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Abstract: Gene differential expression consists of the study of the possible association between the
gene expression, evaluated using different types of data as DNA microarray or RNA-Seq technologies,
and the phenotype. This can be performed marginally for each gene (differential gene expression) or
using a gene set collection (gene set analysis). A previous (marginal) per-gene analysis of differential
expression is usually performed in order to obtain a set of significant genes or marginal p-values
used later in the study of association between phenotype and gene expression. This paper proposes
the use of methods of spatial statistics for testing gene set differential expression analysis using
paired samples of RNA-Seq counts. This approach is not based on a previous per-gene differential
expression analysis. Instead, we compare the paired counts within each sample/control using a
binomial test. Each pair per gene will produce a p-value so gene expression profile is transformed into
a vector of p-values which will be considered as an event belonging to a point pattern. This would be
the first component of a bivariate point pattern. The second component is generated by applying
two different randomization distributions to the correspondence between samples and treatment.
The self-contained null hypothesis considered in gene set analysis can be formulated in terms of the
associated point pattern as a random labeling of the considered bivariate point pattern. The gene
sets were defined by the Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways. The proposed methodology was tested in four RNA-Seq datasets of colorectal
cancer (CRC) patients and the results were contrasted with those obtained using the edgeR-GOseq
pipeline. The proposed methodology has proved to be consistent at the biological and statistical
level, in particular using Cuzick and Edwards test with one realization of the second component and
between-pair distribution.

Keywords: colorectal cancer; RNA-Seq; paired samples; spatial point pattern

1. Introduction

Global gene expression (transcriptome) can be quantified using DNA microarrays [1]
and RNA sequencing (RNA-Seq) technologies [2]. RNA-Seq is widely used to understand
and describe the biological mechanisms involved in transcription observed under different
experimental conditions. The statistical comparison of the means of the gene expression
is known as differential gene expression. This comparison can be performed at the gene
level, i.e., a marginal analysis of each gene. There are many pipelines to perform an RNA-
Seq data analysis [3]. A list of differentially expressed genes is obtained, the significant
genes. Usually, it is expected to find a relationship between these significant genes and the
biological mechanisms that underlie the observed phenotype. This biological mechanism
is controlled by a gene set. This justifies to analyze the differential expression of gene
sets by considering them from the very initial step. This is called gene (enrichment)
set analysis [4]. For gene set analysis, the choice of the statistical method, the type of
null hypothesis, and the gene-association measure are the most important considerations.
In addition, the set of genes can be biologically defined using, among others, GO [5]
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and/or the KEGG Ontology (KO) [6]. GO include three categories: the first one is the
biological objective to which the gene or its product contributes and is called Biological
process; the second one is the biochemical activity of a gene product, called Molecular
Function; the third is called Cellular Component and it refers to the place in the cell where
a gene product is active [5]. On the other hand, KO includes all molecular networks in
the categories of Metabolism, Genetic Information Processing, Environmental Information
Processing, Cellular Processes, Organisms Systems, Human Diseases, Brite Hierarchies
and Not Included in Pathway or Brite [6].

The methods for gene set analysis can be classified, according to the null hypothesis
tested, into self-contained or competitive tests [7]. The basic question can be formulated
as: Is there any association between a set of genes and the phenotype? This is a very
vague question. A more precise formulation is required. Different interpretations of
the question are possible. In [8], they formulate the following two null hypotheses that
specify the previous question in two different ways. We reproduce the corresponding null
hypotheses. The competitive hypothesis is formulated as “The genes in a gene set show
the same pattern of associations with the phenotype compared with the rest of the genes”.
The self-contained hypothesis is formulated as “The gene set does not contain any genes
whose expression levels are associated with the phenotype of interest.” We are concerned
in this paper with the testing of the self-contained null hypothesis using RNA-Seq data
observed under two conditions (case-control) using a paired design. A huge literature of
gene set analysis exists. A large part of it was developed and implemented for microarray
data and later adapted to RNA-Seq data. Good reviews can be found in [9,10]. Gene set
over-representation analysis (ORA) consists of evaluating if a previously defined gene
set, such as GO terms, is more represented than the others in the list of genes previously
selected as differentially expressed, and if this over-representation is unlikely to be due to
chance. This is used for instance by GOseq [11]. This approach assumes independent gene
expressions, i.e., it starts from a marginal analysis of the gene. Nonetheless, it is well known
that, when an alteration occurs, it is not an individual gene, but a gene set that is affected.
To take this into account, gene set enrichment analysis (GSEA) [12,13] offers a modification
over the previous methods. The GSEA method does not start from a previously selected
list of genes differentially expressed, but, instead, it uses the gene set as the initial unit;
an example is the SeqGSEA method [14]. However, these tools apply first a gene-level test
on the original data.

