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Abstract: Data collection from large areas of native forests poses a challenge. The present study aims
at assessing the use of UAV for forest inventory on native forests in Southern Chile, and seeks to
retrieve both stand and tree level attributes from forest canopy data. Data were collected from 14 plots
(45 × 45 m) established at four locations representing unmanaged Chilean temperate forests: seven
plots on secondary forests and seven plots on old-growth forests, including a total of 17 different
native species. The imagery was captured using a fixed-wing airframe equipped with a regular RGB
camera. We used the structure from motion and digital aerial photogrammetry techniques for data
processing and combined machine learning methods based on boosted regression trees and mixed
models. In total, 2136 trees were measured on the ground, from which 858 trees were visualized
from the UAV imagery of the canopy, ranging from 26% to 88% of the measured trees in the field
(mean = 45.7%, SD = 17.3), which represented between 70.6% and 96% of the total basal area of the
plots (mean = 80.28%, SD = 7.7). Individual-tree diameter models based on remote sensing data were
constructed with R2 = 0.85 and R2 = 0.66 based on BRT and mixed models, respectively. We found a
strong relationship between canopy and ground data; however, we suggest that the best alternative
was combining the use of both field-based and remotely sensed methods to achieve high accuracy
estimations, particularly in complex structure forests (e.g., old-growth forests). Field inventories
and UAV surveys provide accurate information at local scales and allow validation of large-scale
applications of satellite imagery. Finally, in the future, increasing the accuracy of aerial surveys and
monitoring is necessary to advance the development of local and regional allometric crown and DBH
equations at the species level.

Keywords: forest inventory; aerial survey; drone; structure from motion

1. Introduction

Native forests cover a large percentage of land in South America [1], with vast areas
of old-growth and secondary forests [2] which are playing an essential ecological role
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supporting biodiversity, as a carbon sink and as an important economic resource for
local communities [3,4]. The essential roles of these forests underline the need for basic
information concerning standing biomass, carbon stock, and biodiversity estimates, among
others, and their change over space and time [5]. Traditionally, forest inventory has been
the main tool for collecting quantitative data about the state of the forests, relying on the
direct measurement of diameter at breast height (DBH) and tree height, which are the basis
for, for example, biomass estimates or carbon storage via allometric equations using the
relationships between tree attributes and endogenous and exogenous variability [6,7].

In native forests, however, this information is often scarce; the lack of a direct industrial
use, the land tenancy, or the absence of a national forest inventory in the countries of the
area [8,9] translates into limitations in data available for an effective quantification of forest
resources based on ground samples. In addition, large and often remote areas covered by
native forests pose an additional important challenge [10].

The use of aerial inventory as an alternative to ground measurements represents an
opportunity, given that it is enhanced by recent computational advances [11]. Remote
measurement of tree crowns reduces the uncertainty associated with larger area estimates,
providing continuous data of forests presenting high structural and compositional variabil-
ity [12,13]. The use of airborne laser scanning (ALS) has meant a significant technological
improvement for assessing forest attributes [14]; however, its use in South America has
been only moderate, mainly restricted to forestlands with high economic value.

On the other hand, digital aerial photogrammetry (DAP) is a valid alternative for
local level estimates when spatially continuous data are needed [11,15–17]. The use of
DAP combined with unmanned aerial vehicles (UAV) and structure from motion (SfM)
algorithms can generate high-quality aerial datasets of forest [18] for specific areas, that
suppose a low investment alternative when ALS data are not available. A regular RGB
camera mounted on a UAV offers different opportunities for data retrieval, i.e., high-
resolution and georeferenced RGB orthomosaics, photogrammetric point clouds, and
high-resolution surface elevation models [19]. Red, green, and blue (RGB) mosaics and
digital surface models can have a spatial resolution close to 1 cm, depending on flight
altitude and sensor type [20], using structure from motion (SfM) algorithms that estimate
three-dimensional (3D) camera poses and scene points from uncalibrated images, creating
the basis for 3D surface models from the point cloud data [19,21].

