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Abstract

In the present work, we introduce the concept of almost automorphic functions on time scales and present
the first results about their basic properties. Then, we study the nonautonomous dynamic equations on
time scales given by x�(t) = A(t)x(t) + f (t) and x�(t) = A(t)x(t) + g(t, x(t)), t ∈ T where T is a
special case of time scales that we define in this article. We prove a result ensuring the existence of an
almost automorphic solution for both equations, assuming that the associated homogeneous equation of this
system admits an exponential dichotomy. Also, assuming that the function g satisfies the global Lipschitz
type condition, we prove the existence and uniqueness of an almost automorphic solution of the nonlinear
dynamic equation on time scales. Further, we present some applications of our results for some new almost
automorphic time scales. Finally, we present some interesting models in which our main results can be
applied.
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1. Introduction

The theory of time scales is a recent theory which started to be developed by Stefan Hilger,
on his doctoral thesis (see [32]). This theory represents a powerful tool for applications to
economics, populations models, quantum physics among others. See, for instance, [4,19,33].
Because of this fact, it has been attracting the attention of many mathematicians (see [1,6,10,
22,24,23,26,27,43–46], for instance and the references therein) and the interest in the subject
remains growing.

Since time scale is any closed nonempty subset of R, the theory of dynamic equations on time
scales allows to unify several developments in evolution equations, depending on the chosen
time scale. For instance, if T = Z, we have a result for difference equations. On the other hand,
taking T =R, we obtain a result for differential equations. We point out that this theory can also
describe continuous-discrete hybrid processes, which have several important applications. For
instance, the continuous-discrete hybrid processes can be used to investigate option-pricing and
stock dynamics in finance, the frequency of markets and duration of market trading in economics,
large-scale models of DNA dynamics, gene mutation fixation, electric circuits, populations mod-
els, among others. See, for instance, [13,19,34,48,33] and the references therein.

Moreover, this theory can be used to study quantum physics. Choosing the time scale equal
to qZ ∪ {0}, q > 1, we obtain a result for quantum calculus, which is a fundamental tool to study
quantum physics. See [11] and [12] for more details.

Recently, the qualitative properties of the solutions of dynamic equations on time scales have
been extensively investigated, specially concerning their periodicity. Periodic dynamic equations
on time scales have been treated by several mathematicians. See, for instance, [1,2,6,10,39] and
the references therein. On the other hand, almost periodicity is a recent concept in the literature
of time scales. It was formally introduced by Y. Li and C. Wang (2011) in [37] and based on it,
some results concerning almost periodicity for dynamic equations on time scales were proved
(see [36]). However, to the best of our knowledge, the concept of almost automorphic functions
on time scales has not been introduced in the literature until now.

The theory of continuous almost automorphic functions was introduced by S. Bochner in
relation to some aspects of differential geometry (see [9,7,8]) and after that, this theory has been
attracting the attention of several mathematicians and the interest in this topic still increases. See
[16,14,15,17,20,29,30,40], for instance, and the references therein.

Motivated by this fact, the main goal of this paper is to introduce the concept of almost au-
tomorphic functions on time scales and to start the investigation of existence and uniqueness
of almost automorphic solutions of dynamic equations. More precisely, we study the nonau-
tonomous dynamic equations on time scales given by

x�(t) = A(t)x(t) + f (t), t ∈ T, (1.1)

where A ∈R(T,Rn×n) and f ∈ Crd(T,Rn).
We prove the existence of an almost automorphic solution of (1.1), assuming the associated

homogeneous equation of (1.1) admits an exponential dichotomy and T is an invariant under
translations time scale, concept that we introduce here for the first time. In passing, we show that
in these time scales the graininess function has the remarkable property of being automatically
almost automorphic. Also, we suppose A ∈ R(T,Rn×n) is almost automorphic and nonsingular
matrix function, the sets
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{
A−1(t)

}
t∈T and

{(
I + μ(t)A(t)

)−1}
t∈T (1.2)

are bounded and f ∈ Crd(T,Rn) is almost automorphic function.
After that, we consider the semilinear dynamic equation on time scales given by

x�(t) = A(t)x(t) + f
(
t, x(t)

)
, t ∈ T, (1.3)

where A ∈ R(T,Rn×n), f ∈ Crd(T×R
n,Rn) and T is an invariant under translations time scale.

We also obtain the existence and uniqueness of an almost automorphic solution of (1.3), we
assume the associated homogeneous equation of (1.3) admits an exponential dichotomy and
A ∈ R(T,Rn×n) is almost automorphic and nonsingular matrix function, the sets in (1.2) are
bounded and f ∈ Crd(T × R

n,Rn) is almost automorphic function with respect to first variable
and satisfies the global Lipschitz condition with respect to the second variable.

Moreover, we present some applications of our results for new and interesting invariant un-
der translations time scales. Finally, we present interesting models in which our results can be
applied.

The present paper is organized as follows. The second section is devoted to present the prelim-
inary results concerning the theory of time scales. In the third section, we prove some properties
for almost automorphic functions on time scales and present some examples. The fourth section
is devoted to present some basic concepts and main results concerning product integration on
time scales. The fifth section brings a result which ensures the existence of almost automorphic
solutions for linear dynamic equations on time scales. In the sixth section, we prove an exis-
tence and uniqueness of almost automorphic solutions for semilinear dynamic equations on time
scales. Finally, the last section is devoted to present some interesting examples and applications
of our main results.

2. Preliminaries

In this section, we present some basic concepts and results concerning time scales which will
be essential to prove our main results. For more details, the reader may want to consult [11]
and [12].

Let T be a time scale, that is, closed and nonempty subset of R. For every t ∈ T, we define
the forward and backward jump operators σ,ρ : T → T, respectively, as follows:

σ(t) = inf{s ∈ T, s > t} and ρ(t) = sup{s ∈ T, s < t}.
In this definition, we consider inf∅ = supT and sup∅ = infT.

If σ(t) > t , we say that t is right-scattered. Otherwise, t is called right-dense. Analogously,
if ρ(t) < t , then t is called left-scattered whereas if ρ(t) = t , then t is left-dense.

We also define the graininess function μ : T → R
+ and the backward graininess function

ν : T →R
+, respectively, by

μ(t) = σ(t) − t and ν(t) = t − ρ(t).

Definition 2.1. A function f : T →R is called rd-continuous if it is regulated on T and continu-
ous at right-dense points of T. If the function f : T → R is continuous at each right-dense point
and each left-dense point, then the function f is said to be continuous on T. We denote the class
of all rd-continuous functions f : T → R by Crd = Crd(T) = Crd(T,R).
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Given a pair of numbers a, b ∈ T, the symbol [a, b]T will be used to denote a closed interval
in T, that is, [a, b]T = {t ∈ T; a � t � b}. On the other hand, [a, b] is the usual closed interval
on the real line, that is, [a, b] = {t ∈ R; a � t � b}.

We define the set Tk which is derived from T as follows: If T has a left-scattered maximum m,
then Tk = T− {m}. Otherwise, Tk = T.

Definition 2.2. For y : T → R and t ∈ T
k , we define the delta-derivative of y to be the number

(if it exists) with the following property: given ε > 0, there exists a neighborhood U of t such
that

∣∣y(
σ(t)

) − y(t) − y�(t)
[
σ(t) − s

]∣∣ < ε
∣∣σ(t) − s

∣∣,
for all s ∈ U .

Similarly, we can define the nabla-derivative of the function y : T → R. For details, see [11]
and [12].

Definition 2.3. A partition of [a, b]T is a finite sequence of points

{t0, t1, . . . , tm} ⊂ [a, b]T, a = t0 < t1 < · · · < tm = b.

Given such a partition, we put �ti = ti − ti−1. A tagged partition consists of a partition and
a sequence of tags {ξ1, . . . , ξm} such that ξi ∈ [ti−1, ti ) for every i ∈ {1, . . . ,m}. The set of all
tagged partitions of [a, b]T will be denoted by the symbol D(a,b).

If δ > 0, then Dδ(a, b) denotes the set of all tagged partitions of [a, b]T such that for every
i ∈ {1, . . . ,m}, either �ti � δ, or �ti > δ and σ(ti−1) = ti . Note that in the last case, the only
way to choose a tag in [ti−1, ti) is to take ξi = ti−1.

In the sequel, we present the definition of Riemann �-integrals. See [11] and [12], for in-
stance.

Definition 2.4. We say that f is Riemann �-integrable on [a, b]T, if there exists a number I with
the following property: for every ε > 0, there exists δ > 0 such that∣∣∣∣∑

i

f (ξi)(ti − ti−1) − I

∣∣∣∣ < ε,

for every P ∈ Dδ(a, b) independently of ξi ∈ [ti−1, ti )T for 1 � i � n. It is clear that such a
number I is unique and is the Riemann �-integral of f from a to b.

Similarly, we can define the Riemann ∇-integrable functions on [a, b]T. See [11] and [12],
for instance.

In what follows, we present a concept of regressive functions.

Definition 2.5. We say that a function p : T → R is regressive provided

1 + μ(t)p(t) 	= 0, for all t ∈ T
k
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holds. The set of all regressive and rd-continuous functions will be denoted by R = R(T) =
R(T,R).

Suppose that p,q ∈R, then we define p ⊕ q and �p as follows:

(p ⊕ q)(t) := p(t) + q(t) + μ(t)p(t)q(t), for all t ∈ T
k

and

(�p)(t) := −p(t)

1 + μ(t)p(t)
, for all t ∈ T

k.

It is clear that (R,⊕) is an Abelian group. (See, for instance, [11].) In the sequel, we define
the generalized exponential function ep(t, s).

Definition 2.6. If p ∈R, then we define the generalized exponential function by

ep(t, s) = exp

( t∫
s

ξμ(τ)

(
p(τ)

)
�τ

)
for s, t ∈ T,

where the cylinder transformation ξh :Ch → Zh is given by

ξh(z) = 1

h
log(1 + zh),

where log is the principal logarithm function. For h = 0, we define ξ0(z) = z for all z ∈ C.

In what follows, we present some definitions about matrix-valued functions on time scales.

Definition 2.7. Let A be an m × n matrix-valued function on T. We say that A is rd-continuous
on T if each entry of A is rd-continuous on T. We denote the class of all rd-continuous m × n

matrix-valued functions on T by Crd = Crd(T) = Crd(T,Rm×n).

We say that A is delta-differentiable at T if each entry of A is delta-differentiable on T. And
in this case, we have

Aσ (t) = A(t) + μ(t)A�(t).

Definition 2.8. An m × n matrix-valued function A on a time scale T is called regressive (with
respect to T) provided

I + μ(t)A(t) is invertible for all t ∈ T
k,

and the class of all such regressive rd-continuous functions is denoted by R = R(T) =
R(T,Rm×n).
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Assume that A and B are regressive n × n matrix-valued functions on T. Then, we define
A ⊕ B by

(A ⊕ B)(t) = A(t) + B(t) + μ(t)A(t)B(t), ∀t ∈ T
k,

and we define �A by

(�A)(t) = −[
I + μ(t)A(t)

]−1
A(t), ∀t ∈ T

k.

It is clear that (R(T,Rn×n),⊕) is a group. For more details, see [11].
We proceed giving the definition of matrix exponential function found in [11].

