus Azospirillum can promote the growth of a great variety of plants, an ability harnessed by
the industry to create bioproducts aimed to enhance the yield of economically relevant crops. Its versatile metabolism allows this bacterium
to adapt to numerous environments, from optimal to extreme or highly polluted. The fact of having been isolated from soil and rhizosphere
samples collected worldwide and many other habitats proves its remarkable ubiquity. Azospirillum rhizospheric and endophytic lifestyles are
governed by several mechanisms, leading to efficient niche colonization. These mechanisms include cell aggregation and biofilm formation,
motility, chemotaxis, phytohormone and other signaling molecules production, and cell-to-cell communication, in turn, involved in regulating
Azospirillum interactions with the surrounding microbial community. Despite being infrequently mentioned in metagenomics studies after its
introduction as an inoculant, an increasing number of studies detected Azospirillum through molecular tools (mostly 16S rRNA sequencing) as
part of diverse, even unexpected, microbiomes. This review focuses on Azospirillum traceability and the performance of the available methods,
both classical and molecular. An overview of Azospirillum occurrence in diverse microbiomes and the less-known features explaining its notorious
ability to colonize niches and prevail in multiple environments is provided.
Keywords: plant growth promoting rhizobacteria, colonization, rhizosphere, microbiome, azospirillum

Introduction

Azospirillum is an α-proteobacterium belonging to the Rho-
dospirillales order and Azospirillaceae family (Baldani et al.
2015). Though its first description under the name of Spiril-
lum dates from nearly a century (Beijerinck 1925), this mi-
crobe began to play a leading role in the agriculture scenario
after the pioneer reports of Von Bulow and Döbereiner (1975)
and Döbereiner et al. (1976), who first documented N2 fix-
ation in the roots of field-grown maize and the isolation of
N2-fixing Spirillum lipoferum Beijerinck from grass and ce-
real roots, as well as soil samples collected in several African
countries and Brazil. A few years later, Azospirillum was pro-
posed as a genus, and two species were described: Azospir-
illum lipoferum and Azospirillum brasilense (Tarrand et al.
1978). Since then, many bacteria within this genus have been
identified and reclassified. To date, the genus consists of 27
confirmed species. Recently, two of the most studied strains
were reclassified as new species based on genome analyses: A.
brasilense Sp245 and other strains are now members of the
new species Azospirillum baldaniorum (dos Santos Ferreira et
al. 2020), and A. brasilense Az39 and similar strains are now
part of the species Azospirillum argentinense (dos Santos Fer-
reira et al. 2022).

To date, 110 genomic sequences have been annotated for
Azospirillum in the NCBI database (https://www.ncbi.nlm.nih
.gov/data-hub/genome/?taxon=191). Even when not all these

sequences are complete, some general features can be men-
tioned based on the available information. Members of the
genus may have up to 10 megareplicons, including the chro-
mosome, plasmids, and chromids, and these elements can be
up to 1.12 megabases long. Azospirillum genomes usually
comprise 6.33 and 8.1 megabases, with G-C contents vary-
ing between 68.2% and 70.7%. They have multiple copies of
the 16S rRNA gene, which are heterogeneous within a sin-
gle genome (Maroniche et al. 2016). More than 7 000 genes,
7 000 proteins, and 300 pseudogenes have been identified in
this genus. Azospirillum contains a core genome that codi-
fies 2 328 proteins, representing 30%–38% of total proteins.
These core proteins have mostly (74%) an ancestral origin
(Wisniewski-Dyé et al. 2012). The non-ancestral part of core
proteins is codified by genes involved in signal transduction,
carbohydrate and amino acid metabolism, and transport and
adaptability to changing environments (Wisniewski-Dyé et al.
2015), like the soil and the rhizosphere.

Azospirillum spp. comprise Gram-negative, aerobic bacilli,
motile, and chemotrophs. These versatile chemotrophs can use
different substrates as carbon sources and grow in the pres-
ence of 3% NaCl; the optimum growth temperature varies be-
tween 33 and 41◦C. The members of this genus produce cata-
lase and oxidase, reduce nitrates into nitrites, degrade urea
into ammonia, produce indoles, modify soil urease activity,
and alkalinize milk. They can also reduce acetylene and test
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positive for arabinose and fructose fermentation (Baldani et
al. 2015).

Azospirillum has been widely known for its plant growth
promotion abilities ascribed to mechanisms such as N bio-
logical fixation and production of phytohormones, mainly
indol-3-acetic acid (IAA) and other plant-growth regulators
(Cassán et al. 2014). Phytostimulation by Azospirillum has
been mainly linked to root morphological changes resulting
in a more developed root system, with a reduction in the main
root length and increases in the length of lateral roots, along
with more and more branched root hairs (Hadas and Okon
1987, Dobbelaere et al. 1999; Spaepen et al. 2007, Molina-
Favero et al. 2008, Cassán et al. 2020). Thus, significant in-
creases in root surface and root volume may be observed
(Spaepen et al. 2014).

Recent observations in our laboratory suggested that root
architecture changes in Arabidopsis thaliana inoculated with
A. argentinense Az39 are caused by both IAA-dependent
and IAA-independent pathways, where A. argentinense Az39
flagellin is a key molecule involved in the IAA-independent
mechanism (Mora et al. 2023, In Press). These changes ul-
timately result in an enhanced root-absorbing area, optimiz-
ing water uptake and nutrient assimilation, mainly nitrogen.
Greater roots might not only improve plant growth but also
release more exudates into the rhizosphere (Vives-Peris et al.
2020, Sun et al. 2021), stimulating the growth of other root-
associated communities. Thus, Azospirillum’s ability to pro-
mote root growth can also indirectly impact rhizospheric mi-
crobial communities.