In these conditions, the use of SfM algorithms has become a promising cost-effective
tool to use for operational and forestry research [14] and, more specifically, for forest moni-
toring [10,22], gap detection [9,23,24], individual-tree detection [25], forest recovery [26,27],
canopy structure [28,29] and other related applications for forest inventories [30–34], which
makes it a valid approach that can retrieve objective focused parameters and adapt to the
extent of a study area, the season, or the spatial resolution needed, among others [35–37].

Despite the growing number of applications for these approaches, there are few studies
in South America assessing their use in complex native forests. The present study aims at
evaluating the use of a UAV for forest assessment on temperate forests in Southern Chile,
aiming to retrieve a stand’s density, basal area (BA), and biodiversity indicators, as well as
structure and forest canopy variables.

2. Materials and Methods
2.1. Study Sites

The analyses were performed at four locations, selected to represent unmanaged
Chilean temperate forests (Figure 1). In total, 14 plots (45 × 45 m) were established,
seven plots on secondary forests and seven plots on old-growth forests. Three of the
plots were located at the protected national reserve Malalcahuello (38◦24′S, 71◦36′W) in
Araucaria araucana and Nothofagus dombeyi stands (Table 1, see plots a, b, and c), two plots
were located at the Parque Ecológico y Cultural Rucamanque (38◦39′S, 72◦35′W), in mixed
forests of Aextoxicon punctatum, N. obliqua, and Eucryphia cordifolia (plot e), one plot was
located in a secondary forest of N. obliqua (plot w), two plots on private forest lands located
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at Flor del Lago (39◦12′S, 72◦11′W) in old-growth forests dominated by A. punctatum,
Persea lingue, and E. cordifolia (Table 1, plots f and g), three plots at a secondary forest
dominated by N. obliqua, P. lingue, and A. punctatum (plots x, y, and z), and finally, two
plots were established at Pucón (39◦17′S, 71◦53′W), in an old-growth forest dominated
by N. dombeyi, which included P. lingue and A. punctatum (plot d), and in a young stand
dominated by N. obliqua which included P. lingue and Gevuina avellana (plots t, u, and v). All
the plots were established on flat areas (slope below 5%). At each plot, all trees with a DBH
over 5 cm were identified and measured, and their location (using local coordinates), DBH,
height, and crown diameter were recorded, the latter by measuring the larger diameter and
its perpendicular one. The location of each tree was performed relative to the plot center,
by bearing-and-distance, using a distance tape and a compass.
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Figure 1. Location of the sites and illustration of the steps performed in the acquisition and processing
of the data. (A) Image acquisition; (B) structure from motion (SfM); (C) illustration of SfM estimation
of the digital surface model (DSM); (D) position of every individual-tree DBH over 5 cm, over the
high-resolution mosaic of the stand; (E) DSM of the stand; (F) association of each tree crown with its
field measurements; (G) the study site.

Table 1. Stand variables, dominant species, and structure of the plots (ground data). QMD, observed quadratic mean
diameter. The mean and standard deviation of crow area and volume were calculated with visible canopy imagery from the
UAV. Density, basal area, and QMD with all the trees. Trees and BA detected are the reason between the visible canopy and
stand values. Aa, Araucaria araucana; Nd, Nothofagus dombeyi; Pl, Persea lingue; Ap, Aextoxicon punctatum; Lp, Laureliopsis
philippiana; No, N. obliqua; Ec, Eucryphia cordifolia.

Plot Density
(Trees/ha)

BA
(m2)

QMD
(cm)

Trees
Detected

(%)

BA
Detected

(%)

Cover
Area (%)

Forest Canopy Mean Crown
Area (m2)

Mean Crown
Volume (m3)

Dominant
SpeciesHeight (m)

