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Abstract

Modern histologic imaging platforms coupled with machine learning methods have provided new opportunities to
map the spatial distribution of immune cells in the tumor microenvironment. However, there exists no standardized
method for describing or analyzing spatial immune cell data, and most reported spatial analyses are rudimentary. In
this review, we provide an overview of two approaches for reporting and analyzing spatial data (raster versus vector-
based). We then provide a compendium of spatial immune cell metrics that have been reported in the literature,
summarizing prognostic associations in the context of a variety of cancers. We conclude by discussing two well-
described clinical biomarkers, the breast cancer stromal tumor infiltrating lymphocytes score and the colon cancer
Immunoscore, and describe investigative opportunities to improve clinical utility of these spatial biomarkers.

© 2023 The Pathological Society of Great Britain and Ireland.

Keywords: spatial statistics; tumor infiltrating lymphocytes; TIL; sTIL score; Immunoscore; multispectral immunofluorescence; spatial
heterogeneity
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Introduction

With advances in technology, it is now possible to visualize
the spatial interface between tumors and host immunity on
the level of individual cells, thus generating vast spatial
datasets that may contain clinically important prognostic
and predictive information. However, this capability is
accompanied by the challenge of developing rigorous and
reproducible statistical methods for reporting and
interpreting spatial immune cell (IC) data. Currently there
is no standardized approach; most published analyses only
scratch the surface of the rich information hidden within the
spatial orientation of ICs. Here, we summarize published
spatial IC analysis methods and future directions. The
review is organized into three sections. First, we summarize
the status of histologic imaging technology, including
machine learning (ML) approaches to identify IC cancer
cell spatial locations and their attributes, such as cellular
phenotype. We also introduce the basic data structure,
terminology, and analytic methods for spatial datasets.
Second, we summarize published research in the field,
providing examples of different types of spatial metrics
across categories including IC density, heterogeneity, clus-
tering, colocalization, interfacing, and tissue segmentation.
Finally, we conclude by discussing the spatial analytic
methods of two leading IC prognostic biomarkers, the
breast cancer stromal tumor infiltrating lymphocytes
(STIL) score [1] and the colon cancer Immunoscore [2],
and propose how advanced spatial analysis methods could
be applied to create new spatial biomarkers.

Data acquisition: technologies, ML, and spatial data
structure

Here, we provide a summary of imaging technologies,
methods of acquiring spatial data from images, and the
organizational structure of spatial data.

© 2023 The Pathological Society of Great Britain and Ireland. www.pathsoc.org

Imaging technologies

Modern imaging technologies have permitted the acquisi-
tion of spatial datasets of ICs in cancer. The most common
platforms employ high-resolution microscopy to evaluate
the expression of multiple cell markers from a single tumor
slide. A shared feature of these platforms (which include
multiplex immunohistochemistry [mIHC] and immuno-
fluorescence [mIF]) is the use of multiple antibodies that
bind to and label specific cellular proteins, to visualize
various cell types and identify their precise two-
dimensional geographic location in relation to cancer cells.
Analysis of multiple markers on a single slide ensures that
spatial relationships of cell types are preserved, whereas
single-marker analyses on sequential slides may be less
accurate for characterizing spatial relationships between
cell types. Great care must be taken to standardize and
validate the assay workflow, which includes steps such as
antibody/reagent selection, antibody staining order, sam-
ple storage, processing, and staining, and quality con-
trol steps employing positive and negative controls to
ensure consistency. Best practices are summarized in an
expert consensus statement by the Society for
Immunotherapy of Cancer (SITC) [3]. In addition to
mlF and mIHC, nascent technologies permit extensive
characterization of protein or RNA differential expres-
sion on the level of individual cells, or within spatially
defined subregions of the tumor. Such technological
platforms include mass ion beam imaging, imaging
mass cytometry, digital spatial profiling, or spatial
single-cell RNA sequencing, which are summarized
elsewhere [3-5]. Of note, older platforms, such as
single-stain chromogenic IHC or H&E can still provide
a wealth of spatial information, which can be leveraged
using imaging software such as QuPath [6,7].