An alternative is performing the analysis considering first the gene relationships and
to focus directly on the gene set differential expression. This idea has been exploited by
some methods previously proposed on microarray data [15]. Nevertheless, the gene set
differential expression for RNA-Seq data are less studied. Some interesting examples
are [16,17]. The method proposed in this paper is designed to test the self-contained
hypothesis by using statistical analysis of spatial point patterns.

The study of spatial aggregation or clustering has a long history in the spatial statistics
literature [18]. Nonetheless, it is, up to our knowledge, the first time in which spatial
statistical methods,, i.e., the Cuzick and Edwards test, the Diggle, Morris, and Morton—
Jones test and the Diggle test, are applied as an effective approach for gene set analysis.
The methodology is implemented in the R package OMICfpp2 available at http://www.
uv.es/ayala/software/OMICfpp2_1.0.tar.gz (accessed on 25 February 2021) and https:
/ /github.com/JdMDE/OMICfpp2 (accessed on 25 February 2021).

2. Methodology
2.1. General Notation

Let us introduce the basic notation needed later. This paper is concerned with paired
design and the notation is given accordingly.

Let N be the number of genes and n the number of pairs of samples. The value of N
is much larger than n, N > n. Let x;j denote the count corresponding to the i-th gene
(i=1,...,N),j-thpair (j =1,...,n) and k the element within the pair (k = 1,2). The total
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number of counts for the sample (j, k), its library size, will be denoted by m; = N, Xijk-
We assume the values x;j for a given i are in the i-th row of the expression matrix in
such a way that each column would be associated with a (j, k) sample, so we have an
N X 2n matrix. If we consider the random expression matrix instead of the observed one,
then their rows would be dependent random vectors (the expressions of the genes are
dependent), and the columns would be independent random vectors (corresponding to
different individuals).

We are interested in a gene set collection Sy, ...,St, where Sy C Gfort =1,...,T
and G = {1,..., N} is the universe of genes. These gene sets do not need to be necessarily
disjoint. Given the observed expression matrix x and a gene set 5;, we can extract the
matrix corresponding to the rows in Sy, i.e., xs,. Let ¢(S;) be the set composed by the
columns of xs,, ¢(S) C RIS, This set ¢(S;) can be considered as a point pattern (it will be
called sample point pattern) where the corresponding point process could be denoted as
®(S;). A formal presentation of point process theory can be found in [19].

For the (j, k) sample, we have a phenotypic covariable, y; (€ R), for instance an
experimental factor indicating case or control. The previous point pattern, ¢(S;), and this
covariable can be put together in a so-called marked point pattern.

This simple idea is used later to connect two different topics: statistical analysis of
marked point patterns and gene set analysis.

2.2. Paired RNA-Seq Samples

The most common setup consists of two groups of samples to be compared. Our data
are pairs of RNA-Seq counts quantifying the gene expression i.e., the samples are grouped
in pairs corresponding to two conditions observed on the same individual. We will have a
binary phenotypic covariable y;; where y; = 0 (respectively 1) corresponds to a control
(respectively case).

A simple procedure was proposed in [20] to test the null hypothesis of no association
between condition and expression. This procedure assumes that, under the null hypoth-
esis, the random count X;;; has a binomial distribution X;j; ~ Bi <x,-j1 + Xij2, ﬁ ,
where x;j1 + x;jp is the count for the i-the gene and the j-th pair. This count and the sum of
library sizes, mj; + mjp, are considered given. The p-value will be calculated as the sum
of the probabilities lesser or equal than the observed x;j; value and will be denoted as
pij- If we have n pairs of samples, then a p-value will be observed per pair and gene so
we will have p; = (pj1, ..., pin) for the i-th gene. Our original N x 2n gene expression
matrix is transformed in a N x n p-value matrix where the (i, j) entry will correspond to
the p-value of the j-th pair of the i-th gene. Let the observed matrix of p-values be f.
The corresponding random p-value matrix will be denoted Py. Note that the columns of
the random matrix Py are independent but not their rows. Under the null hypotheses
of no expression-phenotype association for all genes, the random p-value Py (i, j) follows
approximately a uniform distribution.