Old-growth forest
a 572.8 67.9 38.9 31.9 74.3 77 12.7 (cv = 28) 41.9 (cv = 109) 35.8 (cv = 194) Aa
b 123.5 53.4 74.2 88.0 96.0 31 14 (cv = 25) 28.6 (cv = 42) 17.4 (cv = 87) Aa
c 439.5 68.9 44.7 49.4 87.2 79 21.3 (cv = 12) 36.4 (cv = 112) 21.3 (cv = 149) Aa-Nd
d 849.4 67.6 31.8 26.2 71.3 98 20.2 (cv = 21) 44.3 (cv = 131) 36.8 (cv = 155) Nd-Pl
e 355.6 87.0 55.8 63.9 86.8 79 21.2(cv = 12) 34.6 (cv = 114) 22.3 (cv = 144) Ap-Lp
f 864.2 78.3 34.0 28.0 75.8 100 21.7 (cv = 20) 41.3 (cv = 108) 31.3 (cv = 136) Nd-Ap
g 928.4 97.3 36.5 34.6 70.6 100 20.7 (cv = 17) 32.2 (cv = 108) 19.6 (cv = 153) Ap-Nd

Mean 590.5 74.3 45.1 46.0 80.3 81 18.8 (cv = 19) 37 (cv = 104) 26. 4 (cv = 145)
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Table 1. Cont.

Plot Density
(Trees/ha)

BA
(m2)

QMD
(cm)

Trees
Detected

(%)

BA
Detected

(%)

Cover
Area (%)

Forest Canopy Mean Crown
Area (m2)

Mean Crown
Volume (m3)

Dominant
SpeciesHeight (m)

Secondary forest
t 1037.0 48.9 24.5 35.7 75.1 84 21.1 (cv = 23) 22.8 (cv = 72) 14.5 (cv = 119) No-Pl
u 1101.2 73.5 29.1 43.0 83.0 100 18 (cv = 31) 21.9 (cv = 157) 13.5 (cv = 189) Pl-Nd
v 1165.4 60.6 25.7 30.9 75.8 94 21.7 (cv = 15) 25.9 (cv = 69) 19.6 (cv = 108) Pl-No
w 661.7 71.3 37.0 61.2 92.2 82 19.7 (cv = 16) 20.4 (cv = 92) 12.5 (cv = 145) No-Ec
x 1170.4 69.5 27.5 40.9 80.1 88 16.2 (cv = 19) 18.4 (cv = 100) 7.8 (cv = 177) Ap-Ec
y 444.4 61.9 42.1 57.8 78.9 88 22.5 (cv = 12) 34.4 (cv = 86) 20.9 (cv = 113) Nd-No
z 834.6 70.7 32.8 44.4 76.7 84 22.8 (cv = 20) 22.6 (cv = 81) 13.2 (cv = 106) No-Nd

Mean 916.4 65.2 31.3 44.9 80.3 89 20.2 (cv = 19) 23.7 (cv = 94) 14.6 (cv = 137)

2.2. UAV Data Acquisition and Image Processing

The image was captured using a Bormatec Maja fixed-wing airframe equipped with
an ArduPilot flight controller APM2 from 3DR company and GPS data logger, pressure
and temperature sensor, airspeed sensor, triple-axis gyro, and accelerometer [34]. The GPS
used by APM2 is a navigation system with an expected position error of a few meters that
was also used for geotagging the image. The precise position of the mosaic was made
by using 4 ground control points (using 1 m2 flags on plots), which served to match the
relative position of each tree. We used a regular RGB photographic camera Canon S100,
with a built-in GPS. The camera was within the payload capacity of the MAJA system, and
the time intervals for photograph retrieval could be easily changed. The sensor size was
1/1.7” (~7.53 × 5.64 mm), the pixel count was 12.1 MP, the pixel pitch was 1.87 µm, and
the focal length was 50 mm. The plan was programmed in the software Mission Planner
and took place in the summer of 2015. We followed an orthophoto image flight plan, flying
to 150 m above the forest canopy in order to have a good pixel resolution. The aim was to
have at least an 80% overlap sideward at terrain level, which resulted in images of very
high spatial resolution (range of 5.6–6.6 cm) for each plot. The point cloud, digital surface
model, and image mosaicking was performed using the software Pix4Dmapper (v 1.4.28).
Each tree crown was identified on the ground using the georeferenced mosaic for each plot
and the position of each tree. Finally, tree crown segmentation was manually performed
and the ground data was linked (Figure 1).