ML to extract spatial IC data from images
A shared and crucial step across all imaging platforms is
to extract spatial data from raw images. High-resolution
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microscopy images are large datasets comprised of
many pixel locations, each with associated intensity or
color/hue values. Automated methods using ML are help-
ful in extracting spatial features from the imaging data that
summarize the spatial distribution of cell and tissue types.
Additionally, computational platforms are used to spec-
trally unmix multiplexed imaging data to accurately
identify the spatial coordinates of the different biomarkers.
Using various ML-based approaches, images can be
used to generate data features such as tissue type
(i.e. stroma, necrosis, fat, microvessels, cancer cell nest,
blank/acellular) [8], region-specific features (such as the
invasive margin [IM] of the tumor), and cells (annotated
by location and phenotype). ML methods can be either
fully automated, such as with the Definiens imaging anal-
ysis platform for the colon cancer Immunoscore [2]
(Developer XD, Definiens, Munich, Germany), or they
can depend on user supervision to refine the classification
of tissues or cells, as with the mIF InForm software pack-
age (Akoya Biosciences, Marlborough, MA, USA) [9,10].
A separate summary statement has been published that
describes ML and computational methods for acquiring
spatial IC data [11].

Structure and analysis of spatial IC datasets

Before the advent of these technologies, spatial IC data
were reported descriptively, visually, or in the form of
whole-slide summary metrics, such as cell count, inten-
sity, density, or other textural features. These metrics
are poor at characterizing heterogeneity of ICs across
the span of the tumor. It is now possible to quantify IC
densities precisely across multiple geographic subre-
gions of the tumor. In the context of mIF/mIHC, this is
often conducted across high-power microscopy fields
(HPFs), determined by the field of view of the micro-
scope lens [3,12]. When ICs are interrogated across
multiple subregions, characteristics of subregions
within a tumor can be compared. With these data,
additional information, such as ‘hotspot zones’ or
inter-region variability can be reported (described fur-
ther below).

When a tumor is repeatedly sampled across HPFs, it is
important to consider the underlying geographic inter-
dependencies across the various HPFs. Summary statis-
tics, such as mean IC density across multiple HPFs, can
be confounded if sampling of subregions is non-uniform
and/or if an insufficient proportion of the tumor is
sampled. To build robust analytic pipelines using
HPFs, it will be important to determine the number of
HPFs required to accurately characterize the tumor and
to ensure that the sampling distribution is not spatially
biased toward certain tissue architectures. It was recently
shown in the context of a breast cancer cytokine-based
immunotherapy trial that at least 15 HPFs per patient
were required to overcome the potential confounding
effect of spatial heterogeneity and accurately character-
ize changes in IC density related to the cytokine
treatment [12]. This trial also illustrated how statistical
models, such as hierarchical linear modeling, could be
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leveraged to better capture intratumoral heterogeneity
and estimate IC density [12]. In a melanoma cohort it
was demonstrated how HPFs could be tiled to cover the
entirety of the tumor space and overlapped by 20% to
permit correction of errors on the periphery of HPF
images due to illumination and lens effects [13]. An
alternative to tiling HPFs is to utilize whole-slide imag-
ing platforms, such as the mIF Polaris (Akoya
Biosciences); however, these platforms are still in devel-
opment and the imaging can be time-consuming.

To fully utilize spatial data, observations must be
annotated by their exact spatial/geographic position, so
that both spatial interdependencies and heterogeneity
can be fully explored. There are two distinct approaches
for analyzing spatial data, raster analysis and vector
analysis, each of which can be used in different contexts
of spatial IC analysis (illustrated in Figure 1A-D).
Vector-based datasets can be converted to raster-based
and vice versa. However, when converting raster to
vector, the resolution depends on the size of the raster
cells.

With raster-based datasets, spatial analyses are
accomplished by partitioning the evaluable space by a
grid of subregions or raster cells, each annotated by their
geographic location. For each raster cell, measurements
pertaining to IC infiltration (such as IC density,
programmed cell death ligand 1 [PD-L1] intensity, per-
centage tumor/stroma) are individually estimated, thus
generating a mosaic of estimations across the entirety of
the tumor space (Figure 1B). This method allows for the
identification of hotspot zones, investigation of spatial
relationships between ICs and locoregional anatomic
structures, and evaluation of the heterogeneity of IC
characteristics.