2.3. Gene Set Point Pattern

We are interested in the study of the differential expression between conditions
for a given (previously defined) gene set and G = {1,...,N} is the universe of genes.
The i-th gene will have its expression profile in the i-th row of the expression matrix.
Let S = {i1,...,i|5} a given gene set with S C G. Our approach will test the self-contained
null hypothesis of no differential expression for the gene set. The most common approach
consists of two steps. Firstly, the null hypotheses of no differential expression per each gene
are tested. Secondly, the statistics (or p-values) of these (marginal) tests are aggregated
ignoring later the dependencies between them. This point has to be incorporated in the
analysis and we deal with it by using point processes.

Our important gene setis S = {iy, ..., 75 }. The vector v; = (p; j, - .-, Pi\sw‘)/ e [0,1]'s!
contains all the observed p-values for the genes in S corresponding to the j-th pair. We can
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consider all samplesjointly in ¢ps = {v, ..., v, }. Itis a finite set of n points contained in the
unit hyper-cube [0,1]/%!, a point pattern. Each event corresponds to a sample and each di-
mension of the point corresponds with a gene. As we are working with a paired design and
p-values, this point pattern is a natural description of the differential expression of the gene
set in both conditions. No independence between genes is assumed. Let V7, ..., V,;, be a ran-
dom sample of n random vectors, distributed as V, whose corresponding observed values
are vy, ...,v,. Analogously, ¢s = {v1,...,v,} is the point pattern and ®g = {Vy, ..., V,}
is the point process. In our approach, each event of the point pattern ¢(S) corresponds to a
pair of samples, more precisely to the p-values of these pair of samples.

2.4. Testing Differential Expression

We are going to test the gene set differential expression by using a bivariate point
process. Each realization will have two components with # points each. The first component
is the point process corresponding to the p-values obtained using the original sample
classification. This first component will be called cases. The second component is generated
by applying a randomization to the original sample classification. The second component
will be called controls.

This bivariate point process, under the null hypothesis, would be just a random
labeling (with n point per component) of the union of both processes.

This random labeling hypothesis will be tested using different statistical procedures
taken from the literature of spatial point processes, and they were designed in order to
look for some characteristic of the joint distribution. We provide next a short description of
the tests.

We consider a given gene set S. The outline of our procedure is as follows:

1.  Using the original pairs, we obtain the first point pattern corresponding to the original
pairs or cases, ¢y.

2. We choose a randomization distribution, between-pair or complete distribution, and a
number of randomizations B to be performed.

3. Using the chosen distribution in the previous step, we generate new pairs and a new
sample point pattern associated with these pairs ¢, ..., ¢p.

4. For the i-th bivariate point pattern (¢, ¢;), it is tested if it can be considered a random
labeling of the point pattern ¢y U ¢;, and the corresponding p-value is obtained.

2.4.1. Generation of Controls

These are the randomization distributions used to generate the random points.

Between-pair (BP) distribution. The first element of each pair is maintained as the
original one. The second element of each pair is obtained randomly permuting the second
components of all pairs between them. We have (y;1,Y,()2) fori = 1,...,n, where 7 is
now a permutation of (1,...,n). The number of possible permutations is n!.

Complete (C) distribution. Let us choose I = {iy,...,iy} as a random subset of
{1,...,2n}. The indices of {1,...,2n} notin {iy,...,i,} canbe denoted | = {j1,...,ju}. A

random correspondence between I and | will produce the pairs. The number of possible
(2n)!
nl

values is

2.4.2. Statistical Tests

Cuzick and Edwards test (CET) was proposed in [21]. We have a bivariate point
pattern corresponding with cases and controls. The objective is to detect spatial clustering
of cases. Itis assumed that their spatial distribution is not homogeneous like in our problem.
It is based on distances between nearest neighbor (NN) pairs of points. Let {z]- } j=1,..2n b€
the locations of the combined sample where the indices have been randomly permuted.
We define fori =1,..,n

1 if z;isacase
0 = . ;
{ 0 if z;isa control
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and
i _{ 1 if the NN to z; is a case
i =

0 if the NN to z; is a control

The statisticis T = Y_!' ; 4;d;, i.e., we are counting the number of cases with a case as
the nearest neighbor. It is clear that large values of the statistic are associated with clusters of
cases corresponding with the alternative hypothesis of a phenotype-expression association.