Different Azospirillum species were isolated from the
roots of cereals (e.g. maize, sorghum, rice) and other
plants growing in distant parts of the world, such as
the US, Africa, Brazil, Canada, and India, among oth-
ers. Azospirillum has also been detected in association
with mycorrhizae (Li and Castellano 1987) and diverse
and extreme environments, including soil and rhizospheres
from arid/semiarid regions (Ilyas et al. 2008, 2012) and
saline and alkaline lakes (Hingole and Pathak, 2013)
(Table 1).

Overall, these findings demonstrate that one of the most
remarkable characteristics of this bacterial genus is its ubiq-
uity. Although usually isolated from plant fractions and thus
considered root colonists (Bashan et al. 2004), Azospirillum
spp. can adapt to highly diverse environments, even polluted
or chronically water-stressed. Owing to this notorious adapt-
ability or plasticity and the aforementioned biochemical and
physiological features, these bacteria can positively influence
the growth of hundreds of plant species, for which they drew
attention and became the basis of biological products intended
to promote plant growth and increase yields under field con-
ditions, in an environmentally friendly and inexpensive man-
ner. These products are collectively known as “inoculants” or
“biofertilizers”. In order to be effective, any inoculant (includ-
ing those based on Azospirillum) must comply with minimum
quality requirements (Deaker et al. 2011). Among them, the
identity of the microorganism intended to act as an “active
ingredient” must be corroborated, and appropriate bacterial
concentrations to ensure survival and profuse colonization of
the target niche must be standardized and guaranteed (Bashan
and de-Bashan 2015). In this context, the number of publica-
tions related to the tracking of microbial inoculants has in-
creased significantly in the last five years (Manfredini et al.
2021). After offering an overview of the procedures used to

detect Azospirillum spp., the present review summarizes re-
cent works focusing on Azospirillum occurrence in diverse
microbiomes and its traceability once released into the envi-
ronment as an inoculant. The less-known physiological fea-
tures that may contribute to the remarkable colonization abil-
ity that characterizes this bacterium are also briefly discussed.

Procedures to detect and characterize
Azospirillum spp.

The first Azospirillum isolates were identified by culturing soil
and plant tissue samples in semi-selective and differential cul-
ture media. The procedure, still in use, consists of making se-
rial dilutions and transferring aliquots of these dilutions to ap-
propriate culture media. Some examples of these culture me-
dia are provided in Table 1, along with the names of the 27
species recognized to date and information about their eco-
logical and geographical origins.

The most frequent isolation medium used is nitrogen-free
semi-solid (NFB), which has no nitrogen and contains malate
as the C source (Döbereiner and Day 1976). By including a
very low amount of agar, the microaerophilic conditions pre-
vailing some millimeters below the surface create optimal con-
ditions for the nitrogenase activity responsible for BNF in
diazotrophic bacteria. The observation of a whitish “halo”
strongly suggests its presence.

Some Azospirillum species have been identified based on
modifications in NFB composition, such as changes in the car-
bon source or final pH, increased saline concentrations, and
the addition of vitamins or other nutritional components (Reis
et al. 2015). Alternatively, Azospirillum identification has been
possible by switching up growth conditions, including the in-
cubation time or temperature (Zhao et al. 2020).

As shown in Table 1, more complex media such as tryp-
ticase soy agar (TSA), brain heart infusion (BHI), Reasoner’s
2A agar (R2A), or type M agar were necessary to isolate cer-
tain members. Moreover, the name Azospirillum massiliense
appears as Candidatus taxa in the CANDIDATUS LIST No.
3, updated to 2020 (Oren and Garrity 2022) and based on
the findings by Pagnier et al. (2008), who isolated several new
or still uncharacterized genus/species using an Acanthamoeba
polyphaga co-culture procedure.

Presumptive Azospirillum identification is usually based on
the colony morphological characteristics in different growth
media. Dry, red colonies are typically observed in agar Red
Congo, or small and white ones in NFB with bromothymol
blue (Cassán et al. 2015).

A negative result on Gram staining followed by observation
of fresh smears prepared from young cultures under optical
microscopy, to check for cell shape (small bacilli) and motility
is generally regarded as confirmatory. Acetylene reduction as-
says can be carried out to determine if the isolated bacterium
has nitrogenase activity, therefore, can accomplish BNF.

If available, scanning electron microscopy (SEM) may also
be used. Azospirillum spp. appear as pleomorphic curved
bacilli with a polar flagellum and cyst-like formations. Differ-
entiation techniques include motility and growth tests in dif-
ferent NaCl concentrations or measurements of pH and tem-
perature ranges (Table 1).

Azospirillum isolates have been identified at the species
level through multiple approaches. For instance, the presence
of the nifH genes-involved in nitrogenase synthesis-may be in-
vestigated through PCR amplification (Poly et al. 2001). The
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Table 1. Azospirillum species reported to date.

Species Type strain Culture media Sample origin Country Reference

A. agricola CC-HIH038 Nutrient agar Cultivated soil sample Taiwan Lin et al. 2016
A. argentinense∗1 Az39 RC agar Wheat

surface-disinfectant
roots

Argentina dos Santos Ferreira et al.
2022

A. baldaniorum∗ Sp245 Semisolid NFB Wheat surface
disinfected roots

Brazil dos Santos Ferreira et al.
2020

A. brasilense Sp7 Semisolid NFB Rhizosphere of
Digitaria decumbens

Brazil Tarrand et al. 1978

A. canadense DS2 M medium Corn rhizosphere Canada Mehnaz et al. 2007a
A. cavernae K2W22B-5 R2A agar Water samples China Zhu et al. 2021
A. doebereinerae GSF71 Semisolid