2.3. Statistical Analysis

The data analysis was performed at the stand and tree levels. For the stand level, the
response variables were tree density (RD, trees ha−1), quadratic mean diameter (QMD, cm),
and basal area (BA, m2). The canopy structure variables used as predictors were the total
forest canopy area, mean tree crown area, and standard deviation of the trees’ crown area.
The effect of the environmental variables on the response variables was assessed using a
linear regression model.

For the tree level, the response was the individual-tree DBH, and the predictors were
the crown planar area (m2), crown curve area (m2) and crown volume (m3) estimated by the
point cloud and digital surface model for each identified tree from the images (Figure 1).
At this point, two scenarios were considered, i.e., one assuming information available
concerning the tree species and another using crown-derived information irrespective of
the species. The exploratory approach included the use of boosted regression trees (BRT),
combining machine learning, and statistical techniques, and consisted of adding regression
trees fitted in a forward stagewise process in order to improve the model accuracy [38,39].
This approach starts with the creation of a single tree minimizing the loss function, using
the residuals to add a new tree, and progressively, the first estimates are updated to include
the information of the new tree, and the resulting residuals are recursively used to fit a
new additional tree. The final model reflects the contribution of all trees and provides an
estimate of the contribution of each variable to the model. The model construction requires
the following four parameters: the learning rate (i.e., the contribution of each new tree
to the growth model, in this case, tested around the value 0.01); the bag fraction (i.e., the
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information on which fraction of the whole data should be drawn randomly to fit the
new tree to avoid over-fitting, see [35], in this case fixed to be 0.80); the tree complexity
(i.e., the number of interactions among variables, in this case tested iteratively from 1 to 4,
aiming for a parsimonious model); and the number of trees required for optimal prediction
(which was optimized based on the three previous parameters, see [36]). The statistics
on predictive performance were estimated from the subsets of data excluded from model
fitting, using cross-validation (RMSE, R2). The statistical analyses were developed in
the R version 3.5.3 [40] and the BRT models were based on the “dismo” extension of the
“gbm” package [41].

On the basis of the above analyses, the variables showing the largest contribution
were further studied in a mixed model approach, using the species as the random grouping
factor. As in the BRT case, the species is a variable that cannot be easily identified from the
remote sensing data but is otherwise used to confirm the between-species variability in the
predictions. In this case, the model parameters were fitted based on restricted maximum
likelihood by using the “nlme” package [42].

3. Results
3.1. Assessment of Forest Attributes Observed from a UAV in Old-Growth and Secondary Forests

There were 17 tree species represented in the sample plots; A. punctatum, P. lingue,
N. obliqua, and E. cordifolia were the most common species. The measurements describe
the secondary forest sampled (Table 1, Figure 2) as dominated by N. obliqua presenting
a median quadratic diameter between 24.5 and 42.1 cm, a BA around 65.2 m2 (SD = 8.7),
and a density of around 916 trees ha 1 (SD = 280). The old-growth forests were mostly
dominated by A. punctatum and A. Araucana, with a median quadratic diameter between
24.5 and 74.2 cm, a mean BA around 74.3 m2 (SD = 14.5), and a lower density of around
590 trees ha−1 (SD = 303).

In total, 2136 trees were measured on the ground, from which 858 trees were vi-
sualized from the UAV imagery of the canopy, with a range from 26% (Plot d) to 88%
(plot b) of the measured trees (mean = 45.7%, SD = 17.3) (Figure 3). There were large
differences concerning tree density and the spatial distribution of the tree diameters, which
precluded the detection of certain trees (Figure 4). All in all, trees included in the UAV
image mosaic represented between 70.6% (plot g) and 96% (plot b) of the total BA of the
plots (mean = 80.28%, SD = 7.7); on highly diverse plots and secondary forests, the ratios
were lower, ranging from 18.2% (plot v) to 88.9% (mean = 59.1%, SD = 23.5). Concern-
ing tree species richness, when there were fewer than five tree species, all of them were
represented in the UAV processed data.
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represents tree diameters and green circles represent trees effectively detected using unmanned
aerial vehicle.