Diggle, Morris, and the Morton—Jones test (DMMT). Ref. [22] was proposed within
the research of a high risk around a specified point. Consider again the variables {4; }i—1 __2x
previously defined. Let 7; = P(6; = 1) and (i), the corresponding values ordered
according to the distance to the origin. Under the null hypothesis of no differential
expression, the maximum likelihood estimators of the Y(i) are easily obtained by the pool-

t
. . . « . r=s O(r . I .
adjacent violators algorithm: §;) = ming<; max;>; 727 S +(1) . The maximum likelihood ratio

test statistic is given by Tp =2 z%gl{(s(,-) log Y% +(1—5;))log 1172“) b

Diggle test (DT) [23] studies the possible raised incidence of certain types of can-
cer near nuclear installations. The test is based on fitting a particular class of a non-
homogeneous Poisson point process model to data. Let A(x) be the intensity function
of ®1(S) under the alternative hypothesis H;. We can assume that A(x) has a multi-
plicative decomposition as A(x;7y) = pAo(x)f(x'x;0), where x! is the transpose of x
and Ag(x) would represent the spatial variation in intensity under the self-contained
null hypothesis. This null intensity function could be estimated using a kernel estima-
tor from the control sample point process ®,(S) of p-values. For a given realization of

D,(S), ie, p2(S) = {v; ;7:1, the kernel estimator using a Gaussian kernel is given by

n e N (.
Ao(x) = Liz1 o 2’12:;2”] "6} The function f can be quite general. However, the fol-

lowing function permits an easy computation of the maximum likelihood estimator of the
parameters 0 = (a, B)": f(x;0, B) = 1+ aexp(—pBx'x). Using the Gaussian kernel estimate
for the function Ay and the proposed f, it is easy to obtain the formulas needed to obtain
the maximum pseudo likelihood estimator of § = (&, B)*. Note that the null hypothesis
of no clustering around the origin corresponds with « = = 0. In order to test this null
hypothesis, we compare D = 2(L(&, 8) — L(0,0)) with critical values of x3. Details can
be found in [23]. We have implemented it in the n-dimensional case in our R package
OMICfpp2.

2.4.3. Testing the Self-Contained Hypothesis

Under this hypothesis, the original point process, ®y(S), would be a non-homogeneous
Poisson point process in the hyper cube [0, 1] 15, Note that, under the alternative hypothesis,
the point process will tend to produce clustering around the origin. Many other statistical
tests could be used and this could be a good line of future research. The three previous
tests have been taken from an epidemiological context.

The points correspond to the p-values for the different genes in our important gene
set S. If there is no gene set differential expression, then the 2n points are independent
and identically distributed following a common unknown distribution. We preserve the
original label of the point if it corresponds to an original pair or to a randomly generated
pair. No differential expression means that the cases are just a random selection of n points
from the total 2n points, i.e., the bivariate point pattern is just a random labeling of the
original point set. We reformulate the testing of no gene set differential expression in that
labeling has been tested in a bivariate point process.

This random labeling has been tested using a Monte Carlo test. Let us give a short
description. Let (¢, ¢;) be a bivariate point pattern where its first component, ¢y, is the
original point pattern and its second component, ¢, is a control. Let ty be any of the three
previous statistics evaluated for this bivariate point pattern. The set ¢y U ¢; is randomly
partitioned into two new sets of n points. The same statistic is evaluated for this new
bivariate point pattern. We repeat the selection process B times independently obtaining
the statistics #1, ..., tg. Under the null hypothesis, any order of the vector (to, t1,...,tp)
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has the same probability. The Monte Carlo p-value [24] is given by p = [{t: |tb‘>‘t0‘ h LBl
In the experimental study, B = 100 will be used. This Monte Carlo p-value w111 be used to
test the self-contained null hypothesis.

The sample point pattern for cases is unique, but many sample point patterns corre-
sponding to controls can be generated. For each bivariate point pattern generated, a Monte
Carlo p-value is obtained. It is clear that the computational time is greater when more
than one control sample point pattern is generated. More than one realization produces
different p-values that will be aggregated using meta-analysis techniques for p-values as
the Fisher’s method. It is interesting to evaluate if just one realization of controls is enough
or if more than realization produces better results. This could be evaluated in Section 3.