NFB + biotin
Washed roots of

Miscanthus
Germany Eckert et al. 2001

A. fermentarium CC-LY743 Nutrient agar Fermentative tank Taiwan Lin et al. 2013
A. formosense CC-Nfb-7 NFB agar Agricultural soil Taiwan Lin et al. 2012
A. griseum L-25–5 w-1 R2A agar Water at Baiyang Lake China Yang et al. 2019
A. halopraeferens Au 4 Semisolid

NFB + 1.5% NaCl
Rhizoplane

Leptochloa fusca (L.)
Pakistan Reinhold et al. 1987

A. himalayense ptl-3 Jensen’s agar Rhizosphere maize
plant

India Tyagi and Singh 2014

A. humicireducens SgZ-5 MSM Microbial fuel cell
(MFC)

China Zhou et al. 2013

A. largimobile ACM 2041 LWA Fresh water Australia Skerman et al. 1983
A. lipoferum 4B Semisolid NFB Wheat roots Brazil Tarrand et al. 1978
A. melinis TMCY 0552 LGI and NFB

medium
Stems and roots from
Melinis minutiflora

China Peng et al. 2006

A. oleiclasticum RWY-5–1-1 R2A medium Oil mixture Yuman
Oilfield

China Wu et al. 2021

A. oryzae COC8 M medium Root of rice plant Japan Xie and Yokota, 2005
A. palustre B2 Semisolid NFB Sphagnum samples Russia Tikhonova et al. 2019
A. picis IMMIB TAR-3 Nutrient agar Discarded road tar Taiwan Lin et al. 2009
A. ramasamyi M2T2B2 R2A agar Fermented bovine

products
Korea Anandham et al. 2019

A. rugosum IMMIB AFH-6 Nutrient agar Oil-contaminated soil Taiwan Young et al. 2008
A. soli CC-LY788 Nutrient agar Agricultural soil Taiwan Lin et al. 2015
A. tabaci W712 R2A agar Rhizosphere soil of

Nicotiana tabacum
China Duan et al. 2022

A. thermophilum CFH 70 021 T5 medium Hot spring soil sample China Zhao et al. 2020
A. thiophilum BV-S Semisolid

MPSS + FeS + Vi-
tamins

Bacterial mat of sulfide
spring

Russia Lavrinenko et al. 2010

A. zeae N7 M medium Corn rhizosphere Canada Mehnaz et al. 2007b

NFB: nitrogen free; RC: Congo red; R2A: Reasoner’s 2A; MSM: Mineral salts medium; LWA: Lake water agar
∗Genome-based reclassification

ability to produce phytohormones can also be explored (dos
Santos Ferreira et al. 2022).

As generally applicable to any other bacterial isolate, fur-
ther characterization of Azospirillum isolates may be achieved
through different techniques. Among them, it may be men-
tioned the analysis of fatty acids and respiratory quinones
composition by gas chromatography (GC) and 2D thin layer
chromatography (2D-TLC), respectively, of protein patterns
through matrix-assisted laser desorption/ionization time-of-
flight mass spectrometry (MALDI-TOF), or of carbon sources
utilization and enzymatic/biochemical properties through au-
tomated systems such as API 20 NE and Biolog GEN III
(Young et al. 2015). Mainly for research purposes (e.g. iden-
tification of new species) and assuming access to molecular
techniques, the 16S rRNA gene can be sequenced, and phy-
logenetic studies may be performed. Additional information
may be obtained by fingerprint techniques such as random
amplification of polymorphic DNA (RAPD) or denaturing
gradient gel electrophoresis (DGGE) (Lin et al. 2011, Ilyas
et al. 2012). Despite the wide array of available methodolo-
gies, unequivocal classification of Azospirillum species is only

achieved through complete genome sequencing and subse-
quent comparative analyses. The genome sequence provides
an estimation of overall genome relatedness indices (OGRIs),
such as DNA-DNA hybridization (dDDH) and average nu-
cleotide identity (ANI).

Azospirillum: a wandering microbe?

Undoubtedly, metagonomics has opened new roads in many
biological disciplines, including microbial ecology. Apart from
being isolated from various habitats through classic micro-
biological procedures, in recent years, Azospirillum has been
detected as part of animal, human, and environmental mi-
crobiomes through metagenomics and other molecular ap-
proaches. The following sections summarize these recent find-
ings.

Azospirillum in microbiomes from animals

The vast number of metagenomic studies addressing human
health rarely identified Azospirillum. However, Azospirillum
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DNA has been detected in fecal samples from patients re-
sponding favourably to nivolumab, a monoclonal antibody
used in cancer treatment, by amplifying and sequencing V3–
V4 regions of the 16S rRNA bacterial gene at months 0 and
2 after treatment (Chung et al. 2021). Shotgun metagenomic
sequencing of stools from pre-school-aged children in Zim-
babwe revealed that the relative abundance of certain bacteria
and fungi taxa differed between schistosome-infected and un-
infected children. Increases in the relative abundance of bac-
teria such as Pseudomonas, Stenotrophomonas, Derxia, and
Thalassospira, and decreases in Azospirillumwere linked to
the absence of the parasite Schistosoma haematobium, the
causal agent of schistosomiasis (Osakunor et al. 2020).

These observations suggest that certain Azospirillum mem-
bers might be part of a healthy gut microbiome; however,
they have also been identified in the sputum of severe asth-
matic patients (Wang et al. 2021). On the other hand, Wang
et al. (2018) examined the effect of heat stress on broiler
chicken’s gut microbiome using pyrosequencing technologies
and detected enrichment in Clostridium, Streptophyta, Oscil-
libacter, Faecalibacterium, Rothia, and Azospirillum in heat-
stressed animals, while other bacteria including Coprococcus
and Streptococcus were reduced. Presumably, Azospirillum
might ’make their way’ into both human and farm animal mi-
crobiomes after being inoculated on crops destined to human
or animal consumption. However, further evaluation directed
to understand the features allowing these microbes to succeed
in colonizing these less-recognized habitats, and the kind of
impact they might have on the resident microbiota, are still
lacking.