3.2. Diameter Classes Represented in the Remote Sensing Data

Some plots with A. araucana were nearly monospecific (90% of BA) and were excluded
from the calculations concerning the analysis of forest variables by diameter class. For the
rest, the diameter classes were defined every 10 cm. The BA effectively retrieved from the
UAV data was 83.6% and 83.3% on old-growth and young forests, respectively, in particular,
it exceeded 70% on diameter classes over 35 and 25 cm, respectively. About 37.9% and
48.5% of individual trees were detected on old-growth and young forests, respectively,
rising to over 50% for diameters over 35 and 25 cm, respectively (Figure 5).

3.3. Stand Structure Variables

Considering the individual-tree crown data, there was a relationship between the
measured QMD and the UAV-retrieved BA and density. On the one hand, for QMD, it
was a positive correlation; therefore, for a higher QMD there were more trees detected
(R2 = 0.71) and retrieved BA (R2 = 0.47). Density, on the other hand, presented a negative
correlation; therefore, the sparser the forest, the higher the proportion of trees (R2 = 0.57)
and BA (R2 = 0.37) detected by the UAV images (Figure 6).
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Figure 5. Basal area (BA, m2) and density (trees ha−1) effectively detected from unmanned aerial
vehicle (UAV) imagery for each diameter class (DBH, cm). Ground-based values represented by
Table 3.

Significant relationships among the stand variables and the canopy structure estimates
from the UAV imagery were also found. The relative forest density was related to the total
canopy surface and inversely related to the standard deviation of the tree crown’s surface
(R2 = 0.73, p-value < 0.05). A similar pattern was observed regarding the QMD (R2 = 0.73,
p-value < 0.001). There were no observed linear relationships between the BA and the
canopy structures retrieved (Table 2).
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Figure 6. Relationships between quadratic mean diameter (QMD, cm) and density (trees ha−1) versus percentage of detected
trees and unmanned aerial vehicle imagery estimated basal area (BA, m2). N = 14 plots.

Table 2. Linear model of (a) tree density, (b) quadratic mean diameter, and (c) basal area, related with
forest canopy area and standard deviation (SD) of trees’ crown area.

Variable Estimate Std. Error p-Value

(a) Relative density
Intercept (β0) −339.06 246.6 0.19

Forest canopy area (β1) 0.83 0.15 <0.001
SD trees crown area (β2) −11.33 4.03 0.02

(b) Quadratic mean diameter
Intercept (β0) 88.32 9.33 <0.001

Forest canopy area (β1) −0.03 0.01 <0.00
SD trees crown area (β2) 0.32 0.15 0.06

(c) Basal area
Intercept (β0) 41.51 15.11 0.02

Forest canopy area (β1) 0.01 0.01 0.24
SD trees crown area (β2) 0.26 0.25 0.31

3.4. Individual-Tree DBH

For the individual-tree DBH, the BRT approach estimated the between-species vari-
ability to be ca. 17% of the total, and the main variable explaining tree diameter was the
tree crown area, accounting for 68.9%. Other variables tested were below 5% and were not
considered at this stage. The BRT model had a high predictive power (R2 = 0.78, based
on CV, R2 = 0.69). These results were further studied on a mixed model, using the tree
crown area as a predictor in the fixed part of the model, and the species as the random
factor (Figure 7). The predictive power of the model was R2 = 0.55 for the fixed part
of the model and R2 = 0.66 for the whole model, including between-species variability
(Table 3). The between-species variability was expressed in the intercept using a random
parameter (Table 4); these values were related to their corresponding marginal effects on
the BRT’s estimates.
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Figure 7. Predicted DBH values for the (a) mixed model and (b) boosted regression trees (BRT). (c) Using crown area as the
main variable (main effect in bold line) and incorporating between-species predictions (N = 12, discontinuous lines) as a
random factor as compared with BRT marginal effects for (d) crown area, (e) crown volume, and (f) each individual species.
In the mixed model, the between-species standard deviation was 6.81 for an estimated residual deviation of 12.06. The main
contributions for the BRT model were crown area (68.9%), species (16.9%), and crown volume (6.97%), the others being
below 5%.
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Table 3. Parameters of the mixed model for predicting individual-tree DBH based on remote sensing
metrics. The coefficient of determination was R2 = 0.55 for the fixed part of the model and R2 = 0.66
when including between-species variability (standard deviation represented by σ). The bias of the
fixed part was −2.28 cm (RMSE = 13.9).