One important factor affecting raster analyses is the
partitioning scale/grid size: if the raster cell size is too
large, the resolution is poor for detecting locoregional
variations (such as hotspots or variations in IC den-
sity); whereas if the raster cell size is too small, esti-
mates of IC density become volatile due to inadequate
sampling space within each cell. In a recent breast
cancer prognostic evaluation, raster cell size affected
the overall prognostic performance of IC hotspot anal-
ysis [14]. There are several proposed methods for
optimizing raster cell size. One is to select a size that
reflects underlying biological considerations, such as
the span of cell-cell paracrine signaling [15]. An alter-
native to rectangular grids is provided by Voronoi
tessellation [6], which can be used to subdivide the
tumor space into uneven polygons that maximize
grouping of cells with their nearest neighbors, and
could be more flexible to adapt to underlying anatomic
structures [7,16]. Superpixels is another method that
segments tumors into raster cells according to similar-
ities in adjacent pixel colors or other features [17,18].
Finally, approaches can be implemented that analyze
tumors on different scales (multiscaling) or to optimize
raster cell size as a hyperparameter, as it is effectively
changing the resolution and accuracy of the statistical
modeling [19].
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A Image acquisition and cell phenotyping

B Raster-based map of local IC counts
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C Vector-based map of ICs, stromal boundaries and IM
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1 (101,104) TG 4.0 intratumoral 1 (101,104), (139,105), (205,253), ... Stromal/intraepithelial
2 (101,108) IC 12 stromal 2 (231,214), (203,302), (205, 300), ... IM border

Figure 1. Raster versus vector spatial data structure. (A) An example of a TNBC specimen imaged by H&E, with high-resolution multi-color
images obtained using mIF (Vectra platform). High-resolution images are used to obtain cell coordinates and phenotypes. (B) In raster-based
spatial analysis, the tumor is divided into small subregions (usually by a rectangular grid) and spatial metrics are calculated independently
across each subregion, allowing for analysis of spatial metrics such as average cell count, deviation/skewness, and hotspot analysis. (C and D)
In vector-based spatial analysis, cells are annotated by their phenotype, (x, y) geographic location, and other attributes, such as PD-L1
expression. These data can then be analyzed using statistical software to calculate a variety of metrics.

Vector-based datasets are comprised of a set of unique
observations corresponding to each visualized cell across
the tumor space, with measured attributes such as cell
type (cancer versus immune versus stromal cell) or pro-
tein expression (such as PD-L.1 quantitative intensity by
mlF). Each observation/cell is spatially annotated by its
point location (x, y coordinates in two-dimensional space;
Figure 1C,D) [20]. Locations of anatomic boundaries
within the tumor, such as the IM or cancer cell/stromal
interface, are defined as a series of (x,y) spatial points, that
when connected linearly, create either a line or a polygon
in two-dimensional space (Figure 1C,D). With these
multi-featured vector datasets, software packages (such
as Python or Simple Features sf package in R [20]) can
efficiently calculate distances to the IM for each IC,
calculate locoregional IC densities or PD-L.1 expression,
or label ICs according to the location within different
tissue compartments (such as intraepithelial versus stro-
mal). Another benefit of vector datasets is the ability to
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convert the data into detailed spatial maps that graphi-
cally illustrate the interrelationships between cancer cells
and ICs (illustrated in Figure 1C).

Analysis of spatial data: overview of published
research

Here we provide an overview of spatial IC analyses that
have been conducted across a variety of cancer contexts
and summarize their potential clinical prognostic and/or
predictive utility. When possible, we describe these met-
rics using the terminology and framework of raster ver-
sus vector spatial analyses. We also describe the metrics
as either global (i.e. summarized across all spatial sub-
units) or local (i.e. metrics that are reported repeatedly
across spatial subunits). These metrics are summarized
in Table 1.

J Pathol 2023; 260: 514-532
www.thejournalofpathology.com

85U8017 SUOIWIOD SR 8|aealjdde ay) Ag pauienob ale sejone O ‘8sn Jo sajni Joj Akeiqiauljuo 8|1/ UO (SUONIPUOD-PUR-SWLBI/L0D A8 1M Alelq 1Bl |UO//:Sdhy) SUONIPUOD pUe SWL | 8y} 8es *[GZ0Z/TT/70] uo Akeigi]auliuo A8|im ‘©|1IyD aueiyp0D Ag S9T9URd/Z00T 0T/I0p/Wod Ao |im Arelq uljuo s euino bosyred)/sdny wolj pspeojumod ‘S ‘€202 ‘9686960T


http://www.pathsoc.org
http://www.thejournalofpathology.com

Spatial analyses of TILs

Table 1. Examples of spatial metrics and definitions.