Also, Azospirillum members have been identified through
metagenomic procedures in different aquatic habitats and mi-
crobiomes. This includes mucosa samples from the Eurasian
carp (Cyprinus carpio) (Meng et al. 2021) and human remains
(bones) from the seabed (Kim et al. 2020).

Azospirillum in microbiomes from aquatic
environments

Azospirillum was detected in samples from the sea sponge
Lamellodysidea herbacea (Podell et al. 2020) and within
microbial communities associated with seagrasses such as
Halophila ovalis, where their relative abundance was corre-
lated with 100% exposure to irradiance under normal light
conditions (Martin et al. 2018). Despite usually inhabiting ter-
restrial plants, the presence of Azospirillum spp. in marine en-
vironments makes sense given their evolutionary origins: prac-
tically all their close relatives are aquatic (Wisniewski-Dyé et
al. 2012).

Azospirillum in plant and soil microbiomes

So far, most research on Azospirillum has focused on soils,
where these bacteria may be part of the native microbiota as-
sociated with certain plant species or linked to specific agricul-
tural practices. For instance, a HiSeq-based community struc-
ture study revealed that Azospirillum was among the top 20
bacterial genera in greenhouse soil samples subjected to reduc-
tive soil disinfection (RSD) (Yanlong et al. 2021), a technique
primarily intended to reduce soil-borne pathogens by stimu-
lating microbial anaerobic degradation of added labile carbon
(straw, in this case) through flooding. Additionally, metage-
nomic analyses detected Azospirillum after organic fertilizers
application, including vermicompost and cow manure (Li et

al. 2020), and in the rhizospheric microbiomes of coffee plan-
tations under intensive farming or transitioning from intensive
to organic farming (Caldwell et al. 2015).

Pyrosequencing used to determine root endophytic com-
munity in rice plants either uninoculated and fertilized with
urea or inoculated with Rhizobium leguminosarum revealed
enrichment in several diazotrophic rhizobacteria including
Azospirillum (Jha et al. 2020).

Zhang et al. (2021) analyzed maize-associated microbial
communities at different distances (0–0.5, 0.5–1, 1–2, 2–4,
and 4–9 cm) away from the root surface in the rhizosphere,
and detected enrichment in Azospirillum, along with other
genera such as Sphingomonas, Sphingobium, Pseudolabrys,
and Novosphingobium, at 0.5 cm from the root in plants fer-
tilized with nitrate.

The microbiomes of soils previously cultivated with rape-
seed (Brassica napus), pea (Pisum sativum L. ssp. Arvense),
and wheat (Triticum aestivum L.) in a district of north-eastern
Poland all revealed Azospirillum among the dominant genera
(those with a number of readings >1% of all OTUs), with a
higher relative abundance after culturing wheat compared to
rape and pea (Wyszkowska et al. 2019).

Some authors have suggested that Azospirillum abundance
in the rhizosphere microbiome might be correlated with the
plant’s ability to recruit in its root system certain bacterial
species under adverse environmental or physiological con-
ditions (Chaparro et al. 2012). Interestingly, Wang et al.
(2020) reported a lower relative abundance of Rhizobiaceae,
Lysobacter antibioticus, and Bradyrhizobium japonicum and
a higher relative abundance of A. lipoferum and A. brasilense
in rhizospheric soil samples of sick ramie (Boehmeria nivea L.
Gaud) than in those collected near healthy plants.

In light of these observations, it may be speculated that the
composition of root exudates released by plants subjected to
stress might encourage the selective recruitment of Azospir-
illum and other bacteria to the rhizosphere, increasing their
prevalence (Wang et al. 2020).

In another interesting study (Kudjordjie et al. 2021), the
roots of some A. thaliana mutant lines disrupted in metabolic
pathways for the synthesis of glucosinolates, flavonoids,
and other relevant defense-signaling compounds were sam-
pled, and genome sequencing (Illumina MiSeq platform) was
performed to obtain bacterial and fungal community pro-
files. These mutations specifically enriched or depleted mi-
crobial taxa. Compared to the parental lines, mutant lines
were mostly enriched in several fungal and bacterial genera,
OTUs assigned to the genera Nocardioides and Azospiril-
lum were the most highly enriched in several GLS mutants.
Other mutant lines were enriched in Fluviicola, Azospiril-
lum, and Flavobacterium. These observations suggest that
the rhizosphere may become richer in Azospirillum and
other ’recruitable’ microorganisms under certain environ-
mental/physiological conditions, mainly due to plant defense
mechanisms and an altered root exudation pattern.

Silva et al. (2022) provided metagenomic evidence in favour
of this notion through a study intended to compare conven-
tional versus organic agricultural practices in tomato in rela-
tion to the incidence of the root-knot nematode Meloidogyne
incognita. These authors observed that root-knot nematode-
containing rhizospheres (due to having received the organic
amendment) recruited nematode-antagonistic bacteria and
fungi more efficiently than those under conventional manage-
ment. Pseudomonas, Serratia, Bradyrhizobium, Burkholderia,
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and Azospirillum were some of these antagonistic bacteria
with higher relative abundance.

Numerous reports have highlighted Azospirillum’s ability
to survive and mitigate abiotic stresses while interacting with
plants (Fukami et al. 2017, 2018, Molina et al. 2018). Metage-
nomic analyses performed in the rhizosphere of three halotol-
erant plants (Reaumuria songarica, Nitraria tangutorum, and
Alhagi sparsifolia), all three growing profusely in the Jung-
gar sedimentary basin of China, confirmed that the relative
abundance of Azospirillum and Bradyrhizobium did not vary
under water stress and that this might be connected to the
plants’ survival strategy (Li et al. 2022a). Likewise, Azospir-
illum members were identified in the microbiome of Pequin
pepper plants (Capsicum annuum var. glabriusculum) grown
in arid areas under extreme water stress.