Parameter Variable Value SE p-Value

β0 −7.99 3.08 0.010
β1 log (crown area) 17.89 0.67 <0.001
β2 crown area−1 33.56 4.09 <0.002
σsp species 6.81
σe residual 12.06

Table 4. Marginal effects of the species on the predictions in the intercepts of the mixed model (1)
and on the marginal overall effects of the boosted regression trees (2).

Species β0
(1) BRT (2)

Nothofagus obliqua −9.71 37.87
Persea lingue −4.17 42.90

Eucryphia cordifolia −0.51 44.44
Gevuina avellana −3.57 45.73

N. dombeyi −0.01 46.18
Peumus boldus −4.95 46.52
Lomatia dentata −5.90 46.73

Aextoxicon punctatum 4.51 52.05
Laureliopsis philippiana 5.20 53.19

Araucaria araucana 9.81 53.62
Laurelia sempervirens 8.49 54.02

Lomatia hirsuta 0.81 54.85

4. Discussion

In this study, we use a UAV-DAP approach to measure basic forest attributes in
secondary and old-growth native forests, including individual-tree DBH based on these
attributes. Despite the complexity of native Chilean temperate forests, the results demon-
strate the potential of this approach, and confirm that the approach is feasible for retrieving
reliable estimates to be used in forest assessment, management, and planning. At the same
time, the study identified and addressed some important limitations. In general terms,
old-growth and secondary forests differ in species composition, stand age, trees basal area,
density, DBH distribution and range, presence of snags, and the heterogeneity of canopy
structure [43,44]. The findings reflect that, in young dense forests, the results underestimate
tree density, although they reach a reasonable accuracy concerning stand basal area. This is
a direct consequence of using a UAV, which obtains better estimates of the canopy visible
from above, when applied to these particular stand dynamics. With increasing QMD, the
first cohorts of pioneer trees are suppressed by larger trees, concentrating on most of the
BA and the canopy [43,45].

At the stand level, the results show that the total forest canopy area is related to the
relative density and QMD but not to the BA (p-value < 0.001). We also found a relationship
between the SD of the tree crown area and relative density (p-value < 0.05), which, in this
case, could help differentiate a secondary forest from an old-growth forest. On the one
hand, higher forest canopy area and less SD in tree crowns are more likely attributed to a
secondary forest canopy structure due to higher competition for light in younger forests.
On the other hand, old-growth or mature forests are more related to a lower canopy cover
and high SD of tree crowns due to gap dynamics and uneven-aged characteristics (high
variability of crown sizes) [46,47]. A positive relationship between the total forest canopy
area and basal area was to be expected, although it was not significant, possibly due to a
high accumulation of biomass in large trees, species-based canopy closure strategies, stand
development stage, structure, composition, and environmental conditions [48]. This shows
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that similar forest canopy areas can result in largely different stand BAs, stressing the need
to better understand alternative stand characteristics related to BA in order to develop
robust models. In addition, the poor response of crown volume to diameter in the models
can also be explained by the fact that this variable is notoriously difficult to establish from
DAP in dense forests, as the underside of the canopy is usually not well represented in a
photogrammetric point cloud (as opposed to ALS). As expected, the results suggest that
the use of a UAV-DAP approach presents more limitations on forests with larger diversity
of tree species and a complex structure, which are, at the same time, areas subject to special
conservation objectives. Moreover, for habitat or ecosystem mapping, direct mapping of
individual plants and species in diverse forests is both necessary and complex [49].