Definition 2.9 (Matrix exponential function). Let t0 ∈ T and assume that A ∈ R is an n × n

matrix-valued function. The unique matrix-valued solution of the IVP

Y�(t) = A(t)Y (t), Y (t0) = I,

where I denotes as usual the n × n-identity matrix, is called the matrix exponential function at
t0 and it is denoted by eA(·, t0).

In the sequel, we enunciate a result which describes the properties of matrix exponential
function. It can be found in [11, Theorem 5.21].

Theorem 2.10. If A,B ∈R are matrix-valued functions on T, then

(i) e0(t, s) ≡ I and eA(t, t) ≡ I ;
(ii) eA(σ (t), s) = (I + μ(t)A(t))eA(t, s);

(iii) eA
−1(t, s) = e∗�A∗(t, s);

(iv) eA(t, s) = eA
−1(s, t) = e∗�A∗(s, t);

(v) eA(t, s)eA(s, r) = eA(t, r);
(vi) eA(t, s)eB(t, s) = eA⊕B(t, s) if eA(t, s) and B(t) commute.

Using these notions, one can obtain the following result which is a variation of constants
formula which can be found in [11, Theorem 5.24].

Theorem 2.11 (Variation of constants formula). Let A ∈ R be an n × n matrix-valued function
on T and suppose that f : T → R

n is rd-continuous. Let t0 ∈ T and y0 ∈ R
n. Then the initial

value problem {
y�(t) = A(t)y(t) + f (t),

y(t0) = y0
(2.1)

has a unique solution y : T → R
n. Moreover, this solution is given by

y(t) = eA(t, t0)y0 +
t∫

t0

eA

(
t, σ (τ )

)
f (τ)�τ.
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Definition 2.12. Let A(t) be an n × n rd-continuous matrix-valued function on T. We say that
the linear system

x�(t) = A(t)x(t) (2.2)

has an exponential dichotomy on T if there exist positive constants K and γ , projection P , which
commutes with X(t), t ∈ T, and fundamental solution matrix X(t) of (2.2) satisfying

∣∣X(t)PX−1(s)
∣∣ � Ke�γ (t, s), s, t ∈ T, t � s,∣∣X(t)(I − P)X−1(s)
∣∣ � Ke�γ (s, t), s, t ∈ T, t � s.

The following result will be essential to our purposes. For a proof of this result, see [11,
Theorem 2.39].

Theorem 2.13. If p ∈R and a, b, c ∈ T, then

[
ep(c, ·)]� = −p

[
ep(c, ·)]σ

and

b∫
a

p(t)ep

(
c, σ (t)

)
�t = ep(c, a) − ep(c, b).

The following result shows that e�α(t, s), for α > 0, t > s, is a bounded function. The proof
is inspired by [38, Lemma 5.1].

Theorem 2.14. If α > 0, then e�α(t, s) � 1 for t, s ∈ T such that t > s.

Proof. First, we suppose μ(t) = 0, then

e�α(t, s) = exp

( t∫
s

ξ0(�α)�τ

)
,

for every s, t ∈ T. Then,

e�α(t, s) = exp

( t∫
s

�α�τ

)
= exp

( t∫
s

−α

1 + μ(τ)α
�τ

)
= exp

(−α(t − s)
)
,

using the fact that μ(τ) = 0. Since t > s, we obtain

e�α(t, s) = exp
(−α(t − s)

)
� 1.
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Now, let us consider μ(t) > 0, then

1 + μ(t) � α = 1 + μ(t)
−α

1 + μ(t)α
= 1 + μ(t)α − μ(t)α

1 + μ(t)α
= 1

1 + μ(t)α
< 1.

Thus, �α ∈R and it is easy to see that

log
(
1 + μ(t) � α

) ∈R

for all t ∈ T. Then, it follows

ξμ(t)(�α) = log(1 + μ(t) � α)

μ(t)
< 0,

which implies that

e�α(t, s) = exp

( t∫
s

ξμ(t)(�α)

)
< 1,

for every t, s ∈ T such that t > s. �
The next result describes the solution of (2.1). It can be found in [37, Lemma 2.13].

Theorem 2.15. If the linear system (2.2) admits exponential dichotomy, then the system (2.1) has
a bounded solution x(t) as follows:

x(t) =
t∫

−∞
X(t)PX−1(σ(s)

)
f (s)�s −

+∞∫
t

X(t)(I − P)X−1(σ(s)
)
f (s)�s,

where X(t) is the fundamental solution matrix of (2.2).

3. Almost automorphic functions on time scales

In this section, we introduce almost automorphic functions on time scales and present their
properties.

We start by introducing a definition of an invariant under translations time scale.

Definition 3.1. A time scale T is called invariant under translations if

Π := {τ ∈R: t ± τ ∈ T, ∀t ∈ T} 	= {0}. (3.1)

We say that the graininess function μ : T → R+ is an almost automorphic function if for every
sequence (α′

n) on Π , there exists a subsequence (αn) ⊂ (α′
n) such that

lim μ(t + αn) = μ̄(t), (3.2)

n→∞
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for every t ∈ T and

lim
n→∞ μ̄(t − αn) = μ(t), (3.3)

for every t ∈ T.
Combining Theorems 1.9, 1.10 and 1.11 from [21], we obtain the following characterization

of almost periodic functions f : R→R.

Theorem 3.2. The function f : R → R is almost periodic, if and only if, from any sequence of
the form {f (x + αn)}, where (αn) is a sequence of real numbers, one can extract a subsequence
converging uniformly on the real line.

A carefully examination of the proofs of Theorems 1.9, 1.10 and 1.11 from [21] reveals that
the result above remains true for a general time scale. More precisely, we obtain the next result.

Theorem 3.3. Let T be an invariant under translations time scale, then the function f : T → R

is almost periodic, if and only if, from any sequence of the form {f (x + αn)}, where (αn) is a
sequence on Π , one can extract a subsequence converging uniformly on T.

Therefore, using this fact and the definition of invariant under translations time scales, we get
the following result.

Theorem 3.4. If T is an invariant under translations time scale, then the graininess function
μ : T → R+ is an almost periodic function.

Proof. If the time scale T is invariant under translation, then Eq. (3.1) is satisfied. Then, let us
consider two cases: if all the points in T are right-dense (or/and left-dense) and otherwise.

Let us consider that all the points in T are right-dense. (Notice that the cases in which all points
in T are left-dense, or even are right-dense and left-dense at the same time, follow similarly.
Thus, we will prove only this case.) From this fact and since T is invariant under translation,
we obtain that T = R, because the condition (3.1) must be satisfied. Therefore, in this case, it
follows that μ(t) = 0 for every t ∈ T and the almost periodicity of the graininess function follows
immediately.

Now, let us suppose that T has at least one point which is not right-dense (or left-dense), then
in this case, it makes sense to consider min{|τ |: τ ∈ Π}, which is clearly finite, since τ ∈ R.
Thus, denote K := min{|τ |: τ ∈ Π}.

Then, by the definition of forward jump operator σ : T → T, we have

σ(t) � t + K,

which implies that μ(t) � K , for every t ∈ T.
Given a sequence (αn) ∈ Π , define μn(t) := μ(t + αn). Obviously, by the properties of an

invariant under translations time scale, we have μn : T → R+. Therefore, since the function μn

takes value on R+ and is bounded (0 � μn(t) � K), we obtain by Bolzano–Weierstrass Theorem
that μn possesses a subsequence which converges uniformly.

Thus, by Theorem 3.3 and using the fact that {μ(t + αn)} possesses a subsequence which
converges uniformly, we obtain that μ is an almost periodic function. �
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Using the fact that every almost periodic function is almost automorphic, we obtain as an
immediate consequence of the previous theorem the following result.

Corollary 3.5. If T is an invariant under translations time scales, then the graininess function
μ : T → R+ is almost automorphic.

Remark 3.6. We point out that in the paper [37], the authors use the same definition of an
invariant under translation time scale presented here to define an almost periodic time scale.

However, by Corollary 3.5, one can see that this concept is more general, since it can be
also applied to study almost automorphic functions. Therefore, we have rewritten the definition
presented in [37] and called the time scale which satisfies the property (3.1) as invariant under
translations.

If τ1, τ2 ∈ Π , then τ1 ± τ2 ∈ Π and T is an invariant under translations time scale, then
infT = −∞ and supT = +∞.

In what follows, we give some interesting examples of invariant under translations time
scales T.

Example 3.7. The time scales T = Z and T =R are clearly invariant under translations.

Example 3.8. Notice that T = hZ, for h ∈ Z and T = 1
n
Z, n ∈ N0 = N \ {0} are invariant under

translations time scales.

Example 3.9. Consider the time scale

Pa,b =
∞⋃

k=−∞

[
k(a + b), k(a + b) + a

]

then

σ(t) =
{

t, if t ∈ ⋃∞
k=−∞[k(a + b), k(a + b) + a),

t + b, if t ∈ ⋃∞
k=−∞{k(a + b) + a}

and

μ(t) =
{

0, if t ∈ ⋃∞
k=−∞[k(a + b), k(a + b) + a),

b, if t ∈ ⋃∞
k=−∞{k(a + b) + a}.

By the definition, it follows that Pa,b is an invariant under translation time scale.

Considering a = 1 and b = 1 in Example 3.9, we obtain that P1,1 describes the population of
certain species which its life span is one unit of time. In other words, just before the species dies
out, eggs are laid which are hatched one unit of time later. For this specific case, see [19].

The following two examples bring more complex time scales. They might describe a popu-
lation of certain species which its life span behaves the same way as a cosine and sin function,
respectively.



C. Lizama, J.G. Mesquita / Journal of Functional Analysis 265 (2013) 2267–2311 2277
Example 3.10. Let 0 < a < π
2 and consider the time scale

Pa,cos a =
∞⋃

k=−∞

[
k(a + cosa), k(a + cosa) + a

]

then

σ(t) =
{

t, if t ∈ ⋃∞
k=−∞[k(a + cosa), k(a + cosa) + a),

t + cos t, if t ∈ ⋃∞
k=−∞{k(a + cosa) + a}

and

μ(t) =
{

0, if t ∈ ⋃∞
k=−∞[k(a + cosa), k(a + cosa) + a),

cos t, if t ∈ ⋃∞
k=−∞{k(a + cosa) + a}.

It is clear that Pa,cos a is an invariant under translations time scale.

Example 3.11. Let π
2 < a < π and consider the time scale

Pa,sin a =
∞⋃

k=−∞

[
k(a + sina), k(a + sina) + a

]

then

σ(t) =
{

t, if t ∈ ⋃∞
k=−∞[k(a + sina), k(a + sina) + a),

t + sin t, if t ∈ ⋃∞
k=−∞{k(a + sina) + a}

and

μ(t) =
{

0, if t ∈ ⋃∞
k=−∞[k(a + sina), k(a + sina) + a),

sin t, if t ∈ ⋃∞
k=−∞{k(a + sina) + a}.

Clearly, Pa,sin a is an invariant under translations time scale.

In the sequel, we present some time scales which are not invariant under translations.

Example 3.12. Clearly, T = qZ ∪ {0}, q > 1, is not invariant under translations, since T does not
satisfy the condition (3.1). Note that μ(t) = (q − 1)t .

Example 3.13. Every compact interval T = [a, b], a, b ∈ R, is not invariant under translations.

Example 3.14. The time scales T = N
2
0 and T = 2N are not invariant under translations. Here

μ(t) = 2
√

t + 1 and μ(t) = t respectively.