In soil samples collected in the tropical savanna of the
Brazilian ’Cerrado’, Azospirillum was identified either in
samples of soils under conventional management or sub-
jected to conservation tillage; however, its relative abun-
dance was higher in undisturbed soil samples (Souza et al.
2016).

In a greenhouse experiment addressing the possible effects
of triazole fungicides (foliar application) on barley-associated
soil community (Baćmaga et al. 2020), Bacillus arabhattai,
Bacillus soli, and Bacillus simplex were detected exclusively in
control samples, whereas Ramlibacter tataounensis, Azospir-
illum palatum, and Kaistobacter terrae were exclusively found
in treated samples. Likewise, microbiome analyses revealed
enrichment in Azospirillum and other genera (e.g. Herbaspiril-
lum, Sphingomonas, Caulobacter, and Brevundimonas) in an
indigenous agricultural soil in Taiwan exposed to hexabromo-
cyclododecane (a persistent organic pollutant), linking these
changes in microbiomes to microbial abilities to degrade or
biotransform complex and recalcitrant compounds into less
toxic compounds (Li et al. 2022b).

Some Azospirillum members could thus play a crucial
role in bioremediation/assisted phytoremediation schemes,
not only by promoting plant growth and mitigating abiotic
stress but also by contributing to the degradation/attenuation
of the polluting agents (Kaur et al. 2021).

Other metagenomic studies also revealed a considerable rel-
ative abundance of Azospirillum in aerosols emitted from the
Amazon rainforest, but only during the dry season (Souza
et al. 2021). Based on sequence comparisons with Azospiril-
lum reference genomes, these authors concluded that the three
most abundant OTUs matched tentatively A. brasilense, A.
lipoferum, and A. oryzae, and suggested as their possible ori-
gin the phyllosphere of plants growing in the surroundings
during that season.

In Spain, Mediavilla et al. (2019) carried out soil DNA
metabarcoding in Cistus ladanifer scrublands destined to pro-
duce the edible mushroom Boletus edulis. Their goals were
to analyze the impact of site history management and fire
prevention treatments on bacterial richness and community
composition and to link these findings with B. edulis produc-
tivity. They detected greater effects for the former and found
that Azospirillum (Proteobacteria), Gemmatimonas (Gemma-
timonadetes), and Opitutus (Verrucomicrobia) could be con-
sidered markers of the most productive sites for sporocarp for-
mation. This finding suggests that Azospirillum may interact
with B. edulis enhancing its fructification.

Summing up, Azospirillum can associate with many differ-
ent crops, but this ability seems to be modulated by the type

of agriculture practiced and the environmental conditions pre-
vailing.

The ’Azospirillum paradox’

Despite its great versatility and identification in heterogeneous
environments, Azospirillum is rarely mentioned or referenced
in the metagenomic analyses performed in soil and plant sam-
ples after inoculation. One possible explanation for this para-
dox may be related to the relatively low number of Azospiril-
lum members in the soil compared to other bacterial genera,
making their molecular identification more difficult.

By contrast, Azospirillum isolation through classic micro-
biological techniques has been frequently reported, suggest-
ing that those procedures can be quite simple for labora-
tories with appropriate experience in handling these bacte-
ria. Several reports tend to corroborate this idea. Qaisrani et
al. (2019) compared metagenomic analyses involving culture-
dependent and culture-independent methodologies. Using the
former, they were able to isolate Azospirillum from maize rhi-
zosphere, but they did not find the expected 16S rRNA or
nifH gene sequences. Coniglio et al. (2022) studied the rhizo-
spheric microbiome of maize inoculated with A. argentinense
Az39 (formerly A. brasilense Az39) and compared the results
with those obtained in uninoculated plants and bulk soil: they
detected these bacteria only in the rhizosphere of inoculated
plants.

Renoud et al. 2022a, 2022b) were unable to find the inoc-
ulated strain A. lipoferum CRT1 in the rhizosphere of maize
through specific q-PCR, and both the six-leaf stage and the
flowering stage proved equally unfruitful in this respect. Sim-
ilar results were obtained by Urrea-Valencia et al. (2021) in
maize inoculated with A. brasilense Ab-V5 and Ab-V6. How-
ever, Matsumura et al. (2015), Coniglio et al. (2022), Preep-
remmot et al. (2020) found the inoculated bacteria in samples
collected from maize and rice rhizospheres. Matsumura et al.
(2015) reported that inoculated Azospirillum strains could be
detected when nitrogen was added at concentrations below
normal fertilization levels but not under normal fertilization
rates.

Now, new sequencing and sequence analysis techniques al-
low extracting information from genetic material obtained
from diverse environmental samples, and microbes’ detection
has become more likely even if the target group or genus is
not very abundant (Durazzi et al. 2021). On the other hand,
protecting Azospirillum from abiotic and biotic stresses (de
Bashan and Bashan 2008, Santos et al. 2020, Takahashi et
al. 2022) by developing new carriers might increase their sur-
vival in the soil and, therefore, their detection. In this regard,
it should be said that Azospirillum is mainly supplied in peat
or liquid inoculant formulations. These delivery methods do
not protect cells from eventual stressing conditions (Urrea-
Valencia et al. 2021, Takahashi et al. 2022). Bacteria encap-
sulation using biodegradable, non-expensive, and non-toxic
biopolymers as carriers proved to be a sustainable alterna-
tive to extend Azospirillum span-life in the environment, thus
favouring the performance of these bioproducts (Bashan et al.
2002, Lima-Tenório et al. 2023).