Metric/references Local Raster
versus versus
global*  vector

Count/density metrics

Cell count [21-23] Either Raster
Cell density [21-23] Either Raster
Density ratio [24-26] Either Raster
Radial density [27] Either Vector
Kernel density [28] Local Vector
Heterogeneity metrics
Density variance [29] Global Raster
Coefficient of variation [30] Global Raster
Quartile coefficient of dispersion [30] Global raster
Skewness [31] Global Raster
Shannon entropy [6] Global Raster
Clustering metrics
Quadrat analysis [6] Global Raster
Moran's | statistic [20] Global Raster
Ripley's K function [32] Global Vector
Getis-Ord general G-statistic [20] Global Raster
Hotspot enumeration [33] Global Raster
Hotspot fractional area [33] Global Raster
Hotspot density [2,13,29,34] Global Raster
Getis-Ord local Gi [20] Local Raster
Local Moran's | [20] Local Raster
Cluster morphometric analysis [6,35] Local Vector
Colocalization metrics
Morisita-Horn Index [7,16] Global Raster
G-cross function AUC [36] Global Vector
Nearest neighbor [27] Global Vector
Interface metrics
Band density [6,37] Global Either
Band density ratio [37] Global Either
Fractal dimension [7,34,38] Global Vector
Density gradient [39] Global Either
Segmentation metrics
Intratumoral density ratio [28] Global Raster
Area ratios [20] Global Vector

521

Description

Count of cells within a given analysis area

Count of cells, normalized for area

Ratio of two cellular densities

Density of cells within a given radius of a given geographic location
Density of cells in an area, smoothed for densities in surrounding area

Variation in densities across subregions of a tumor

Variance, normalized for overall cell density

Alternate measure of heterogeneity, less influenced by outlier regions
Global measure of degree of outliers in a sample

Global measure of heterogeneity/randomness across subregions

Variance/mean ratio of densities across subregions, scores >1 indicate clustering
Strength of correlation of cell densities with those of neighboring subregions

Metric providing clustering strength at different cell-cell distances

Generalized metric summarizing degree of clustering across neighboring subregions
Quantification of numbers of hotspots in a sample

Proportion of tumor that meets hotspot criteria

Average density within hotspot regions (various definitions of hotspots can be used)
Hypothesis test to evaluate presence/absence of hotspot (p value for each subregion)
Application of Moran's | statistic to identify subregions likely to be hotspots
Evaluation of shape and other geometric characteristics of IC clusters

Global measure of degree of localization of two cell species
Estimation of likelihood of two cell types to be adjacent, across various distances
Average nearest pairwise distance of two cell types

Cell densities measured at intervals of distances from IM

Ratio of band densities (measure of dependency of cell density with IM)
Measure of complexity of tumor/stromal border

Rate of change of cell density, by distance from tumor IM

Ratio of cellular densities, comparing stromal versus intraepithelial
Ratio of stromal area to intraepithelial area (or other areas of interest)

*Local refers to analyses conducted across various tumor subregions; global refers to analyses that summarize the whole tumor.

IC counts/densities

The most basic spatial metric is IC count or density. Cell
count is defined as the number of detected cells within a
given spatial unit (i.e. HPF), whereas density is the cell
count normalized by the two-dimensional area of the
spatial unit. Cell counts can be influenced dramatically
by tissue composition, which may be an admixture of
cancer cells, non-cancerous tissue (stroma, adipocytes,
vessels/lymphatics), non-viable tissue (necrosis or
artifacts), or empty space. Cell densities are preferred
over counts when comparing IC infiltration across regions
with a non-uniform evaluable tumor area. Densities of
certain cell types have been shown across multiple studies
to be prognostic of outcome or predictive of response to
immunotherapy or chemotherapy. For example, CD8"
cell density within either the tumor compartment or the
IM was shown to predict melanoma response to treatment
with anti-PD-1 (pembrolizumab) [21]. In early-stage
triple-negative breast cancer (TNBC), the TIL density
within the stromal compartment in an H&E slide is prog-
nostic of outcome [40], predictive of neoadjuvant chemo-
therapy response [22], and predictive of anti-PD-1

© 2023 The Pathological Society of Great Britain and Ireland. www.pathsoc.org

response [23]. Interestingly, in a study on TNBC corre-
lating TIL density assessed by Al in different tissue
compartments (intratumoral, within the tumor stroma, at
the tumor periphery, etc.) with patient outcome, it was
shown that a similar prognostic value could be observed
independent of the measurement region, indicating that
for these tumors, TIL assessment may be less sensitive to
variations between methods [41].