Now, we introduce the definition of an almost automorphic function on time scales.
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Definition 3.15. Let X be a (real or complex) Banach space and T be an invariant under transla-
tion time scale. Then, an rd-continuous function f : T → X is called almost automorphic on T

if for every sequence (α′
n) ∈ Π , there exists a subsequence (αn) ⊂ (α′

n) such that

lim
n→∞f (t + αn) = f̄ (t)

is well defined for each t ∈ T and

lim
n→∞ f̄ (t − αn) = f (t),

for every t ∈ T.

We denote the space of all almost automorphic function on time scales f : T → X by
AAT(X).

In what follows, we present some properties concerning almost automorphic function on time
scale T. The proof is inspired by Theorems 2.1.3 and 2.1.4, from [42].

Theorem 3.16. Let T be an invariant under translations time scale and suppose the rd-
continuous functions f,g : T → X are almost automorphic on time scales. Then the following
assertions hold.

(i) f + g is almost automorphic function on time scales;
(ii) cf is almost automorphic function on time scales for every scalar c;

(iii) For each l ∈ T, the function fl : T → X defined by fl(t) := f (l + t) is almost automorphic
on time scales;

(iv) The function f̂ : T → X defined by f̂ (t) := f (−t) is almost automorphic on time scales;
(v) supt∈T ‖f (t)‖ < ∞, that is, f is a bounded function;

(vi) supt∈T ‖f̄ (t)‖ � supt∈T ‖f (t)‖, where

lim
n→∞f (t + αn) = f̄ (t) and lim

n→∞ f̄ (t − αn) = f (t).

Proof. Let f,g : T → X be almost automorphic functions on time scales. Then, for every se-
quence (α′

n) ∈ Π , there exists a subsequence (αn) ⊂ (α′
n) such that

lim
n→∞f (t + αn) = f̄ (t) and lim

n→∞g(t + αn) = ḡ(t)

are well defined for each t ∈ T and

lim
n→∞ f̄ (t − αn) = f (t) and lim

n→∞ ḡ(t − αn) = g(t),

for every t ∈ T. Thus, we obtain

lim (f + g)(t + αn) := f̄ (t) + ḡ(t)

n→∞
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is well defined for each t ∈ T and

lim
n→∞(f̄ + ḡ)(t − αn) = f (t) + g(t),

for every t ∈ T. Thus, item (i) follows.
Since f is almost automorphic function on time scales, then for every sequence (α′

n) ∈ Π ,
there exists a subsequence (αn) ⊂ (α′

n) such that

lim
n→∞(cf )(t + αn) = lim

n→∞ cf (t + αn) = cf̄ (t) = (cf̄ )(t)

is well defined for each t ∈ T and

lim
n→∞(cf̄ )(t − αn) = lim

n→∞ cf̄ (t − αn) = cf (t) = (cf )(t),

for every t ∈ T, which proves item (ii).
The proofs of items (iii) and (iv) follow using similar argument as before. Thus, we omit them

here.
Let us prove item (v). Let t0 ∈ T and suppose that supk∈T ‖f (k)‖ = ∞, then there exists a

sequence (α′
n) ⊂ Π such that

lim
n→∞

∥∥f
(
t0 + α′

n

)∥∥ = ∞.

Since f is almost automorphic, there exists a subsequence (αn) ⊂ (α′
n) such that

lim
n→∞f (t0 + αn) = f̄ (t0),

and using the continuity of norm function, we get

lim
n→∞

∥∥f (t0 + αn)
∥∥ = ∥∥f̄ (t0)

∥∥ < ∞,

which contradicts the fact that limn→∞ ‖f (t0 + α′
n)‖ = ∞.

Finally, let us prove item (vi). Let (α′
n) be a sequence on Π , then there exists a subsequence

(αn) ⊂ (α′
n) such that

∥∥f̄ (t)
∥∥ =

∥∥∥ lim
n→∞f (t + αn)

∥∥∥ = lim
n→∞

∥∥f (t + αn)
∥∥ � sup

t∈T

∥∥f (t)
∥∥,

which implies that

sup
t∈T

∥∥f̄ (t)
∥∥ � sup

t∈T

∥∥f (t)
∥∥. (3.4)

On the other hand, we have

∥∥f (t)
∥∥ =

∥∥∥ lim
n→∞ f̄ (t + αn)

∥∥∥ � sup
∥∥f̄ (t)

∥∥,

t∈T
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then

sup
t∈T

∥∥f (t)
∥∥ � sup

t∈T

∥∥f̄ (t)
∥∥. (3.5)

Combining (3.4) and (3.5), we obtain

sup
t∈T

∥∥f (t)
∥∥ = sup

t∈T

∥∥f̄ (t)
∥∥,

and the result follows as well. �
The next result generalizes item (ii) from Theorem 3.16. The proof is inspired by Theorem 2.7,

from [3].

Theorem 3.17. Let T be an invariant under translations time scale and the functions f,u :
T → X be almost automorphic on time scales, then the function uf : T → X defined by
(uf )(t) = u(t)f (t) is almost automorphic on time scales.

Proof. Let (α′
n) be a sequence on Π , then there exists a subsequence (α′′

n) ⊂ (α′
n) such that

limn→∞ u(t + α′′
n) = ū(t) is well defined for each t ∈ T and limn→∞ ū(t − α′′

n) = u(t) for
each t ∈ T. Since f is almost automorphic, there exists a subsequence (αn) ⊂ (α′′

n) such that
limn→∞ f (t + αn) = f̄ (t) is well defined for each t ∈ T and limn→∞ f̄ (t − αn) = f (t) for each
t ∈ T. Thus,

∥∥u(t + αn)f (t + αn) − ū(t)f̄ (t)
∥∥ �

∥∥u(t + αn)
(
f (t + αn) − f̄ (t)

)∥∥
+ ∥∥(

u(t + αn) − ū(t)
)
f̄ (t)

∥∥
< ε,

for n sufficiently large. Therefore,

lim
n→∞u(t + αn)f (t + αn) = ū(t)f̄ (t),

for every t ∈ T. Analogously, we can prove that limn→∞ ū(t − αn)f̄ (t − αn) = u(t)f (t). Thus,
we obtain that uf is an almost automorphic function on time scales. �

In the sequel, we present a result which ensures that AAT(X) is a Banach space with the norm
described in item (v) from Theorem 3.16. The proof is inspired by [42, Theorem 2.1.10].

Theorem 3.18. Let T be an invariant under translations time scale and (fn) be a sequence
of almost automorphic functions such that limn→∞ fn(t) = f (t) converges uniformly for each
t ∈ T. Then, f is an almost automorphic function.

Proof. Let (α′
n) be a sequence on Π . Since f1 ∈ AAT(X), then there exists a subsequence

(α1
n) ⊂ (α′

n) such that
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lim
n→∞f1

(
t + α1

n

) := f̄1(t)

is well defined for every t ∈ T and

lim
n→∞ f̄1

(
t − α1

n

) = f1(t),

for every t ∈ T. Since f2 ∈ AAT(X), then there exists a subsequence (α2
n) ⊂ (α1

n) such that

lim
n→∞f2

(
t + α2

n

) = f̄2(t)

is well defined for every t ∈ T and

lim
n→∞ f̄2

(
t − α2

n

) = f2(t),

for every t ∈ T. Thus, by the diagonal procedure, we can construct a subsequence (αn) ⊂ (α′
n)

such that

lim
n→∞fi(t + αn) = f̄i (t), (3.6)

for each t ∈ T and for all i = 1,2,3, . . . . Notice that

∥∥f̄i (t) − f̄j (t)
∥∥ �

∥∥f̄i (t) − fi(t + αn)
∥∥ + ∥∥fi(t + αn) − fj (t + αn)

∥∥
+ ∥∥fj (t + αn) − f̄j (αn)

∥∥. (3.7)

Let ε > 0, then by the uniform convergence of (fn), we can find N ∈N sufficiently large such
that for all i, j > N , we obtain

∥∥fi(t + sn) − fj (t + sn)
∥∥ < ε, (3.8)

for all t ∈ T and all n = 1,2, . . . .
Therefore, taking i, j sufficiently large in (3.7) and using (3.8) and the limit (3.6), we obtain

that (f̄i(t)) is a Cauchy sequence. Since X is a Banach space, then (f̄i(t)) is a sequence which
converges pointwisely on X. Let f̄ (t) be the limit of (f̄i(t)), then for each i = 1,2,3, . . . , we
have

∥∥f (t + αn) − f̄ (t)
∥∥ �

∥∥f (t + αn) − fi(t + αn)
∥∥ + ∥∥fi(t + αn) − f̄i (t)

∥∥
+ ∥∥f̄i (t) − f̄ (t)

∥∥. (3.9)

Then, for i sufficiently large, by (3.9) and using the almost automorphicity of fi and the
convergence of the functions fi and f̄i , we obtain

lim f (t + αn) = f̄ (t),

n→∞
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for each t ∈ T. Analogously, one can prove that

lim
n→∞ f̄ (t − αn) = f (t),

for every t ∈ T and we get the desired result. �
In what follows, we present a result which brings a property concerning composition of al-

most automorphic function on time scales and a continuous function. The proof is inspired by
[3, Theorem 2.5].

Theorem 3.19. Let T be an invariant under translations time scale and let X, Y be Banach
spaces. Suppose f : T → X is an almost automorphic function on time scales and φ : X → Y

is a continuous function, then the composite function φ ◦ f : T → Y is an almost automorphic
function on time scales.

Proof. Since f ∈ AAT(X), for every sequence (α′
n) on Π , there exists a subsequence (αn) ⊂

(α′
n) such that limn→∞ f (t +αn) = f̄ (t) is well defined for every t ∈ T and limn→∞ f̄ (t −αn) =

f (t) for each t ∈ T.
By the continuity of function φ, it follows that

lim
n→∞φ

(
f (t + αn)

) = φ
(

lim
n→∞f (t + αn)

)
= (φ ◦ f̄ )(t).

Similarly, we have

lim
n→∞φ

(
f̄ (t − αn)

) = φ
(

lim
n→∞ f̄ (t − αn)

)
= (φ ◦ f )(t)

for each t ∈ T. Thus, φ ◦ f ∈ AAT(Y ). �
Now, we present the definition of an almost automorphic function on time scales depending

on one parameter. This definition is useful for applications to nonlinear dynamic equations.

Definition 3.20. Let X be a (real or complex) Banach space and T be an invariant under transla-
tions time scale. Then, an rd-continuous function f : T × X → X is called almost automorphic
on t ∈ T for each x ∈ X, if for every sequence (α′

n) ∈ Π , there exists a subsequence (αn) ⊂ (α′
n)

such that

lim
n→∞f (t + αn, x) = f̄ (t, x) (3.10)

is well defined for each t ∈ T, x ∈ X and

lim
n→∞ f̄ (t − αn, x) = f (t, x), (3.11)

for every t ∈ T and x ∈ X.
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In the sequel, we present a result concerning the properties of almost automorphic functions
on time scales with respect to the first variable. We omit the proof since it is similar to the proof
of Theorem 3.16.

Theorem 3.21. Let T be an invariant under translations time scale and f,g : T × X → X be
almost automorphic functions on time scales in t for each x in X. Then the following assertions
hold.