2.5. Data

A total of four RNA-Seq data sets with paired (tumor/adjacent normal tissue) samples
from CRC patients have been analyzed. The first three data sets correspond to the Biopro-
jects PRINA411984 [25], PRINA413956 [26] and PRINA218851 [27] with 2, 7, and 18 raw
data pairs, respectively. The fourth data set include 50 pairs of preprocessed data (count
files) from The Cancer Genome Atlas (TCGA, https:/ /cancergenome.nih.gov/ (accessed
on 26 January 2021)).

We are going to evaluate if just one or multiple realizations are needed to generate the
second component of the bivariate point process using the TCGA dataset. The gene sets
were defined using GO terms and KEGG ontology. The GO gene set collection uses only
the biological process category and gene sets with ten or more genes in the set, resulting in
a total of 2815. The KEGG gene set collections have been entirely used and there are a total
of 340.

The TCGA dataset has been analyzed using the three tests proposed: CET, DMMT,
and DT. One realization (OR) of the between-pair (BP) randomization distribution has been
used to generate the second component of bivariate point process. The random labeling
hypothesis has been tested using 100 simulations.

The four datasets were analyzed using edgeR-GOseq pipeline. The method edgeR
can be found in [28,29]. The GOseq R package [11] allows us to analyze gene sets from GO
using RNA-Seq data and also KEGG pathways analysis.

The whole code needed to reproduce our paper can be found in the supplementary
file SupplementaryMaterialMethods_pointgene.pdf.

3. Results
3.1. One or Multiple Realizations?

Out of all GO gene sets, 8% reported as significant (p-value < 0.05) using OR were
reported too using MR with all tests (Figure 1A). For KEGG, 143 unique gene sets have been
reported in OR, and 52 unique gene sets have been reported in MR, which corresponds to
a decreasing of 64% (Figure 1B).

3.2. Analyzing the Tests

A total of 80, 0, 1 GO terms and 63, 5, 6 KEGG pathways were reported (p-value < 0.05)
by CET, DMMT, and DT, respectively. The DMMT and DT were more conservative than
CET at reporting differentially expressed gene sets. No common gene sets were reported
between the spatial tests.

The first five gene sets with the lowest p-values, top genes, obtained by each test are
compared in order to identify the most appropriate approach according to the biological
relevance. However, the number of papers dealing with CRC, associated with the gene sets
reported as significant by the test, could not be sufficient criteria to evaluate them because
this number is closely related with the method of detection used and its age.
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Figure 1. Overlapping between significant gene sets across the methods. (A) Venn diagram of significant GO gene sets
obtained using TCGA dataset and OR or MR with all tests. (B) Venn diagram of significant KEGG gene sets obtained using
a TCGA dataset and OR or MR with all tests. (C) Number of significant GO and KEGG gene sets (using one realization) for
the three tests (CET, DMMT, DT) and the between-pair and complete randomization distributions. (D) Venn diagram of
significant GO gene sets for all datasets using BP and CET. (E) Venn diagram of significant KEGG gene sets for all datasets

using BP CET.

Thus, as a complement to these results, we include a list of biological pathways that
have been shown to be associated with CRC (see [30-34]) including EGFR, MAPK, Notch,
PI3K, P53, Ras, TGF-B, Wnt/ B-catenin, JAK-STAT, VEGE, or NF-kappaB signaling pathway,
and, therefore, could be (but not necessarily) a gold standard. In this sense, 14 KEGG
biological pathways and 156 GO terms that represent the signaling pathway were selected
to evaluate which tests reported these gene sets more frequently in their results. Of the 156
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GO terms, many were made up of a single gene, being subsets of the signaling pathways,
so a short list of 15 GO gene sets was used, which includes only the general signaling
pathways (see tables in Supplementary Material).

The top GO and KEGG gene sets reported by CET were highly related to CRC and
other cancer types, as reported by Comparative Toxicogenomics Database and bibliographic
databases (Table 1). Additionally, canonical pathways involved in CRC as PI3K-Akt, JAK-
STAT, and Ras signaling pathways were reported in the first places by CET. The DMMT
did not report gene sets differentially expressed in GO terms. For KEGG results, the gene
sets reported were less associated with CRC than the CET as for the number of articles,
but also includes canonical pathways such as EGFR tyrosine kinase inhibitor resistance.
In general, the KEGG results obtained by the DT method were less associated (but also
related) with CRC than those obtained by CET and DMMT. This was in concordance with
the p-value reported in the gene sets by each test.