Once cell counts or densities are determined, deriva-
tive metrics, such as ratios, can be calculated. One
example is the PD-L1 combined positive score (CPS),
which uses single-color IHC labeling of PD-L1 to iden-
tify patients who may benefit from anti-PD-1/PD-L1
immunotherapy. The CPS is a ratio calculated as the
PD-L17 cell count (ICs or cancer cells) within the tumor
region, divided by cancer cell count, on a single slide
[24-26]. The PD-L1 CPS can predict the response to
PD-1 immunotherapy (pembrolizumab) in some disease
contexts (such as with chemotherapy in first-line meta-
static TNBC) [25], but fails to predict the response in
other disease contexts (such as in stage II/III
TNBC) [42]. One downside of the CPS method is that
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the score is capped at 100 and, therefore, has a more
limited dynamic range for describing PD-L1 expression
compared with other methods. Another downside is that
the inclusion of cancer cells in the denominator makes
the score particularly sensitive to variations in the ratio
of cancer cells and other cells. In another example, a high
ratio of cytotoxic CD8™ T cells to CD68" macrophages
within primary melanoma was found to be associated
with distant recurrence-free survival [43].

IC densities and ratios can also be analyzed across
tumor subregions as a local metric, using either raster-
based or vector-based methods. As used in the colon
cancer Immunoscore (discussed below), the Developer
XD software (Definiens) can be used to estimate IC
density across rectangular raster cells and to generate
novel metrics, such as hotspot density, defined as the
mean IC density across the three raster grid cells with
the highest-ranked IC density. The hotspot density was
shown to be prognostic in patients with metastatic colon
cancer [2,29]. With vector datasets, IC densities across
anatomically defined subregions (such as stromal versus
intraepithelial) can be efficiently calculated using statis-
tical software (such as the sf or sp packages in R) [39].

Kernel density smoothing or estimation is another sta-
tistical method of estimating IC density across spatial
subregions of a tumor. In kernel density estimation, vector
datasets are used to estimate IC density as the sum of
kernel functions centered in the IC locations. With this
approach, a smoothed estimation of IC density can be
calculated for each (x,y) coordinate within the tissue.
This method was employed to create topographical maps
of lymphocyte densities across breast tumors [28]. The
method was also used to characterize lymphocytes
according to the density of cancer cells within their
locoregional environment. Lymphocytes were categorized
into three spatial subtypes: intratumoral, adjacent to tumor,
and distant to tumor [28]. The ratio of intratumoral
lymphocytes to tumor cells, designated the intratumoral
lymphocyte ratio, was prognostic of clinical outcome,
independent of other clinical factors.

Metrics of spatial heterogeneity

Cell counts, densities, and ratios define IC patterns based
upon the central tendency of immune infiltrates within a
given tumor region. However, the underlying spatial
distribution of IC across tumor subregions may provide
additional prognostic/predictive information. Using ras-
ter analysis, once IC densities are estimated across raster
cells/subregions of the tumor, spatial heterogeneity sum-
mary metrics can be calculated. One common metric is
the standard deviation (SD), which indicates how much
subregion IC densities differ from the mean IC density.
In an analysis of metastatic colon cancer specimens, the
SD of CD8™ cell density was shown to associate with
inferior disease-free survival and overall survival [29].
SDs are influenced heavily by the underlying mean IC
density (with densely infiltrated tumors having a greater
tendency to exhibit higher SDs). An alternative statistic
is the coefficient of variation (CV), which is the ratio of
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the SD to the mean. These statistics may also be
influenced by the size of the subregion.

Another metric of heterogeneity is skewness, which is a
measure of the asymmetry of distributions and can be
calculated as the difference between the mean and the
median, normalized by the SD (non-parametric skew). A
positive skewness value indicates the occurrence of high-
value outliers. In an analysis of tissue microarrays of
998 early-stage breast cancer specimens, high skewness
of the lymphocyte/cancer cell ratio (indicating the presence
of subregions with unusually high ratios) was prognostic
for improved disease-free survival in HER2-positive breast
cancer [31]. Shannon’s entropy metric provides a measure
of randomness across the tumor subregions, with higher
scores indicating a higher degree of heterogeneity of IC
density. In a recent analysis of TNBC specimens,
Shannon’s entropy was shown to be higher in tumor sub-
regions adjacent to the IM of the tumor [6]. Other useful
measures of species richness borrowed from the ecology
field may be useful for describing heterogeneity, including
the Gini Simpson, inverse Simpson, and hill numbers.