(i) f + g is almost automorphic function on time scales in t for each x in X.
(ii) cf is almost automorphic function on time scales in t for each x in X, where c is an arbi-

trary scalar.
(iii) supt∈T ‖f (t, x)‖ = Mx < ∞, for each x in X.
(iv) supt∈T ‖f̄ (t, x)‖ = Nx < ∞, for each x in X, where f̄ is the function in Definition 3.20.

Now, we present a result which will be essential to prove the following one. The proof is
inspired by Theorem 2.2.5 from [42].

Theorem 3.22. Let T be an invariant under translations time scale and f : T × X → X be an
almost automorphic function on time scales for each x ∈ X and if f is Lipschitzian in x uniformly
in t , then f̄ given by (3.10) and (3.11) satisfies the same Lipschitz condition in x uniformly in t .

Proof. Let L > 0 be a Lipschitz constant for the function f , that is, the following inequality

∥∥f (t, x) − f (t, y)
∥∥ � L‖x − y‖

holds for every x, y ∈ X uniformly in t ∈ T.
Let t ∈ T be arbitrary and ε > 0 be given. Then, by the automorphicity of function f and the

definition of f̄ , for any sequence (α′
n) ∈ Π , there exists a subsequence (αn) ⊂ (α′

n) such that

∥∥f̄ (t, x) − f (t + αn, x)
∥∥ � ε

2
and

∥∥f̄ (t, y) − f (t + αn, y)
∥∥ � ε

2
,

for n sufficiently large.
Therefore, we obtain

∥∥f̄ (t, x) − f̄ (t, y)
∥∥ �

∥∥f̄ (t, x) − f (t + αn, x)
∥∥ + ∥∥f̄ (t, y) − f (t + αn, y)

∥∥
+ ∥∥f (t + αn, x) − f (t + αn, y)

∥∥
� ε + L‖x − y‖.

Since ε is arbitrary, we get

∥∥f̄ (t, x) − f̄ (t, y)
∥∥ � L‖x − y‖,

for each x, y ∈ X. �
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The next result will be fundamental to ensure the almost automorphicity of solutions of non-
linear dynamic equations. Our proof is inspired by Theorem 2.10 from [3].

Theorem 3.23. Let T be an invariant under translations time scale and f : T × X → X be an
almost automorphic function on time scales in t for each x in X and satisfy Lipschitz condition
in x uniformly in t , that is

∥∥f (t, x) − f (t, y)
∥∥ � L‖x − y‖,

for all x, y in X. Suppose φ : T → X is almost automorphic function on time scales, then the
function U : T → X defined by U(t) = f (t,φ(t)) is almost automorphic on time scales.

Proof. Since f,φ ∈ AAT(X), then for every sequence (α′
n) in Π , there exists a subsequence

(αn) ⊂ (α′
n) such that limn→∞ f (t + αn, x) = f̄ (t, x) for all t ∈ T, x ∈ X and limn→∞ f̄ (t −

αn, x) = f (t, x) for all t ∈ T and x ∈ X. Also, we have

lim
n→∞φ(t + αn) = φ̄(t)

is well defined for each t ∈ T and

lim
n→∞ φ̄(t − αn) = φ(t)

for every t ∈ T. Since f satisfies the Lipschitz condition in t uniformly in k, then

∥∥f
(
t + αn,φ(t + αn)

) − f̄
(
t, φ̄(t)

)∥∥
�

∥∥f
(
t + αn,φ(t + αn)

) − f
(
t + αn, φ̄(t)

)∥∥
+ ∥∥f

(
t + αn, φ̄(t)

) − f̄
(
t, φ̄(t)

)∥∥
� L

∥∥φ(t + αn) − φ̄(t)
∥∥ + ∥∥f

(
t + αn, φ̄(t)

) − f̄
(
t, φ̄(t)

)∥∥
and

∥∥f̄
(
t − αn, φ̄(t − αn)

) − f
(
t, φ(t)

)∥∥
�

∥∥f̄
(
t − αn, φ̄(t − αn)

) − f̄
(
t − αn,φ(t)

)∥∥
+ ∥∥f̄

(
t − αn,φ(t)

) − f
(
t, φ(t)

)∥∥
� L

∥∥φ̄(t − αn) − φ(t)
∥∥ + ∥∥f̄

(
t − αn,φ(t)

) − f
(
t, φ(t)

)∥∥.

Notice that if f satisfies Lipschitz condition in x uniformly in t , it is clear by Theorem 3.22
that f̄ also satisfies this condition in x uniformly in t for the same constant L > 0. Applying
limit as n → ∞ to both inequalities above, we have the desired result. �
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4. Product integration on time scales

In this section, we present some basic concepts concerning product integration on time scales
which will be essential to prove our main result. The main reference for this section is [43].

We start this section by presenting a notion of product �-integral of a matrix function. For
details, see [43].

Given a matrix function A : [a, b]T →R
n×n and a tagged partition D ∈ D(a,b), we denote

P(A,D) =
1∏

i=m

(
I + A(ξi)�ti

) = (
I + A(ξm)�tm

) · (I + A(ξ1)�t1
)
.

We point out that the order is important since matrix multiplication is usually not commuta-
tive.

Now, we present the concept of product �-integrable matrix function. See [43].

Definition 4.1. A bounded matrix function A : [a, b]T → R
n×n is called product �-integrable if

there exists a matrix P ∈ Rn×n with the property that for every ε > 0, there exists a δ > 0 such
that ‖P(A,D) − P‖ < ε for every D ∈ Dδ(a, b). The matrix P is called the product �-integral
of A over [a, b]T and we write

b∏
a

(
I + A(t)�t

) = P.

If a = b, then
∏a

a(I + A(t)�t) = I for every matrix function A : [a, b]T → R
n×n.

Now, we present a result which will be essential to our purposes. It can be found in [43,
Theorem 2.9].

Theorem 4.2. Let A : [a, b]T →R
n×n and t ∈ T, a � t � σ(t) � b. Then

σ(t)∏
t

(
I + A(s)�s

) = I + A(t)μ(t).

The next result brings a property of Riemann �-integrable function. It can be found in [43,
Theorem 3.7].

Theorem 4.3. Every Riemann �-integrable function is product �-integrable.

We remind the reader that every rd-continuous function f : [a, b]T → Rn is Riemann
�-integrable (see [11] and [12]). Thus, we can replace the previous result by the following one.

Theorem 4.4. Every rd-continuous function is product �-integrable.

In what follows, we state a property of product � integrals. See [43].
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Theorem 4.5. If A : [a, b]T →R
n×n is Riemann �-integrable and c ∈ [a, b]T, then

b∏
a

(
I + A(t)�t

) =
b∏
c

(
I + A(t)�t

) ·
c∏
a

(
I + A(t)�t

)
.

The next result ensures the continuity of the indefinite product �-integral on [a, b]T. See
[43, Theorem 4.1].

Theorem 4.6. If A : [a, b]T → R
n×n is Riemann �-integrable, then the indefinite product

�-integral

Y(t) =
t∏
a

(
I + A(s)�s

)
, t ∈ [a, b]T,

is continuous on [a, b]T.

Theorem 4.7. (See [43, Theorem 5.5].) If A : [a, b]T → Rn×n is a regressive Riemann
�-integrable function, then

∏b
a(I + A(t)�t) is a nonsingular matrix.

If a < b, we define
∏b

a(I + A(t)�t) = (
∏b

a(I + A(t)�t))−1 provided the right-hand side
exists. See [43, Definition 5.6].

Finally, we present a result which will be fundamental to prove our main result. It can be
found in [43, Theorem 5.7].

Theorem 4.8. If A : T → R
n×n is a regressive rd-continuous function and t0 ∈ T, then the func-

tion

Y(t) =
t∏
t0

(
I + A(s)�s

)
, t ∈ T,

represents the unique solution of the dynamic equation Y�(t) = A(t)Y (t) such that Y(t0) = I .

5. Almost automorphic solutions of first-order linear dynamic equations on time scales

In this section, our goal is to prove the existence of an almost automorphic solution of first-
order linear dynamic equation on time scales given by

x�(t) = A(t)x(t) + f (t) (5.1)

where A : T →R
n×n, f : T →R

n and its associated homogeneous equation:

x�(t) = A(t)x(t). (5.2)

Throughout this section, we assume that A(t) is almost automorphic on T, which means that
given a sequence (α′

n) ∈ Π , there exists a subsequence (αn) ⊂ (α′
n) such that
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lim
n→∞A(t + αn) = Ā(t) (5.3)

exists and is well defined for every t ∈ T and

lim
n→∞ Ā(t − αn) = A(t) (5.4)

for every t ∈ T.
Also, consider the following linear dynamic system

x�(t) = Ā(t)x(t). (5.5)

Before to proceed, we present a result which will be fundamental to our objectives. It can be
found in [41, Lemma 2.9] for the case T = Z. We give the proof here for the general case.

Lemma 5.1. Let T be an invariant under translations time scale and A(t) be an almost auto-
morphic and nonsingular matrix on T. Also, suppose that the set {A−1(t)}t∈T is bounded. Then
A−1(t) is almost automorphic on T, that is, for every sequence (α′

n) on Π , there exists a subse-
quence (αn) ⊂ (α′

n) such that

lim
n→∞A−1(t + αn) =: Ā−1(t) (5.6)

is well defined for each t ∈ T and

lim
n→∞ Ā−1(t − αn) = A−1(t) (5.7)

for each t ∈ T.

Proof. Let (α′
n) be a sequence on Π . Since A(t) is almost automorphic on time scales, there

exists a subsequence (αn) such that

lim
n→∞A(t + αn) =: Ā(t)

is well defined for each t ∈ T and

lim
n→∞ Ā(t − αn) = A(t)

for each t ∈ T.
Fix t ∈ T and define An := A(t + αn), n ∈ N. By hypothesis, the set {A−1

n }n∈N is bounded.
Using the identity

A−1
n − A−1

m = A−1
n (Am − An)A

−1
m

and the fact that {An} is a Cauchy sequence, it follows that {A−1
n } is a Cauchy sequence. Hence,

there exists a matrix T (for each t ∈ T fixed) such that

A−1 → T (t).
n
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Taking the limit of AnA
−1
n = A−1

n An = I , where I denotes the identity matrix, we obtain that
Ā(t) is invertible and Ā−1(t) = T (t) for each t ∈ T. Since the map A → A−1 is continuous on
the set of nonsingular matrices, it follows that

lim
n→∞A−1(t + αn) = Ā−1(t)

for each t ∈ T. Analogously, one can prove that

lim
n→∞ Ā−1(t − αn) = A−1(t),

for each t ∈ T. �
As an immediate consequence, we obtain the following result for a particular case.

Corollary 5.2. Let T be an invariant under translations time scale and A(t) be an almost auto-
morphic and regressive matrix on T. Also, suppose that the set {(I +A(t)μ(t))−1}t∈T is bounded.
Then (I + A(t)μ(t))−1 is almost automorphic on T, that is, for every sequence (α′

n) ∈ Π , there
exists a subsequence (αn) ⊂ (α′

n) such that

lim
n→∞

(
I + A(t + αn)μ(t + αn)

)−1 =: (I + Ā(t)μ̄(t)
)−1 (5.8)

is well defined for each t ∈ T and

lim
n→∞

(
I + Ā(t − αn)μ̄(t − αn)

)−1 = (
I + A(t)μ(t)

)−1 (5.9)

for each t ∈ T.