More advanced sequencing technologies and sequence
analysis tools will probably overcome this paradox. On the
other hand, detection through RNA sequencing would allow
a more comprehensive approach by targeting only metabol-
ically active cells. More sensitive and accurate methods for
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detecting these ubiquitous but elusive bacteria are needed, not
only to monitor their fate once released into the environment
but also to understand their behavior and lifestyle in the litho-
sphere.

Effects of Azospirillum inoculation on plant
microbial communities

Until recently, methodological limitations prevented us from
getting a detailed picture of microbial communities in a given
environment. Therefore, there is still scarce information on the
impact of Azospirillum introduction into the plant-soil system
and their established microbial communities.

Data collected up to now have ranged from none or very
few observable effects (Herschkovitz et al. 2005, Lerner et al.
2006, Pedraza et al. 2009) to many positive effects on com-
munity structure (Correa et al. 2006, Baudoin et al. 2009,
Naiman et al. 2009). This variability was generally attributed
to differences in environmental conditions and plant species.
Studies based on 16S rRNA sequencing indicate that the abil-
ity of an inoculated bacterium to promote plant growth in a
given environment is inversely proportional to the degree of
disturbance it causes in the existing microbial population (Re-
naud et al. 2022b). Therefore, the most efficient plant-growth
promoters are not expected to cause significant changes in
the microbial communities associated with the target plant.
Still, modifications in microbial community composition upon
Azospirillum introduction, with impact on specific bacterial
groups, have been communicated.

For example, da Costa et al. (2018) compared the micro-
bial composition in the soil before maize cultivation with
that of the rhizosphere in Azospirillum-inoculated maize.
They noticed a link between inoculation and the presence of
members from Comamonadaceae family, Betaproteobacteria,
Pseudonocardia, and Micrococcaceae.

Azospirillum inoculation was also associated with the ab-
sence of Enterobacteriaceae members (da Costa et al. 2018).
Coniglio et al. (2022) found a positive association between
maize inoculation with A. argentinense Az39 and the pres-
ence of Pseudomonas, Burkholderia, Massilia, Sphingobium,
and Rhizobium in the rhizosphere.

Bao et al. (2013) found that rice inoculation with Azospir-
illum sp. B510 influenced minority but not majority groups
in the shoot microbiome. Likewise, after maize co-inoculation
with Burkholderia ambifaria RZ2MS16 and A. brasilense Ab-
V5, certain groups in the microbiome became more abundant,
particularly bacteria belonging to Actinobacteria class and
Actinomycetales order (Ferrarezi et al. 2022). Then, the spe-
cific microbial groups reported to be altered due to Azospir-
illum inoculation vary considerably from one report to the
other. Differences might result from diverse soil origins and
different bacterial strains and crop cultivars assayed, and per-
haps also from heterogeneous sampling times and environ-
mental conditions.

Changes in the relative abundance of specific microbial
groups after Azospirillum inoculation were also analyzed
through metagenomic approaches. In southeast France, Flo-
rio et al. (2017) assessed the effect of maize inoculation with
A. lipoferum CRT1 on nitrifying and denitrifying microor-
ganisms, as well as on ammonia oxidizers (both Bacteria and
Archaea), under C-limiting and C-sufficient conditions. The
effects on the nitrification process and the abundance of ni-
trifying microorganisms differed across sampling dates, sites,

and nutrient availability. Another set of studies performed in
three French fields aimed at investigating how maize inocula-
tion with A. lipoferum CRT1 affected rhizospheric communi-
ties with BNF activity, aminocyclopropane-1-carboxylic acid
(ACC) deaminase activity, and 2,4-diacetylphloroglucinol
production (Renoud et al. 2022a), and found that inocula-
tion modified the composition of the diazotrophic community
in the second year; the group of ACC deaminase producers
changed to a lesser extent. A follow-up study by the same re-
search group revealed as a relevant variable the dose applied
(Renoud et al. 2022b).

Overall, the evidence gathered through modern massive se-
quencing methods demonstrates that plant inoculation with
Azospirillum spp. may alternative microbial communities
regarding taxonomic composition and functionality. These
changes depend on multiple factors, including the strain inoc-
ulated, the location of the cultivated area, the cultivation con-
ditions, the bacterial concentration in the inoculant, and the
growth stage of the target crop. Although the community com-
position seems not to be significantly modified by Azospiril-
lum introduction, some minority groups previously described
as plant-growth promoters, either individually or when co-
inoculated with Azospirillum, may be favoured. This includes
Pseudomonas, Burkholderia, and Rhizobium (Ferrarezi et al.
2022).

Sharing ecological niches

Metagenomics studies have also made it possible to determine
those microorganisms that usually occupy the same ecologi-
cal niche colonized by Azospirillum. Matsumura et al. (2015)
identified Azospirillum and Rhizobium as part of the endo-
phytic population in stem samples of maize fertilized with low
nitrogen concentrations and inoculated with A. brasilense Ab-
V5. The simultaneous finding of these genera has also been
documented in the rhizosphere of maize, rice, and Nicotiana
benthamiana, as well as in pristine soils (Souza et al. 2016, Jha
et al. 2020, Coniglio et al. 2022, Liu et al. 2022).

Coniglio et al. (2022) recorded the existence of Pseu-
domonas after maize inoculation with A. argentinense Az39.
Both Azospirillum and Pseudomonas have been detected to-
gether in soils exposed to hydrocarbon contamination (Ruiz et
al. 2021) and in vermicompost consisting of vegetable waste,
cow manure, and mud (Li et al. 2020). Bradyrhizobium was
identified alongside Azospirillum in samples taken from the
rhizosphere of trees (Kaur et al. 2021), in vermicompost (Li et
al. 2020), and in the rhizosphere of plants growing under arid
conditions (Li et al. 2022a). The finding of these genera shar-
ing the same ecological niche suggests that they may function
in a complementary way to promote plant growth.