Table 1. Five gene sets with lowest p-values reported by each test using the between-pair distribution: CET, DMMT, and

DT tests. The column headed “n” refers to the number of genes in the gene set. The number of papers “n rep” reporting

the gene set association with Colorectal or Colonic Neoplasms have been obtained from the Comparative Toxicogenomics
Database (GO terms) and MEDLINE bibliographic database (KEGG ID AND “colorectal cancer”). The asterisk * indicates
that the gene set has been described as related to other cancer types.

ID Gene Set Name n Test p-Value n rep
GO:0035195 Gene silencing by miRNA 577 CET <0.00001 4
GO:0007186 G protein-coupled receptor signaling pathway 868 CET <0.00001 18
GO:0045944 Positive regulation of transcription by RNA polymerase II 975 CET <0.00001 111
GO:0006357 Regulation of transcription by RNA polymerase II 917 CET <0.00001 76
GO:0050911 Detecti(?n of chemical stimulus involved in sensory 427 CET <0.00001 0*
perception of smell

GO:0045190 Isotype switching 17 DT 0.0450 7
hsa05200 Pathways in cancer 530 CET <0.001 170
hsa04014 Ras signaling pathway 232 CET <0.001 12
hsa04020 Calcium signaling pathway 193 CET <0.001 46
hsa04151 PI3K-Akt signaling pathway 354 CET <0.001 59
hsa04630 JAK-STAT signaling pathway 162 CET <0.001 35
hsa05340 Primary immunodeficiency 38 DMMT 0.01 12
hsa01212 Fatty acid metabolism 57 DMMT 0.02 7
hsa00071 Fatty acid degradation 44 DMMT 0.03 13
hsa05167 Kaposi sarcoma-associated herpesvirus infection 186 DMMT 0.03 8
hsa01521 EGER tyrosine kinase inhibitor resistance 79 DMMT 0.04 7
hsa04512 ECM-receptor interaction 88 DT <0.001 91
hsa04071 Sphingolipid signaling pathway 119 DT <0.001 5
hsa03410 Base excision repair 33 DT 0.02 9
hsa05033 Nicotine addiction 40 DT 0.03 8
hsa04659 Th17 cell differentiation 107 DT 0.04 7

3.3. Choosing the Randomization Distribution

The between-pair randomization distribution is the most natural one for paired de-
signs, but the complete randomization distribution (forgetting the paired design) could be
applied too. Thus, the more appropriate randomization distribution to generate the second
component of the point process has been evaluated. A total of 9, 27, and 216 GO terms
and 63, 5, and 6 KEGG pathways were reported (p-value < 0.05) by CET, DMMT, and DT,
respectively, using complete distribution.

No common gene sets were reported between the spatial tests using either complete
distribution or between-pair distribution. The results obtained using complete and between-
pair distributions for each test were compared: a total of 9, 0, and 1 GO terms and 11,
1, and 1 KEGG pathways were reported (p-value < 0.05) in common using CET, DMMT,
and DT, respectively. These data are not shown and can be found in Supplementary
Material. Thus, most of the gene sets reported using CET in complete distribution were
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also included using the between-pair distribution. The number of GO gene sets reported
decreased at least eight times for CET and increases by one hundred percent DMMT and
DT. Regarding the biological assertiveness of the results, fewer articles associated with
CRC were included in the groups reported using complete distribution, although canonical

pathways were included in the results in all spatial tests (Table 2).

Table 2. List of the top five gene sets reported by each statistic test using the complete distribution: CET, DMMT, and DT.

The “n” column refers to genes in the set. The number of papers (n rep) reporting the gene set association with Colorectal

Neoplasms obtained from the Comparative Toxicogenomics Database (GO terms) and MEDLINE bibliographic database

(KEGG ID AND “colorectal cancer”). The * indicates that the gene set was related to other cancer types.