Proof. Denote B(t) := (I + A(t)μ(t)), for every t ∈ T. Since A(t) and μ(t) are almost auto-
morphic functions, for every sequence (α′

n) on Π , there exists a subsequence (αn) ⊂ (α′
n) such

that

lim
n→∞A(t + αn) = Ā(t) and lim

n→∞μ(t − αn) = μ̄(t)

are well defined and exist for every t ∈ T and

lim
n→∞ Ā(t − αn) = A(t) and lim

n→∞ μ̄(t − αn) = μ(t)

for every t ∈ T. Thus, it follows that

lim
n→∞B(t + αn) = lim

n→∞
(
I + A(t + αn)μ(t + αn)

) = I + Ā(t)μ̄(t) := B̄(t)

for every t ∈ T and

lim B̄(t − αn) = lim
(
I + Ā(t − αn)μ̄(t − αn)

) = I + A(t)μ(t) = B(t).

n→∞ n→∞
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Therefore, B(t) is almost automorphic on T. Also, since A(t) is a regressive matrix, it follows
that B(t) is nonsingular on T. By hypothesis, {B−1(t)}t∈T is bounded. Thus, all the hypotheses of
Lemma 5.1 are satisfied. As a consequence, we obtain that B−1(t) = (I +A(t)μ(t))−1 is almost
automorphic on T, that is, for every sequence (α′

n) on Π , there exists a subsequence (αn) ⊂ (α′
n)

such that

lim
n→∞B−1(t + αn) =: B̄−1(t)

is well defined and exists for each t ∈ T and

lim
n→∞ B̄−1(t − αn) = B−1(t)

for each t ∈ T. It implies that

lim
n→∞

(
I + A(t + αn)μ(t + αn)

)−1 =: (I + Ā(t)μ̄(t)
)−1

is well defined for each t ∈ T and

lim
n→∞

(
I + Ā(t − αn)μ̄(t − αn)

)−1 = (
I + A(t)μ(t)

)−1

for each t ∈ T and the result follows as well. �
Now, we present some auxiliary results lemma which will be essential to our purposes.

Lemma 5.3. Let T be an invariant under translations and A ∈ R(T,Rn×n) is almost automor-
phic and nonsingular on T and {A−1(t)}t∈T and {(I +μ(t)A(t))−1}t∈T are bounded on T. Then
for every sequence (α′

n) ∈ Π , there exists a subsequence (αn) ⊂ (α′
n) such that

lim
n→∞X(t + αn)X

−1(s + αn) = W(t, s)

for every s, t ∈ T, s < t and

lim
n→∞W(t − αn, s − αn) = X(t)X−1(s),

for every s, t ∈ T and s < t , where X(t) is the fundamental matrix of (5.2) and W(t, s) :=∏t
s (I + Ā(τ )�τ).

Proof. Since X(t) is the fundamental matrix of (5.2), we obtain by Theorem 4.8

X(t) =
t∏(

I + A(τ)�τ
)

t0
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which implies the following

X−1(t) = (
X(t)

)−1 =
(

t∏
t0

(
I + A(τ)�τ

))−1

.

Notice that, by Theorem 4.7, Πt
t0
(I + A(τ)�τ) is a nonsingular matrix, since A ∈

R(T,Rn×n).
By the almost automorphicity of A(t), we obtain that for every sequence (α′

n) ∈ Π , there
exists a subsequence (αn) ⊂ (α′

n) such that

X(t + αn)X
−1(s + αn) =

t+αn∏
t0

(
I + A(τ)�τ

)( s+αn∏
t0

(
I + A(τ)�τ

))−1

=
t+αn∏

t0

(
I + A(τ)�τ

) t0∏
s+αn

(
I + A(τ)�τ

)

=
t+αn∏
s+αn

(
I + A(τ)�τ

) =
t∏
s

(
I + A(τ + αn)�τ

)
,

by Theorem 4.5. Applying the limit in both sides, we obtain

lim
n→∞X(t + αn)X

−1(s + αn) = lim
n→∞

t∏
s

(
I + A(τ + αn)�τ

) =
t∏
s

(
I + Ā(τ )�τ

) := W(t, s),

since the product �-integral is a continuous function, by Theorem 4.6.
We also point out that Ā is Riemann �-integrable, since Ā is a bounded function (see [12]).

And thus, by Theorem 4.3, Ā is also product �-integrable.
Analogously, one can prove that

lim
n→∞W(t − αn, s − αn) = X(t)X−1(s). �

Remark 5.4. It is clear that from the previous result, by the same hypothesis, we obtain as a
consequence the following

lim
n→∞X(t + αn)PX−1(s + αn) = PW(t, s)

and

lim
n→∞PW(t − αn, s − αn) = X(t)PX−1(s),

for a projection P described in Definition 2.12 and also, we have

lim X(t + αn)(I − P)X−1(s + αn) = (I − P)W(t, s)

n→∞
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and

lim
n→∞(I − P)W(t − αn, s − αn) = X(t)(I − P)X−1(s).

Lemma 5.5. Let T be an invariant under translations time scale, A(t) ∈ R(T,Rn×n) be almost
automorphic and nonsingular on T and the sets {A−1(t)}t∈T and {(I + μ(t)A(t))−1}t∈T are
bounded on T. Also, suppose the system (5.2) has an exponential dichotomy with positive con-
stants K and γ . Then, given a sequence (α′

n) ∈ Π , there exists a subsequence (αn) ⊂ (α′
n) such

that

lim
n→∞X(t + αn)PX−1(σ(s + αn)

) = PW(t, s)
(
I + Ā(s)μ̄(s)

)−1 := Y(t, s) (5.10)

exists and is well defined for t ∈ T and

lim
n→∞Y(t − αn, s − αn) = X(t)PX−1(σ(s)

)
, (5.11)

where μ̄(t) is given by (3.2) and (3.3), X(t) is the fundamental matrix of (5.2) and W(t, s) =∏t
s (I + Ā(τ )). Similarly, we have that given a sequence (α′

n) ∈ Π , there exists a subsequence
(αn) ⊂ (α′

n) such that

lim
n→∞X(t + αn)(I − P)X−1(σ(s + αn)

) = (I − P)W(t, s)
(
I + Ā(s)μ̄(s)

)−1

:= Z(t, s) (5.12)

exists and is well defined for t ∈ T and

lim
n→∞Z(t − αn, s − αn) = X(t)(I − P)X−1(σ(s)

)
. (5.13)

Proof. Since X(t) is the fundamental matrix of (5.2), we have for s < t

X(t + αn)PX−1(σ(s + αn)
) = X(t + αn)PX−1(s + αn)X(s + αn)X

−1(σ(s + αn)
)

= X(t + αn)PX−1(s + αn)

(
s+αn∏

σ(s+αn)

(
I + A(τ)�τ

))

= X(t + αn)PX−1(s + αn)

(
σ(s+αn)∏

s+αn

(
I + A(τ)�τ

))−1

= X(t + αn)PX−1(s + αn)
(
I + A(s + αn)μ(s + αn)

)−1
.

Applying the limit as n → ∞, we have

lim X(t + αn)PX−1(σ(s + αn)
) = PW(t, s)

(
I + Ā(s)μ̄(s)

)−1 := Y(t, s),

n→∞
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by Remark 5.4, the automorphicity of μ and using the fact that the map I + A(s)μ(s) �→
(I + A(s)μ(s))−1 is continuous on the set of regressive matrices. Notice that (I + Ā(s)μ̄(s))−1

is well defined, by Corollary 5.2. We remind that the projection P commutes with X(t) (see
Definition 2.12).

Reciprocally, we have

lim
n→∞Y(t − αn, s − αn) := lim

n→∞PW(t − αn, s − αn)
(
I + Ā(s − αn)μ̄(s − αn)

)−1

= X(t)PX−1(s)
(
I + A(s)μ(s)

)−1

= X(t)PX−1(s)

(
σ(s)∏

s

(
I + A(τ)�τ

))−1

= X(t)PX−1(s)

s∏
σ(s)

(
I + A(τ)�τ

)

= X(t)PX−1(s)X(s)X−1(σ(s)
) = X(t)PX−1(σ(s)

)
.

Similarly, we obtain

X(t + αn)(I − P)X−1(σ(s + αn)
)

= X(t + αn)(I − P)X−1(s + αn)X(s + αn)X
−1(σ(s + αn)

)
= X(t + αn)(I − P)X−1(s + αn)

(
s+αn∏

σ(s+αn)

(
I + A(τ)�τ

))

= X(t + αn)(I − P)X−1(s + αn)

(
σ(s+αn)∏

s+αn

(
I + A(τ)�τ

))−1

= X(t + αn)(I − P)X−1(s + αn)
(
I + A(s + αn)μ(s + αn)

)−1
.

Applying the limit as n → ∞, we have

lim
n→∞X(t + αn)(I − P)X−1(σ(s + αn)

) = (I − P)W(t, s)
(
I + Ā(s)μ̄(s)

)−1 := Z(t, s),

by Remark 5.4, the automorphicity of μ and using the fact that the map I + A(s)μ(s) �→ (I +
A(s)μ(s))−1 is continuous on the set of regressive matrices.

Reciprocally, we have

lim
n→∞Z(t − αn, s − αn) := lim

n→∞(I − P)W(t − αn, s − αn)
(
I + Ā(s − αn)μ̄(s − αn)

)−1

= X(t)(I − P)X−1(s)
(
I + A(s)μ(s)

)−1

= X(t)(I − P)X−1(s)

(
σ(s)∏(

I + A(τ)�τ
))−1
s
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= X(t)(I − P)X−1(s)

s∏
σ(s)

(
I + A(τ)�τ

)

= X(t)(I − P)X−1(s)X(s)X−1(σ(s)
) = X(t)(I − P)X−1(σ(s)

)
,

and the result follows as well. �
Now, we present our main result in this section. The next result ensures that the system (5.1)

has an almost automorphic solution.

Theorem 5.6. Let T be an invariant under translations time scale and A ∈R(T,Rn×n) be almost
automorphic and nonsingular on T and {A−1(t)}t∈T and {(I + μ(t)A(t))−1}t∈T are bounded.
Also, suppose Eq. (5.2) admits an exponential dichotomy with positive constants K and γ and
f ∈ Crd(T,Rn) is an almost automorphic function on time scales. Then Eq. (5.1) has an almost
automorphic solution.