Traceability of Azospirillum strains used as
inoculants in agriculture

Several methods are available to accurately identify, quantify,
track, and monitor Azospirillum populations in seeds, plants,
and soils (Table 2). These methods may be divided into nucleic
acid-based, reporter gene-based, and immunological reaction-
based (Rilling et al. 2019).

Indirectly, these methods may also provide information
about Azospirillum’s lifestyle under different environmental
conditions. At the same time, the lifestyle of each Azospiril-
lum strain (endophytic, rhizospheric, and phyllospheric) and
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Figure 1. Factors influencing Azospirillum inoculation efficacy and strategies for its tracking and monitoring. Tracking methods may be more successful if
the preferred colonization site of the inoculated strain is known and better carriers, able to protect Azospirillum cells from biotic and abiotic stressors, are
used in commercial formulations.

the colonization ability must be considered when choosing the
best inoculation and tracking methods (Fig. 1).

For example, a rhizospheric bacteria with good coloniza-
tion capacity can be inoculated on the seeds or to the soil,
whereas strains more adapted to the phyllosphere should be
rather applied as a leaf spray. In this way, inoculating Azospir-
illum close to its target niche would increase the chance of
successful colonization and, therefore, of plant-growth pro-
motion. In this sense, bacteria with a greater ability to adapt
to different niches (i.e. systemic facultative endophytes) will
enable a greater spectrum of inoculation methods, which con-
stitutes an agronomic advantage.

Even when the variable results regarding plant growth pro-
motion by inoculated Azospirillum have been extensively doc-
umented, few studies have attempted to correlate Azospiril-
lum colonization efficiency with growth promotion perfor-
mance. Some pioneer studies in the 1990s using immuno-
logical reaction-based assays allowed the detection of A.
brasilense Sp7, A. brasilense Wa5, and A. brasilense Sp245
(now A. baldaniorum Sp245) in wheat roots (Schloter and
Hartmann 1998). This study proved the endophytic behavior
of the last strain, while A. brasilense strains were unable to
colonize the inner tissues. Later, with the advent of reporter
genes, it was possible to recognize the preferential coloniza-
tion regions of many Azospirillum strains.

Through gusA-nifH fusion, Santos et al. (2017b) observed
that A. brasilense Sp7-derivative strains FP2 and HM053 col-
onized mainly the emerging points of the lateral roots and
the root hair zone of wheat. Similar results were obtained in
alfalfa and barley (Santos et al. 2017a, O’Neal et al. 2020).
Studies using reporter genes also allowed tracking tissue colo-
nization by Azospirillum after applying this inoculant as a leaf

spray on maize (Fukami et al. 2017) and soybean (Puente et
al. 2021) phyllosphere. To identify Azospirillum at the genus
level, Lin et al. (2011) performed PCR with primers targeting
a hypervariable region in the 16S rRNA.

Identification was thus achieved on the basis of DNA se-
quencing from pure and complex cultures. On the other hand,
the ipdC gene sequence was used to differentiate between
strains of A. lipoferum and A. brasilense (Jijón-Moreno et
al. 2015). This gene allowed distinguishing microorganisms
within the Azospirillum genus accurately, making it possible
to detect them in complex samples after being inoculated,
thus contributing to a better understanding of the bacterium
lifestyle in the environment.

Malinich and Bauer (2018) used the primers designed by
Lin et al. (2011) to confirm the identity of Azospirillum iso-
lated from inoculated Phaseolus vulgaris (common bean) at
different phenological stages. The specific genus primers were
combined with qPCR, transcriptomics technologies, confo-
cal microscopy, and culturing techniques to track the bacte-
ria throughout the plant’s life cycle. This multimethodologi-
cal approach revealed that Azospirillum colonizes bean tissues
profusely and is vertically transmitted to the next generation
through the seeds (Malinich and Bauer 2018).

Additionally, fluorescence in situ hybridization (FISH) and
confocal laser scanning microscopy allowed Azospirillum de-
tection as an endophyte in wheat under optimal and salt-
stressed conditions 30 days after inoculation (Rothballer et
al. 2003, Nabti et al. 2010). Using FISH, it was also demon-
strated that Azospirillum could survive and colonize sorghum
plants in desert soil when co-inoculated in alginate beads
with Chlorella sorokiniana (Trejo et al. 2012, Lopez et al.
2013).
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The complexity posed by combining many methods may
be overcome by qPCR techniques, which enable the detec-
tion of specific strains. Fancelli et al. (1998) were the first
to search specifically for Azospirillum spp. using a probe ob-
tained from DNA fragments generated through RAPD. The
probe was successful in detecting A. lipoferum ATCC29731
in sorghum roots 24 hours after inoculation. An article pub-
lished in 2006 describes the use of strain-specific probes to de-
tect inoculated A. lipoferum CRT1 in maize roots in the field
by targeting the 16S rRNA at hybridization (Table 2). This
strain was detected for up to 140 days after inoculation, at
around 1e + 5 CFU.g−1 (El Zemrany et al. 2006). That probe
was used to confirm the existence of colonies that had been
previously counted and may have derived from phylogeneti-
cally related microorganisms.

Several Azospirillum strains were identified and quantified
through qPCR in samples obtained from maize tissues and rhi-
zospheric soil. These bacteria could be detected in maize rhi-
zosphere under lab conditions through strain-specific qPCR
between 10 and 60 days after inoculation (Couillerot et al.
2010a,b). This technique also allowed the detection of inocu-
lated A. brasilense FP2 in wheat roots (Stets et al. 2015) and in-
oculated A. brasilense Sp7 in maize rhizosphere (Reddy-Priya
et al. 2018). However, other authors failed to detect the inoc-
ulated Azospirillum strains for long periods (Urrea-Valencia
et al. 2021, Renoud et al. 2022a, 2022b). Regarding the de-
tection of inoculated bacteria in maize tissues, the strains in-
troduced were detectable on the first days after inoculation
and long after that in root samples (Soares et al. 2021, Urrea-
Valencia et al. 2021, Takahashi et al. 2022).