ID Gene Set Name n Test p-Value nrep
GO:0050911 petection of Chemi.cal stimulus involved 427 CET 0.0001 0*
in sensory perception of smell

GO0:0035195 Gene silencing by miRNA 577 CET 0.0005 4
GO:0006396 RNA processing 544 CET 0.0036 4
GO:0018149 Peptide cross-linking 26 CET 0.0159 0*
GO:0070268 Cornification 112 CET 0.0294 0*
GO:0071320 Cellular response to cAMP 52 DMMT 0.0309 6
GO:1990403 Embryonic brain development 13 DMMT 0.0323 14
GO:0071392 Cellular response to estradiol stimulus 34 DMMT 0.0338 13
GO:0051965 Positive regulation of synapse assembly 61 DMMT 0.0364 3
GO:0031145 Anaphase-promoting complex-dependent catabolic process 81 DMMT 0.0368 2
GO:0071363 Cellular response to growth factor stimulus 45 DT 0.0019 14
GO:0050808 Synapse organization 38 DT 0.0019 15
GO:0045190 Isotype switching 17 DT 0.0029 7
GO0:0015721 Bile acid and bile salt transport 19 DT 0.0030 2
G0:0002931 Response to ischemia 50 DT 0.0033 33
hsa04630 JAK-STAT signaling pathway 162 CET <0.001 35
hsa04740 Olfactory transduction 448 CET <0.001 10
hsa05206 MicroRNAs in cancer 310 CET <0.001 31
hsa05218 Melanoma 72 CET <0.001 39
hsa05224 Breast cancer 147 CET <0.001 5
hsa04215 Apoptosis multiple species 32 DMMT <0.001 5
hsa04660 T cell receptor signaling pathway 104 DMMT <0.001 37
hsa04150 mTOR signaling pathway 153 DMMT <0.001 32
hsa04934 Cushing syndrome 155 DMMT <0.001 0
hsa04928 Parathyroid hormone synthesis, secretion and action 106 DMMT <0.001 0
hsa01521 EGER tyrosine kinase inhibitor resistance 79 DT <0.001 7
hsa05120 Epithelial cell signaling in Helicobacter pylori infection 70 DT <0.001 15
hsa03030 DNA replication 36 DT <0.001 25
hsa04724 Glutamatergic synapse 114 DT <0.001 14
hsa04012 ErbB signaling pathway 85 DT <0.001 59

3.4. Effect of Sample Size

The methodology has been evaluated for different sample sizes: an extreme case of
two pairs (PRJNA411984); two intermediate cases of 7 (PRJNA413956) and 18 pairs of
samples (PRJNA218851) and the TCGA dataset with 50 pairs.

The number of gene sets reported in all methods increases with the number of samples
(Figure 1C).

All spatial tests using between-pair or complete distribution reported results from
50 pairs of samples (TCGA dataset), with the exception of DMMT using BP distribution.
The DMMT and DT report less gene set that are significant when using between-pair
distribution, while, in CET, the opposite occurs in all sample sizes.

In the PRINA411984 dataset (2 pairs), only DMMT and DT using complete distribution
reported 18 and 7 significant KEGG gene sets, respectively. Genes grouping using KEGG
ontology seems to be more appropriate for using spatial tests than GO categories.
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PRINA411984

425

GOseq

PRINA218851

540

Regarding the consistency in the results reported by each test across datasets, the BP
CET reported more results in common between the datasets than the other tests, for both
GO (Figure 1D) and KEGG (Figure 1E).

3.5. Comparison with the GOseq Method

The four datasets were analyzed using edgeR-GOseq pipeline. A total number of
1000 permutations has been used, and we have restricted the analysis to Biological process
category in GO. The KEGG pathways analysis was done using the default values for the
arguments in the package GOseq. Note that the package GOseq uses its own GO and KEGG
gene set collections.

A total of 1318, 2834, 2605, and 1613 GO terms are differentially regulated in PR-
JNA411984 (2 pairs), PRINA413956 (7 pairs), PRINA218851 (18 pairs) and TCGA (50 pairs)
datasets, respectively, and 415 were reported for all datasets (Figure 2A).

B
TCGA PRINA218851 TCGA
PRINA413956 PRINA411984 PRINA413956
3
D
CDT C DMMT
GOseq
75
BP CET
17 42

4385

Figure 2. GO terms and KEGG pathways reported in common between datasets using GOseq and spatial tests. (A) GO terms
reported by GOseq; (B) KEGG pathways reported by GOseq; (C) GO terms reported in common by GOseq and between-pair
CET; (D) KEGG pathways reported in common by GOseq and between-pair CET, Complete DT, and Complete DMMT.

If we use the KEGG pathways: 27, 79, 77, and 62 gene sets are reported in PR-
JNA411984 (2 pairs), PRINA413956 (7 pairs), PRINA218851 (18 pairs), and TCGA (50 pairs)
datasets, respectively. Of these, 11 gene sets are shared for all datasets (Figure 2B).