Proof. By Theorem 2.15, we have that the following function

x(t) =
t∫

−∞
X(t)PX−1(σ(s)

)
f (s)�s −

+∞∫
t

X(t)(I − P)X−1(σ(s)
)
f (s)�s (5.14)

is a bounded solution of (2.1). It remains to prove that x : T → R
n is an almost automorphic

function.
By the automorphicity of functions A(t), f (t) and μ(t), it follows that for every sequence

(α′
n) on Π , there exists a subsequence (αn) ⊂ (α′

n) such that

lim
n→∞A(t + αn) = Ā(t), lim

n→∞f (t + αn) = f̄ (t) and lim
n→∞μ(t + αn) = μ̄(t)

are well defined and exist for every t ∈ T and

lim
n→∞ Ā(t − αn) = A(t), lim

n→∞ f̄ (t − αn) = f (t) and lim
n→∞ μ̄(t − αn) = μ(t)

for every t ∈ T.
Let us denote

M(t) =
t∫

−∞
X(t)PX−1(σ(s)

)
f (s)�s

and

M̄(t) =
t∫

−∞
Y(t, s)f̄ (s)�s,

where Y(t, s) is given by (5.10).
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Then, we have

∥∥M(t + αn) − M̄(t)
∥∥

=
∥∥∥∥∥

t+αn∫
−∞

X(t + αn)PX−1(σ(s)
)
f (s)�s −

t∫
−∞

Y(t, s)f̄ (s)�s

∥∥∥∥∥
=

∥∥∥∥∥
t∫

−∞
X(t + αn)PX−1(σ(s + αn)

)
f (s + αn)�s −

t∫
−∞

Y(t, s)f̄ (s)�s

∥∥∥∥∥
�

∥∥∥∥∥
t∫

−∞
X(t + αn)PX−1(σ(s + αn)

)
f (s + αn)�s

−
t∫

−∞
X(t + αn)PX−1(σ(s + αn)

)
f̄ (s)�s

∥∥∥∥∥
+

∥∥∥∥∥
t∫

−∞
X(t + αn)PX−1(σ(s + αn)

)
f̄ (s)�s −

t∫
−∞

Y(t, s)f̄ (s)�s

∥∥∥∥∥
=

∥∥∥∥∥
t∫

−∞
X(t + αn)PX−1(σ(s + αn)

)[
f (s + αn) − f̄ (s)

]
�s

∥∥∥∥∥
+

∥∥∥∥∥
t∫

−∞

[
X(t + αn)PX−1(σ(s + αn)

) − Y(t, s)
]
f̄ (s)�s

∥∥∥∥∥.

Applying limit as n → ∞ and using the fact that f̄ is a bounded function (this fact follows by
automorphicity of f ) and the exponential dichotomy of Eq. (5.2), we obtain

lim
n→∞M(t + αn) = M̄(t)

for each t ∈ T. Similarly, we can prove

lim
n→∞ M̄(t − αn) = M(t)

for each t ∈ T.
Let us denote

N(t) =
+∞∫
t

X(t)(I − P)X−1(σ(s)
)
f (s)�s

and
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N̄(t) =
+∞∫
t

Z(t, s)f̄ (s)�s,

where Z(t, s) is given by (5.12).
Then, the same way as before, one can prove that given a sequence (α′

n) ∈ Π , there exists a
subsequence (αn) ⊂ (α′

n) such that

lim
n→∞N(t + αn) = N̄(t)

for every t ∈ T and

lim
n→∞ N̄(t − αn) = N(t)

for each t ∈ T.
Now, define x̄(t) = M̄(t) + N̄(t), then using the definition of x from (5.14), we obtain as an

immediate consequence that

lim
n→∞x(t + αn) = x̄(t)

is well defined for every t ∈ T and

lim
n→∞ x̄(t − αn) = x(t)

for each t ∈ T.
Thus, x is an almost automorphic function and we get the desired result. �

Remark 5.7. It is clear that the previous theorem remains valid for linear nabla dynamic equa-
tions on time scales. In the other words, one can prove analogously that the nabla dynamic
equation

x∇(t) = A(t)x(t) + f (t), (5.15)

where A : T → R
n×n and f : T → R

n, has an almost automorphic solution, under similar condi-
tions to the ones presented in Theorem 5.6.

Choosing T = Z in Theorem 5.6, we obtain a result for difference equations. It is the content
of the next result.

Corollary 5.8. Let A : Z → R
n×n be almost automorphic, regulated and nonsingular matrix

function. Also, suppose that {A−1(k)}k∈Z is bounded. Moreover, assume that (I + A(t)) is non-
singular matrix function and {(I + A(k))−1}k∈Z is bounded, the equation

x(k + 1) = A(k)x(k)
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admits an exponential dichotomy with positive constants K and γ and the function f : Z → R
n

is almost automorphic and regulated. Then the equation

x(k + 1) = A(k)x(k) + f (k)

has an almost automorphic solution.

Similarly, we can take T = hZ in Theorem 5.6 and obtain an interesting result for a different
type of difference equations.

Corollary 5.9. Let A : hZ → R
n×n be almost automorphic, regulated and nonsingular matrix

function. Also, suppose that {A−1(k)}k∈hZ is bounded. Moreover, assume that (I + hA(t)) is
nonsingular matrix function and {(I + hA(k))−1}k∈hZ is bounded, the equation

x(k + h) = A(k)x(k)

admits an exponential dichotomy with positive constants K and γ and the function f : hZ →R
n

is almost automorphic and regulated. Then the equation

x(k + h) = A(k)x(k) + f (k)

has an almost automorphic solution.

Now, taking T =R in Theorem 5.6, one can obtain a result for ordinary differential equations.

Corollary 5.10. Let A : R → R
n×n be almost automorphic, continuous and nonsingular matrix

function and {A−1(t)}t∈R is bounded. Assume also the equation

ẋ(t) = A(t)x(t)

admits an exponential dichotomy with positive constants K and γ and the function f : R → R
n

is almost automorphic and continuous. Then the equation

ẋ(t) = A(t)x(t) + f (t)

has an almost automorphic solution.

Finally, we choose T = Pa,cos a and obtain an interesting result. We do not know any result
concerning almost automorphic treating about this case.

Corollary 5.11. Let A : Pa,cos a → R
n×n, for 0 < a < π

2 be almost automorphic and, for every
k ∈ Z, be continuous at [k(a + cosa), k(a + cosa)+a), regulated at k(a + cosa)+a and a non-
singular matrix function. Also, suppose that {A−1(t)}t∈Pa,cos a

is bounded. Moreover, assume that
(I + (cos t)A(t)) is nonsingular matrix function and {(I + (cos t)A(t))−1}t∈Pa,cos a

is bounded
and the equation

x�(t) = A(t)x(t)
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admits an exponential dichotomy with positive constants K and γ and the function f : Pa,cos a →
R

n is almost automorphic and, for every k ∈N, be continuous at [k(a + cosa), k(a + cosa)+a)

and regulated at k(a + cosa) + a. Then the equation

x�(t) = A(t)x(t) + f (t)

has an almost automorphic solution.

6. Almost automorphic solutions for semilinear dynamic equations on time scales

In this section, consider the following semilinear dynamic equation

x�(t) = A(t)x(t) + f (t, x) (6.1)

where A : T → R
n×n and f : T×R

n → R
n and its associated homogeneous equation:

x�(t) = A(t)x(t). (6.2)

Also, consider the following linear dynamic system

x�(t) = Ā(t)x(t), (6.3)

where Ā(t) is given by (5.3) and (5.4).
Now, we introduce a definition of solution of (6.1) in a strict sense. Here, we will restrict

ourselves for this concept of solution for (6.1).

Definition 6.1. We say that x : T → R
n is a solution of (6.1) if x satisfies the following equation

x(t) =
t∫

−∞
X(t)PX−1(σ(s)

)
f

(
s, x(s)

)
�s

−
+∞∫
t

X(t)(I − P)X−1(σ(s)
)
f

(
s, x(s)

)
�s. (6.4)

Remark 6.2. We point out that the previous definition makes sense. In fact, suppose x(t) satisfies
Eq. (6.4), then

x�(t) − A(t)x(t)

= X�(t)

t∫
−∞

PX−1(σ(s)
)
f

(
s, x(s)

)
�s + X

(
σ(t)

)
PX−1(σ(t)

)
f

(
t, x(t)

)

− X�(t)

+∞∫
(I − P)X−1(σ(s)

)
f

(
s, x(s)

)
�s + X

(
σ(t)

)
(I − P)X−1(σ(t)

)
f

(
t, x(t)

)

t
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− A(t)X(t)

t∫
−∞

PX−1(σ(s)
)
f

(
s, x(s)

)
�s

+ A(t)X(t)

+∞∫
t

(I − P)X−1(σ(s)
)
f

(
s, x(s)

)
�s

= X
(
σ(t)

)
(P + I − P)X−1(σ(t)

)
f

(
t, x(t)

) = f
(
t, x(t)

)
which implies

x�(t) = A(t)x(t) + f
(
t, x(t)

)
.

The proof of Remark 6.2 follows analogously the proof of Lemma 2.13 from [37]. We repro-
duce it here for reader’s convenience.

In the sequel, we present an existence and uniqueness result of an almost automorphic solution
of (6.1).

Theorem 6.3. Let T be an invariant under translations time scale and f ∈ Crd(T × R
n,Rn) be

almost automorphic with respect to the first variable. Assume that A ∈ R(T,Rn×n) is almost au-
tomorphic and nonsingular matrix function, the sets {A−1(t)}t∈T and {(I +μ(t)A(t))−1}t∈T are
bounded. Suppose also Eq. (6.2) admits an exponential dichotomy on T with positive constants
K and γ and the following condition is fulfilled:

(i) There exists a constant 0 < L <
γ

2K(2+μ̃γ )
such that

∥∥f (t, x) − f (t, y)
∥∥ � L‖x − y‖,

for every x, y ∈R
n and t ∈ T, where μ̃ = supt∈T |μ(t)|.

Then, the system (6.1) has a unique solution which is almost automorphic.

Proof. Define an operator T : AAT(Rn) → AAT(Rn) as follows:

(T u)(t) =
t∫

−∞
X(t)PX−1(σ(s)

)
f

(
s, u(s)

)
�s −

+∞∫
t

X(t)(I − P)X−1(σ(s)
)
f

(
s, u(s)

)
�s,

for all u ∈ AAT(Rn).
Now, let us prove that T u ∈ AAT(Rn). Since f satisfies the Lipschitz condition, we obtain by

Theorem 3.23 that f (·, u(·)) is almost automorphic, using the fact that f,u ∈ AAT(Rn). Since
u ∈ AAT(Rn), then for every sequence (α′′

n) ∈ Π , there exists a subsequence (α′
n) ⊂ (α′′

n) such
that

lim
n→∞u

(
t + α′

n

) = ū(t)

is well defined for every t ∈ T and
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lim
n→∞ ū(t − αn) = u(t),

for each t ∈ T.
Moreover, by the automorphicity of f , we obtain that there exists a subsequence (αn) ⊂ (α′

n)

such that

lim
n→∞f

(
t + α′

n,u
) = f̄ (t, u)

is well defined for every t ∈ T, u ∈ R
n and

lim
n→∞ f̄ (t − αn,u) = f (t, u),

for each t ∈ T.
By Lemma 5.5, we obtain

lim
n→∞X(t + αn)PX−1(σ(s + αn)

) = Y(t, s)

exists and is well defined for t ∈ T and

lim
n→∞Y(t − αn, s − αn) = X(t)PX−1(σ(s)

)
,

where X(t) is the fundamental matrix of (6.2) and Y(t, s) is given by (5.10).
Similarly, by Lemma 5.5, we get

lim
n→∞X(t + αn)(I − P)X−1(σ(s + αn)

) = Z(t, s)

exists and is well defined for t ∈ T and

lim
n→∞Z(t − αn, s − αn) = X(t)(I − P)X−1(σ(s)

)
,

where X(t) is the fundamental matrix of (6.2) and Z(t, s) is given by (5.12).
Let us define the following function:

h(t) =
t∫

−∞
Y(t, s)f̄

(
s, ū(s)

)
�s −

+∞∫
t

Z(t, s)f̄
(
s, ū(s)