The UAV-DAP approach can provide large amounts of data concerning tree canopies,
through deriving 3D photogrammetric point clouds from very high overlapping UAV
images (>85% overlap); however, some information concerning tree species diversity, forest
structure, and understory vegetation is not easily retrieved, particularly in dense multistory
tropical forests and diverse dense old-growth forests. The results quantify to a certain
extent this loss, which is larger in a forest with a greater complexity in terms of tree diversity
and structure [50,51], and show that canopy-based estimates achieve an average of 45%
of the trees representing over 80% of the total basal area. Furthermore, we observed high
variability in the species dominating the canopy versus the total species richness, with a
tendency to underestimate the species, particularly on highly diverse forests. Old-growth
forests under this broad definition often have a complex structure and a heterogeneous
spatial arrangement that varies depending on the forest type [52,53]. As forests become
largely logged and maintained in young successional stages in many areas, there is a
renewed interest in the unique structural and functional characteristics of old-growth
forests because of their diminishing land cover, high relevance for the conservation of
regional biodiversity, and their value for global carbon storage [54].

These unique services justify efforts for an early warning detection of forest degrada-
tion [55,56]. The results confirm that changes in canopy attributes can be easily retrieved
and could be used as early warnings of forest degradation detection, as several approaches
defining forest degradation are linked to the loss of the main forest attributes, i.e., composi-
tion, structure, and function [57]. Forest degradation is also associated with an impact on
functional forest processes, including variables such as shoot growth in woody plants, seed
availability in soil seed banks, abundance of seedlings, and the age structure of common
species (as compared with that expected based on the successional state of the forest and
the regeneration strategy of the various species) [58]. In this context, the use of a UAV rep-
resents an alternative for detecting forest degradation processes, especially in old-growth
forests. Whereas some studies suggest that forest degradation has several dimensions that
are difficult to represent in a single measure, other studies have proposed grouping indica-
tors according to the forest attributes that have been affected by degradation [57,59]. These
indicators include loss of canopy cover and reduction in structural complexity, potential
gaps in some diameter classes over DBH 60 cm, and a low frequency of individuals in the
intermediate diameter classes [57,59].

Finally, the combination of the modeling approaches presented offers both the advan-
tages of machine learning in exploratory analysis, variable selection, and model structure,
as well as the replicability and applicability of the more conventional regression meth-
ods [60,61]; the results of both approaches were consistent and confirm the use of a UAV as
a promising alternative for inventory in native forests, providing an accurate estimation of
aboveground biomass concentrated in larger trees (as those are the main economic interest
and often largely determine local forest management). Despite the loss of accuracy in
forests with large diversity and structure [56,62], the predictions of DBH at the tree level
are enough to be the basis for quantifications of total biomass and tree fractions, which has
important applications in carbon assessments and forest management.
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5. Conclusions

The use of a UAV to assess and monitor forest management in Chilean temperate
forests in terms of both tree species diversity and forest structure is needed at the local
and regional levels to understand the impacts of interventions and to develop effective
management strategies for their conservation. In this study, we analyzed the use of a UAV
and field-based data methods with the potential to achieve these objectives. For most
studies, the availability of resources (time, money, and manpower) is the major constraint.
We suggest combining the use of both field-based and remotely sensed methods to achieve
that goal as these methods can be complementary, in particular in old-growth forests.
Remote-sensing data should be used to predict and map the tree species diversity and
stand structure at regional scales, while field inventories provide accurate information
at local scales and allow validation of remotely sensed data. In the future, fields such
as forest dynamics, forest species dominance in stands, mapping, and assessing forest
disturbances will grow considerably with the benefits of unmanned aircraft technology.
Our results suggest that drone-derived canopy variables contributed substantially to
explaining patterns of structure and biodiversity in these temperate forest plots. This
study provides immediate guidance for the application of these tools in forest inventory in
Chilean temperate forests and describes a methodology that can support the management
of their forests according to their structure. Future studies aimed at higher accuracy
estimation must advance the following three objectives: (i) better tree level segmentation,
(ii) precise metric functions between crown and trunk attributes at a specific forest type
level, and (iii) tree-level identification of forest species. In general, the results show that,
when the focus is biomass with economic value (larger trees), accurate tree-level DBH can
be obtained, especially when some level of species differentiation is applied.
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