In maize roots, the population of A. brasilense elite strains
Ab-V5 and Ab-V6 seems not to undergo great variation along
plant development, except for the V2 stage, when the popula-
tion decreased to 1e + 3 CFU g−1 (Urrea-Valencia et al. 2021).
A significative drop in the number of eqCFU of A. brasilense
FP2 was also reported in the initial vegetative stage of wheat
(Takahashi et al. 2022). Through qPCR studies, it was demon-
strated the viability of some Azospirillum strains in commer-
cial inoculants and maize roots for up to 7 days after inoc-
ulation when the samples were pre-treated with propidium
monoazide (PMA) (da-Cunha et al. 2020).

These results indicate that Azospirillum presence in the
rhizosphere may be ephemeral. However, those bacteria that
manage to survive do establish in association with the host
plant and promote its growth and development. This enhances
yield and might also modify, to some extent, the native micro-
bial communities. Beyond the purpose of tracking Azospiril-
lum in the environment, some extremely efficient methodolo-
gies have been designed to identify strains in commercial prod-
ucts and thus guarantee product quality prior to inoculation
(Reddy-Priya et al. 2016, Reddy-Priya et al. 2018, Coniglio et
al. 2020).

As evidenced by the reports summarized in this section,
Azospirillum is a versatile and ubiquitous genus with great
biotechnological potential.

What is new about functional characteristics
associated with Azospirillum’s rhizospheric
lifestyle?

The colonization of plant roots by Azospirillum has been sug-
gested to occur over two stages. The first one is considered
to be flagellum-mediated and reversible (Croes et al. 1993);

the second one is irreversible and involves exopolysaccha-
rides (EPSs) production and the formation of cell aggregates
(Michiels et al. 1991).

Cell motility and biofilm formation have also been linked
to the colonization of plant tissues by Azospirillum (Burdman
et al. 2008), as well as chemotaxis and the interaction with
surrounding microorganisms (O’Neal et al. 2020).

It has been reported that the second messenger c-di-
GMP mediates environmental signals perception resulting in
changes in bacterial behaviour, including motility and biofilm
formation (Jenal et al. 2017). Intracellular c-di-GMP levels in-
side cells were found to modulate chemotaxis in A. brasilense
(O’Neal et al. 2020) and root internalization in A. baldanio-
rum (Sierra-Cacho et al. 2021).

Recently, deficiencies in the Hcp protein of the type VI se-
cretion system (T6SS) have been shown to reduce the aggre-
gation capacity of A. argentinense Az39, not only between
Azospirillum cells but also between Azospirillum and the mi-
croalga C. sorokiniana (Cassán et al. 2021). Therefore, this se-
cretion system might be involved in bacterial interaction and
the formation of cell aggregates, a requisite for rhizosphere
colonization.

Aggregate formation in Azospirillum can be affected by
environmental conditions too. Blue light and white light in-
creased aggregation in planktonic cultures of A. argentinense
Az39 with respect to cells kept in the dark (Molina et al.
2021). Besides being involved in plant tissue colonization, ag-
gregation may enhance Azospirillum survival under adverse
conditions in the rhizosphere or in the water, one of the habi-
tats this versatile bacterium may inhabit.

One of the best-known mechanisms through which bac-
terial cells communicate is quorum sensing (QS). This phe-
nomenon regulates several processes in Azospirillum spp., like
swimming and swarming motility, which are key for root colo-
nization (Alexandre 2015). Although a full HDL-mediated QS
system seems unusual in this genus, certain strains have been
found to contain some QS-related genes (Vial et al. 2006).
In bioassays with reporter strains, Gualpa et al. (2019) ob-
served that A. argentinense Az39 could degrade natural and
synthetic N-acyl homoserine lactones (AHLs) in vitro through
quorum quenching, a mechanism consisting of QS suppres-
sion. Mechanisms of signal interception might then be preva-
lent in Azospirillum strains, regardless AHLs production. The
fact that such mechanisms have emerged in this PGPR, par-
ticularly in A. argentinense Az39, points out the crucial role
of these mechanisms in selecting an ecological niche, exchang-
ing signals with the host plant (Tait et al. 2009), and adapt-
ing their lifestyles. As the molecular basis of Azospirillum in-
teractions with the plant and the existing microbiota become
clearer, more functions will be discovered.

Concluding remarks and perspectives

Although Azospirillum has been extensively used as an in-
oculant since the second green revolution, data on the ac-
tual prevalence of this PGPR in plants, soils, or seeds after
inoculation are scarce. This contrasts with the great num-
ber of reports showing plant growth promotion by this bac-
terium under field conditions. The lack of precise method-
ologies to determine Azospirillum colonization under agro-
nomic scenarios seems to be the main gap. Currently, most
methods for monitoring Azospirillum strains used as inocu-
lants are time-consuming, laborious, expensive, and unspecific
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at the strain level. On the other hand, Azospirillum numbers
in agronomic environments seem to be lower than those of
other bacteria, hindering their molecular identification. De-
veloping more reproducible, rapid, and inexpensive tools for
tracking this versatile microorganism under field conditions
is required to unravel Azospirillum-plant and Azospirillum-
plant microbiome interactions. Omics approaches and ad-
vanced methodologies capable of identifying Azospirillum
at the strain level, such as qPCR, FISH, or CRISPR, will
allow progress in monitoring this ubiquitous bacterium
widely used as biofertilizer in the context of sustainable
agriculture.
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