)
�s,

for every t ∈ T.
Then, we obtain

∥∥(T u)(t + αn) − h(t)
∥∥

�
∥∥∥∥∥

t+αn∫
X(t + αn)PX−1(σ(s)

)
f

(
s, u(s)

)
�s −

t∫
Y(t, s)f̄

(
s, ū(s)

)
�s

∥∥∥∥∥

−∞ −∞



2300 C. Lizama, J.G. Mesquita / Journal of Functional Analysis 265 (2013) 2267–2311
+
∥∥∥∥∥

+∞∫
t+αn

X(t + αn)(I − P)X−1(σ(s)
)
f

(
s, u(s)

)
�s −

+∞∫
t

Z(t, s)f̄
(
s, ū(s)

)
�s

∥∥∥∥∥

=
∥∥∥∥∥

t∫
−∞

X(t + αn)PX−1(σ(s + αn)
)
f

(
s + αn,u(s + αn)

)
�s −

t∫
−∞

Y(t, s)f̄
(
s, ū(s)

)
�s

∥∥∥∥∥

+
∥∥∥∥∥

+∞∫
t

X(t + αn)(I − P)X−1(σ(s + αn)
)
f

(
s + αn,u(s + αn)

)
�s

−
+∞∫
t

Z(t, s)f̄
(
s, ū(s)

)
�s

∥∥∥∥∥
�

t∫
−∞

∥∥X(t + αn)PX−1(σ(s + αn)
) − Y(t, s)

∥∥∥∥f̄
(
s, ū(s)

)∥∥�s

+
t∫

−∞

∥∥X(t + αn)PX−1(σ(s + αn)
)∥∥∥∥f

(
s + αn,u(s + αn)

) − f̄
(
s, ū(s)

)∥∥�s

+
+∞∫
t

∥∥X(t + αn)(I − P)X−1(σ(s + αn)
) − Z(t, s)

∥∥∥∥f̄
(
s, ū(s)

)∥∥�s

+
+∞∫
t

∥∥X(t + αn)(I − P)X−1(σ(s + αn)
)∥∥∥∥f

(
s + αn,u(s + αn)

) − f̄
(
s, ū(s)

)∥∥�s.

Applying the limit as n → ∞ in both sides, we obtain

lim
n→∞

∥∥(T u)(t + αn) − h(t)
∥∥

� lim
n→∞

t∫
−∞

∥∥X(t + αn)PX−1(σ(s + αn)
) − Y(t, s)

∥∥∥∥f̄
(
s, ū(s)

)∥∥�s

+ lim
n→∞

t∫
−∞

∥∥X(t + αn)PX−1(σ(s + αn)
)∥∥∥∥f

(
s + αn,u(s + αn)

) − f̄
(
s, ū(s)

)∥∥�s

+ lim
n→∞

+∞∫
t

∥∥X(t + αn)(I − P)X−1(σ(s + αn)
) − Z(t, s)

∥∥∥∥f̄
(
s, ū(s)

)∥∥�s

+ lim
n→∞

+∞∫ ∥∥X(t + αn)(I − P)X−1(σ(s + αn)
)∥∥∥∥f

(
s + αn,u(s + αn)

) − f̄
(
s, ū(s)

)∥∥�s.
t
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By the exponential dichotomy and the almost automorphicity of f , we obtain

lim
n→∞T u(t + αn) = h(t)

for every t ∈ T, by Lemma 5.5.
Similarly, one can prove that

lim
n→∞h(t + αn) = T u(t)

for every t ∈ T and conclude that T u is an almost automorphic function. Thus, T u is well defined.
Now, let us prove that T is a contraction.

‖T z − Ty‖ =
∥∥∥∥∥

t∫
−∞

X(t)PX−1(σ(s)
)[

f (s, z) − f (s, y)
]
�s

−
+∞∫
t

X(t)(I − P)X−1(σ(s)
)[

f (s, z) − f (s, y)
]
�s

∥∥∥∥∥
�

t∫
−∞

Ke�γ

(
t, σ (s)

)
L‖z − y‖�s +

+∞∫
t

Ke�γ

(
σ(s), t

)
L‖z − y‖�s

� 1

|�γ |
[
Ke�γ (t, t) − Ke�γ (t,−∞)

]
L‖z − y‖∞ +

+∞∫
t

Keγ

(
t, σ (s)

)
L‖z − y‖�s

� 1

|�γ |
[
K − Ke�γ (t,−∞)

]
L‖z − y‖∞ + 1

γ

[
K − Keγ (t,+∞)

]
L‖z − y‖∞,

by Theorem 2.13. Therefore, we obtain

‖T z − Ty‖ � 1
γ

1+μ̃γ

[
K − Ke�γ (t,−∞)

]
L‖z − y‖∞ + 1

γ

[
K − Keγ (t,+∞)

]
L‖z − y‖∞

� 1 + μ̃γ

γ

[|K| + ∣∣Ke�γ (t,−∞)
∣∣]L‖z − y‖∞

+ 1

γ

[
K + ∣∣Keγ (t,+∞)

∣∣]L‖z − y‖∞

� L‖z − y‖∞
(

2K(1 + μ̃γ )

γ
+ 2K

γ

)

= L

(
2K(2 + μ̃γ )

γ

)
‖z − y‖∞ < ‖z − y‖∞,

by Theorem 2.14.
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It follows that T is a contraction, then by the Banach Fixed-Point Theorem, T has a unique
fixed point. By the definition of T and Definition 6.1, we obtain that the system (6.1) has a unique
solution which is almost automorphic. Therefore, we have the desired result. �
Remark 6.4. It is clear that the previous theorem remains valid for linear nabla dynamic equa-
tions on time scales. In other words, one can prove analogously that the nabla dynamic equation

x∇(t) = A(t)x(t) + f
(
t, x(t)

)
, (6.5)

where A : T → R
n×n and f : T×R

n → R
n, has an almost automorphic solution, under similar

conditions to the ones presented in Theorem 5.6.

Choosing T =R in Theorem 6.3, we obtain a result for semilinear differential equations. It is
the content of the next result.

Corollary 6.5. Let f : R×R
n → R

n be continuous and almost automorphic with respect to the
first variable and A : R → R

n×n be almost automorphic, continuous and nonsingular and the
set {A−1(t)}t∈R is bounded. Suppose the equation

ẋ(t) = A(t)x(t)

admits an exponential dichotomy with positive constants K and γ and the following condition
holds:

(i) There exists a constant 0 < L <
γ

4K
such that

∥∥f (t, x) − f (t, y)
∥∥ � L‖x − y‖,

for every x, y ∈Rn and t ∈R.

Then, the system

ẋ(t) = A(t)x(t) + f
(
t, x(t)

)
has a unique solution which is almost automorphic.

Taking T = Z in Theorem 6.3, we obtain a result for semilinear difference equations. See the
result below.

Corollary 6.6. Let f : Z × R
n → R

n be regulated and almost automorphic with respect
to the first variable and A : Z → R

n×n be almost automorphic, regulated and nonsingu-
lar and {A−1(k)}k∈Z is bounded. Also, suppose that (I + A(k)) is nonsingular and the set
{(I + A(k))−1}k∈Z is bounded. Suppose the equation

x(k + 1) = A(k)x(k)

admits an exponential dichotomy with positive constants K and γ and the following condition
holds:
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(i) There exists a constant 0 < L <
γ

2K(2+γ )
such that

∥∥f (k, x) − f (k, y)
∥∥ � L‖x − y‖,

for every x, y ∈ R
n and k ∈ Z.

Then, the system

x(t + 1) = A(t)x(t) + f
(
t, x(t)

)
has a unique solution which is almost automorphic.

We can also choose T = hZ in Theorem 6.3, then it follows a result for a different type of
semilinear difference equations. We do not know any result in this direction.

Corollary 6.7. Let f : hZ × R
n → R

n be regulated and almost automorphic with respect
to the first variable and A : hZ → R

n×n be almost automorphic, regulated and nonsingu-
lar and {A−1(k)}k∈hZ is bounded. Also, suppose that (I + A(k)) is nonsingular and the set
{(I + A(k))−1}k∈hZ is bounded. Suppose the equation

x(k + h) = A(k)x(k)

admits an exponential dichotomy with positive constants K and γ and the following condition
holds:

(i) There exists a constant 0 < L <
γ

2K(2+hγ )
such that

∥∥f (k, x) − f (k, y)
∥∥ � L‖x − y‖,

for every x, y ∈ R
n and k ∈ hZ.

Then, the system

x(k + h) = A(k)x(k) + f
(
k, x(k)

)
has a unique solution which is almost automorphic.

Finally, we take T = Pa,b in Theorem 6.3 and we get an interesting result for a different type
of equation. We do know any result in this direction. See the following result.

Corollary 6.8. Let f : Pa,b ×R
n → R

n be almost automorphic with respect to the first variable
and, for every k ∈ Z, be continuous at [k(a +b), k(a +b)+a) and regulated at k(a +b)+a and
A : Pa,b → R

n×n be almost automorphic, and, for every k ∈ Z, be continuous at [k(a +b), k(a +
b)+a), regulated at k(a +b)+a and nonsingular and {A−1(t)}t∈Pa,b

is bounded. Also, suppose
that (I + bA(t)) is nonsingular and {(I + bA(t))−1}t∈P is bounded. Suppose the equation
a,b
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x� = A(t)x(t)

admits an exponential dichotomy with positive constants K and γ and the following condition
holds:

(i) There exists a constant 0 < L <
γ

2K(2+bγ )
such that

∥∥f (t, x) − f (t, y)
∥∥ � L‖x − y‖,

for every x, y ∈R
n and t ∈ Pa,b .

Then, the system

x� = A(t)x(t) + f
(
t, x(t)

)
has a unique solution which is almost automorphic.

7. Examples and applications

In this section, we present some examples and applications of our main results.

Example 7.1. The following economic model is known as a Keynesian-Cross model with lagged
income. It can be found in [48].

Consider these three equations in a simple closed economy:

D(t) = C(t) + I + G; (7.1)

C(t) = C0 + cy(t); (7.2)

y�(t) = δ
[
Dσ − y

]
, t � a (7.3)

where D is the aggregate demand, y is the aggregate income, C is the aggregate consumption,
I is the aggregate investment, G is the government spending, δ < 1 is a positive constant known
as the speed of adjustment term and C0, c are non-negative constants.

As in [48], we assume that G and I are constants in (7.1), and current consumption is assumed
to depend on current income in (7.2). Also, Eq. (7.3) means that the change in income is a fraction
of excess demand at σ(t) over income at t (see [48]).

Putting (7.1) and (7.2) into (7.3), we obtain

y� = δ
[
C0 + cyσ + I + G − y

]
.

Now, using the formula yσ = y + μy� and considering 1 − δcμ(t) 	= 0 for t > a, we have

y� = δ(c − 1)

1 − δcμ(t)
y + δ(c0 + I + G)

1 − δcμ(t)

:= f (t)y + g(t). (7.4)
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Note that if T is invariant under translation, then we obtain that the graininess function μ(t) is
almost automorphic, then obviously, by the definition of function g, it follows that g is an almost
automorphic function.