When comparing our results with those obtained by GOseq, we observe that, using
the CET method with BP distribution, a large number of gene sets in common for GO
terms (Figure 2C). In KEGG ontology, we also include the results obtained DMMT and
DT with complete distribution in the comparison because these tests were appropriate



Mathematics 2021, 9, 521

11 0of 13

for small sample datasets. The results indicate that there is high agreement between the
implemented methodologies (Figure 2D).

4. Discussion

One realization proved to be enough to generate the second component of the bivariate
point process because, in the case of GO groups, only 8% of the results differ when
using one or multiple realizations (Figure 1A). For KEGG, by increasing the number of
realizations, the number of gene sets declared as significant decreased; even so, most of the
gene sets reported in MR were reported by OR. Furthermore, the biological results were
consistent using only one realization. At the computational level, the use of one realization
reduces the computing time. Regarding the randomization distribution, between-pair
and complete were tested, and the results indicate that, when applying between-pair or
complete distribution, the gene sets reported as significant changes depending on the
spatial test used and also on the criteria to group genes (Tables 1 and 2).

If Cuzick and Edwards tests (CET) are used, then a greater agreement has been
observed because all GO terms and most of the KEGG gene sets reported by complete
distribution were also reported by between-pair distribution. Furthermore, the number of
gene sets reported as significant decreases when using complete distribution (Figure 1C).
It could be expected because we forget the original design, and the complete distribution
produces a greater variability of the realizations. The same signal has been evaluated with
a distribution with a higher variability. The biological results were consistent, reporting
gene sets highly associated with CRC (Tables 1 and 2). The same results were observed
when reducing the sample size to 18 and 7 pairs (Figure 1D,E), showing a high coincidence
between the results obtained in each datasets. However, no significant gene sets were
reported when using a 2-pair dataset. The power of our test is really small with such a
small sample size.

For small samples (as just with two pairs), the DMMT and DT seem appropriate,
since the biological results were consistent, particularly if genes are grouped using KEGG
ontology (Figure 1C). For instance, significant KEGG pathways as Rap1 signaling pathway
(hsa04015), Hepatocellular carcinoma (hsa05225), Thyroid cancer (hsa05216), Bladder can-
cer (hsa05219), or Acute myeloid leukemia (hsa05221) were reported by DMMT and DT
using complete distribution on the PRINA411984 dataset (see Supplementary Material).
Thus, the results obtained through the proposed methodology were consistent at biological
level, even though there are only two pairs of samples.

When comparing the results obtained in all datasets using BP-CET for GO terms
and including C-DT and C-DMMT for KEGG pathways, with the results obtained by
GOseq (Figure 2), we observed that there was a great coincidence between both methods.
This indicates that, in biological terms, they are comparable. However, our approach is
completely different and has many possible generalizations. This kind of coincidence is
not clear for us. It could be a future line of research.

The spatial statistic is a well developed field of research. In this paper, we have tried to
show how simple procedures taken from spatial statistics can be used with good results to
test null hypotheses of the omics data field. A lot of different possibilities can be explored.
No independence between genes needs to be assumed. We think that, except for such a
small sample size like two pairs, the results are good for seven pairs. Obviously, they are
better for fifty pairs. It seems that the method performs well with small sample sizes.

More complex experimental designs with more than one covariable (categorical or
continuous) could be considered and the methodology adapted without great difficulty.

In our opinion, the complexity of the original data makes a valid simulation study
difficult. However, a simulation study is included in the Supplementary Material. It shows
the good performance of our methods. Additional comments can be found in the file.
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5. Conclusions

Our method performs a gene set analysis without a previous marginal (per gene)
differential expression analysis by taking into account the dependencies between genes.

The three tests (CET, DMMT and DT) were applied for the first time into the omics
data context in order to evaluate the gene set differential expression analysis. The proposed
methodology is able to efficiently report the biological processes associated with the
pathology studied.

It is important to note that each statistical test shows complementary biological results,
i.e., it is convenient to use all of them and to evaluate all results. An important contribution
of this paper is to show how these spatial tests can deal with the well known problem of
the low sample sizes assuming the interdependence between genes in the context of gene
set analysis.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/2227-739
0/9/5/521/51, the Data, gene set collections, proportion test, global analysis, edgeR-GOseq pipeline
and Groups and test names.
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