Cluster/hotspot analysis

Cluster analysis aims to define IC location along a spec-
trum that varies from clustered to dispersed. Cell type
‘clusters’ indicate that the cells of interest are more likely
to be colocalized with one another, whereas ‘dispersed’
indicates that cells are repelling one another. Following
this paradigm, statistical testing can be employed to eval-
uate whether the ICs are clustered or uniformly dispersed
versus the alternative hypothesis that ICs are spatially
random (i.e. neither clustered nor uniformly dispersed).
Because IC clusters may reflect underlying biological
immune engagement, there is tremendous interest to iden-
tify tumor subregions with abundant IC density
(‘hotspots’) versus areas with IC paucity (‘coldspots’).

Numerous hotspots/clusters analysis approaches have
been reported in the literature. Visual characterization of
H&E breast cancer TIL hotspots and coldspots
(as binary ‘absent or present’ variables) were shown to
predict progression-free survival, independent of clinical
risk factors, in a cohort from the Cancer Genome Atlas
and Carolina Breast Cancer Study [44]. A commonly
adopted quantitative method for analyzing hotspots is to
rasterize the tumor area, rank-order the subregions by IC
density, and define hotspots as either a fixed number,
fixed percentile, or a fixed SD cut-off of highest-density
subregions (Figure 2A) [13,29,34]. In a series of 53 mel-
anoma patients treated with pembrolizumab, it was con-
cluded that a hotspot definition of IC densities of 30% of
the highest-ranking HPFs resulted in the best prediction
of the clinical response to pembrolizumab and
outperformed conventional assessments of mean IC
density [13]. In another study of metastatic colon cancer
using the Definiens platform, hotspot density was
defined as the density within the three most densely
infiltrated raster cells within the tumor area [29]. Using
this definition, patients with high hotspot density tumors
had improved survival.
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A Rank-order hotspot analyses: top 3 and top 30%
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Figure 2. lllustration of various hotspot metrics. Various methods of calculating IC hotspots have been described in the literature, and include
methods based upon rank-ordering of IC density across subregions, or based upon inferential testing. (A) Rank-order-based approaches,
which define hotspots as either ‘top 3’ (the three most densely infiltrated subregions) or ‘top 30%’ (the top 30% most densely infiltrated
subregions). (B) The Getis-Ord Gi* method, which uses inferential statistical testing to estimate p values indicating the likelihood of each
subregion being a hotspot or a coldspot. The Getis-Ord test statistic follows a normal distribution and can be thought of as a measure of local
IC density in neighboring subregions, relative to overall IC density. IC, immune cell; TC, tumor cell.

One limitation of rank-order hotspot analysis is that it
can be influenced by tumor size: larger tumors that have
more extensive spatial sampling will have a higher
inherent likelihood of having hotspots with greater IC
density. This observation was noted in the colon cancer
hotspot analysis [45]. Another limitation is that it rests
upon the presumption that all tumors have hotspots,
whereas it is biologically possible that IC hotspots occur
at different frequencies across tumors. As an alternative,
the Getis-Ord Gi* is a probabilistic approach for defining
hotspots and coldspots within a tumor (Figure 2B). The
approach involves defining neighbors for each tumor
subregion (i.e. usually defined as immediately adjacent
subregions) and conducting a formal hypothesis test using
these data to estimate a likelihood that any given neigh-
borhood is a hotspot, given the totality of the spatial data.
With this approach, not all tumors will have hotspots, and
derivative global metrics describing the relative proportion
of hotspots (as a fraction of total tumor area) can be

© 2023 The Pathological Society of Great Britain and Ireland. www.pathsoc.org

calculated. In a breast cancer dataset, fractional area of
cancet/IC colocalization hotspots were found to be inde-
pendently prognostic for clinical outcome in estrogen
receptor-negative breast cancer [l14] and estrogen
receptor-positive breast cancer [33]. This metric was only
weakly correlated with lymphocyte density, indicating that
the two metrics may be useful in conjunction for stratify-
ing tumors by immune response. Figure 2 illustrates the
top 3, top 30%, and Getis-Ord Gi* approaches for defining
hotspots in a breast cancer specimen. In this example, the
mean IC hotspot density varies substantially depending on
the method (top 3: 3.6 x 107 /um?% top 30%:
1.6 x 10~ %pum? Getis-Ord p <0.1: 2.2 x 10~ */um?;
Getis-Ord p < 0.05: 1.8 x 10~ */pm?).