Moreover, if we assume that only one of the following inequalities holds, that is, c < 1 or
μ(t) > 1

cδ
for every t ∈ T, then we obtain that Eq. (7.4) admits exponential dichotomy and

moreover, {f (t)−1} is bounded on T. Assume that μ(t) 	= 1
δ

for every t ∈ T. In this case, we
obtain that the function f (t) is regressive on T. Indeed, a function f (t) is regressive if 1 +
μ(t)f (t) 	= 0 for every t ∈ T. Then,

1 + μ(t)f (t) 	= 0 ⇔ 1 + μ(t)
δ(c − 1)

1 − δcμ(t)
	= 0

⇔ 1 − δcμ(t) + μ(t)δ(c − 1) 	= 0 ⇔ 1 − μ(t)δ 	= 0,

which implies that μ(t) 	= 1
δ
. Then, it follows that f (t) is regressive on T. Therefore, all the

hypotheses of Theorem 5.6 are satisfied, and hence we can conclude that Eq. (7.4) has an almost
automorphic solution.

The above example generalizes the classical Keynesian-Cross model involving difference
equations given in [28]. See [48], for instance.

Now, we present an example which can be found in [52].

Example 7.2. Consider the following nonautonomous dynamic equation

x�(t) = −a(t)x
(
σ(t)

) + b(t) (7.5)

where a, b ∈ Crd(T,R+), a, b are almost automorphic functions on T and a ∈R.
It is clear that the equation given by x�(t) = −a(t)x(σ (t)) admits exponential dichotomy

and also, {a(t)−1} is bounded on T. Notice that the function a takes value in R+ and thus,
a(t) 	= 0, for every t ∈ T. Thus, taking T invariant under translations, then all the hypotheses of
Theorem 5.6 are satisfied, which implies that Eq. (7.5) has an almost automorphic solution.

We point out that Eq. (7.5) can be used to model many single species models as special cases.
For example, taking T =R and x(t) = 1

N(t)
, then Eq. (7.5) reduces to the known Verhulst logistic

equation given by

Ṅ(t) = −N(t)
(
a(t) − b(t)N(t)

)
.

On the other hand, taking T = Z and x(t) = 1
N(t)

, then Eq. (7.5) reduces to the known
Beverton–Holt equation given by

N(t + 1) = (
1 + a(t)

) N(t)

1 + b(t)N(t)

as explained in [52]. See, for instance, [5] and [47].
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Further, if we consider b(t) = a(t) ln(c(t)) and x(t) = ln(N(t)), then when T = R Eq. (7.5)
reduces to the continuous Gompertz single species model given by

Ṅ(t) = a(t)N(t) ln

(
c(t)

N(t)

)
.

See [25] and [49], for more details.
Finally, taking T = Z, we can obtain the discrete Gompertz single model which is given by

N(t + 1) = N(t)
1

1+α(t) c(t)
α(t)

1+α(t) .

See, for instance, [50].

The next example is inspired by Example 4.20 from [36].

Example 7.3. Consider the following equation

x�(t) = Ax(t) + f (t), (7.6)

where

A =
(−4 0

0 −4

)
, μ(t) 	= 1

4
and f (t) =

( cos( 1
2+sin t+sin

√
2t

)

sin
√

2t + cos t

)
.

By the definition, it is clear that I + μ(t)A is invertible for all t ∈ T and thus, A is regressive.
Also, notice that A is invertible and {A−1} is bounded on T. Moreover, since T is invariant under
translations, the graininess function μ is bounded and thus, {(I + μ(t)A)−1} is bounded on T.

The function f is almost automorphic on T. Then, using the fact that the eigenvalues of the
coefficient matrix in (7.6) are λ1 = λ2 = −4 and applying Theorem 5.35 (Putzer Algorithm)
from [11], we obtain that the P -matrices are given by

P0 = I =
(

1 0
0 1

)

and

P1 = (A − λ1I )P0 = (A + 4I )P0.

Then, using again Theorem 5.35 (Putzer Algorithm) from [11], we obtain

r�
1 (t) = −4r1(t), r1(t0) = 1,

r�
2 (t) = r1(t) − 4r2(t), r2(t0) = 0.

Now, calculating r1, we get

r1(t) = e�4(t, t0)
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and by the variation of constants formula, we have

r2(t) = e�4(t, t0)

t∫
t0

1

1 − 4μ(s)
�τ.

Finally, applying Theorem 5.35 (Putzer Algorithm) from [11] again, we get

eA(t, t0) = r1(t)P0 + r2(t)P1 = e�4(t, t0)

(
1 0
0 1

)
.

Therefore, for t > s, we get

∥∥X(t)P0X
−1(s)

∥∥ =
∥∥∥∥e�4(t, t0)

(
1 0
0 1

)
e4(s, t0)

(
1 0
0 1

)∥∥∥∥
=

∥∥∥∥
(

e�4(t, t0) 0
0 e�4(t, t0)

)(
e4(s, t0) 0

0 e4(s, t0)

)∥∥∥∥
�

√
2e�4(t, s).

Taking K = 2 and γ = 4, we obtain that Eq. (7.6) admits exponential dichotomy and thus, by
Theorem 5.6, we have

x(t) =
t∫

−∞
X(t)P0X

−1(σ(s)
)
f (s)�s +

∞∫
t

X(t)(I − P0)X
−1(σ(s)

)
f (s)�s

=
t∫

−∞
X(t)P0X

−1(σ(s)
)
f (s)�s

=
t∫

−∞

(
e�4(t, σ (s)) 0

0 e�4(t, σ (s))

)( cos( 1
2+sin t+sin

√
2t

)

sin
√

2t + cos t

)
�s.

In the sequel, we present a model which describes high-order Hopfield neural networks on
time scales. We borrow some ideas from [37].

Example 7.4. Consider the following high-order Hopfield neural networks on time scales:

x�
i (t) = −ci(t)xi(t) +

n∑
j=1

aij
(
fj

(
xj (t)

))

+
n∑ n∑

bijl(t)gj

(
xj (t)

)
gl

(
xl(t)

) + Ii(t), (7.7)

j=1 l=1
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for i = 1,2, . . . , n, where n corresponds to the number of units in a neural network, xi(t) corre-
sponds to the state vector of the ith unit at the time t , ci(t) represents the rate with which the ith
unit will reset its potential to the resting state in isolation when disconnected from the network
external inputs, aij (t) and bijl(t) are the first- and second-order connection weights of neural
network and Ii(t) denotes the external inputs at time t and fj and gj are the activation functions
of signal transmission.

Next, we present a result which can be found in [37, Lemma 2.15] which will be essential to
our purposes.

Lemma 7.5. Let ci(t) be an almost periodic function on T, where ci(t) > 0, −ci(t) ∈ R, ∀t ∈ T

and

min
1�i�n

{
inf
t∈T ci(t)

}
= m̃ > 0,

then the linear system

x�(t) = diag
(−c1(t),−c2(t), . . . ,−cn(t)

)
x(t)

admits an exponential dichotomy on T.

Remark 7.6. A carefully examination of the proof of the above result reveals that we can change
the hypothesis concerning almost periodicity of ci by almost automorphicity and obtain the same
conclusion. The proof follows similarly for this other case with obvious adaptations.

Now, we assume that the following conditions are satisfied:

(H1) ci , aij , bijl , Ii are almost automorphic functions, −ci ∈ R and ci > 0 for every i, j, l =
1,2, . . . , n.

(H2) There exist positive constants Mj , Nj , j = 1,2, . . . , n such that |fj (x)| � Mj and
|gj (x)| � Nj for j = 1,2, . . . , n, x ∈R.

(H3) Functions fj (u), gj (u), j = 1,2, . . . , n satisfy the Lipschitz condition, that is, there exist
constants Lj ,Hj > 0 such that |fj (u1) − fj (u2)| � Lj‖u1 − u2|, |gj (u1) − gj (u2)| �
Hj |u1 − u2|, j = 1,2, . . . , n.

(H4)

max
1�i�n

{
n∑

j=1

aijLj +
n∑

j=1

n∑
l=1

bijlNjHl +
n∑

j=1

n∑
l=1

bijlNlHj/ci

}
< 1,

where

ci = inf
t∈T

∣∣ci(t)
∣∣, ci = sup

t∈T

∣∣ci(t)
∣∣,

aij = sup
t∈T

∣∣aij (t)
∣∣, bij l = sup

t∈T

∣∣bijl(t)
∣∣, Ii = sup

t∈T

∣∣Ii(t)
∣∣.
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Then, by hypotheses (H1), (H2), (H3) and (H4) and using Lemma 7.5, we obtain that all
hypotheses of Theorem 6.3 are satisfied, then the system (7.7) possesses a unique almost auto-
morphic solution.

In the sequel, we present an example which can be found in [52]. The equation of the following
example can be known as continuous or discrete Lasota–Wazewska model without delay taking
T =R and T = Z, respectively. For more details about this model with delays, see [18,35,51].

Example 7.7. Consider the following dynamic equation on time scales:

x�(t) = −rx
(
σ(t)

) + η(t)e−γ x(t) (7.8)

where r , γ are all positive conditions and the initial values of (7.8) are also positive.
Suppose that the function η is almost automorphic. Hence, it is bounded. Let us denote η̃ =

supt∈T η(t). Also, define the function g(t, x(t)) = η(t)e−γ x(t). Then, we have

∣∣g(
t, x1(t)

) − g
(
t, x2(t)

)∣∣ = ∣∣η(t)e−γ x1(t) − η(t)e−γ x2(t)
∣∣ � η̃γ

∣∣x1(t) − x2(t)
∣∣.

Consider η̃γ <
γ1

2K(2+μ̃γ1)
, where K , γ1 are the constants from the exponential dichotomy

condition and μ̃ = supt∈T |μ(t)|. Assume also that T is invariant under translations, we obtain
that all hypotheses of Theorem 6.3 are satisfied which implies that Eq. (7.8) has an almost auto-
morphic solution.

Finally, we present an example which can be found in [52]. Notice that for a specific time
scale, that is, T =R, the equation in the following example reduces to a single artificial effective
neuron with dissipation model. See, for instance, [25] and [31].

Example 7.8. Consider the dynamic equation given by

x�(t) = −a(t)x
(
σ(t)

) + b(t) tanh
(
x(t)

) + γ (t) (7.9)

where a, b, γ ∈ Crd(T,R+) and a, b, γ are almost automorphic functions and regressives on T.
It is clear that the equation given by x�(t) = −a(t)x(σ (t)) admits exponential dichotomy and
also, {a(t)−1} is bounded on T. Notice that the function a takes value in R+ and thus, a(t) 	= 0,
for every t ∈ T.

Moreover, notice that |tanh(x1) − tanh(x2)| � |x1 − x2| for x1, x2 ∈ T. Then, denoting
g(t, x(t)) = b(t) tanh(x(t)) + γ (t), we obtain

∣∣g(
t, x1(t)

) − g
(
t, x2(t)

)∣∣ = ∣∣b(t) tanhx1(t) + γ (t) − b(t) tanhx2(t) − γ (t)
∣∣

�
∣∣b(t)

∣∣∣∣x1(t) − x2(t)
∣∣ � b̃

∣∣x1(t) − x2(t)
∣∣,

where b̃ = supt∈T |b(t)|. If we suppose that b̃ <
γ1

2K(2+μ̃γ )
, where γ1,K are the constants from the

exponential dichotomy and μ̃ = supt∈T |μ(t)| and assume that T is invariant under translations,
then all hypotheses of Theorem 6.3 are satisfied which implies that Eq. (7.9) has an almost
automorphic solution.
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