Once clusters are defined, they can be further charac-
terized according to features such as size (e.g. number of
cells, area, maximum diameter of perimeter), shape
(e.g. convexity, circularity, eccentricity, dimensionality
of the perimeter), or IC phenotype/composition [6].
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Clusters could also be characterized by their spatial
relationships to other neighboring clusters while using
different distance metrics like Euclidean norm, correla-
tion, or nearest neighbors [35]. In a study of lung cancer
specimens, cluster analysis was used in conjunction with
supervised ML to generate a spatial score called the
spaTIL score, which was shown to be prognostic of
recurrence-free survival in non-small cell lung cancer
(NSCLC) [35].

There are numerous hotspot/clustering metrics
employed in the literature (some listed in Table 1),
highlighting the lack of standardization in the field.
Efforts should be made by investigators to justify their
selection of hotspot method and to conduct sensitivity
analyses to evaluate the impact of the hotspot method on
their conclusions.

Metrics of cellular colocalization

Vector analysis of spatial IC data allows for efficient
calculation of pairwise distances between individual cells,
which is particularly useful for characterizing cell—cell
interactions. One metric for describing colocalization of
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cells is the nearest neighbor distance metric. The nearest
neighbor distance is calculated for each IC in the specimen
and is defined as the shortest pairwise Euclidean distance
between two cell types of interest. Similarly, with vector
datasets, one can calculate the locoregional density of cells
found within a specified radius of each cell. This method
was employed to explore the relationship between clinical
outcome and T-regulatory (Treg) suppressor cells in oral
squamous cell carcinoma [27]. The authors posited that the
density of FoxP3™" T-cells within a 30-pum radius of CD8"
effector cells (a biologically plausible distance for cell—cell
interactions) could serve as a metric for Treg suppressor
engagement with effector T-cells. They found that high
Treg/CD8™ radial densities were associated with inferior
overall survival, whereas the simple density ratio of Tregs
to CDS cells was not prognostic.

Using the G and cross-G function method, with vector
datasets one can calculate the likelihood that ICs
colocalize with themselves or other cell types at specified
distances [36]. The likelihoods are plotted as a curve, with
the x axis representing distance and the y axis representing
the cumulative probability density of the nearest IC being
within that distance (Figure 3A-D). This provides a
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Figure 3. G and cross-G function for describing cellular colocalization. (A) The (x,)) locations of ICs in relation to cancer cells of an early-stage
breast cancer specimen. Colocalization of cells at specified distances can be illustrated using (B and C) the G function (colocalization of the
same cell type) and (D) the cross-G function (colocalization of two distinct cell types). The blue lines illustrate the observed colocalization
patterns of the sample, whereas the red lines illustrate the expected colocalization under the assumption of randomness/homogeneous point
pattern. In (D), the AUC is illustrated in green and is used to provide a global metric of colocalization of two cell types within a certain

proximity range (<50 pixels in this example). TC, tumor cell.
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graphical representation of colocalization (blue line) com-
pared with what would be expected by random chance
(calculated as a Poisson-distributed homogenous point
process, red line). For example, in Figure 3C, for cancer
cells the red line exceeds the blue line between distances of
0 and 13 pixels, suggesting that cancer cells tend to repel
each other at these distances, whereas at distances >13
pixels, the cancer cells tend to group together. In
Figure 3D, the red line exceeds the blue line across all
distances, suggesting that cancer cells and ICs do not
colocalize. The area under the curve (AUC) can be calcu-
lated to provide a global metric of colocalization of two cell
types within a certain proximity range (e.g. 50 pixels, as
illustrated in Figure 3D). With this approach, in a NSCLC
cohort, AUC scores of cross-G functions between Treg or
CD8™" ICs to cancer cells were prognostic for survival [36].
As a raster-based alternative to the G function, Ripley’s K
function quantifies colocalization across specified distances
by comparing IC densities across neighboring raster cells. In
an analysis of H&E breast cancer specimens, extremes in the
K function for stromal cells were associated with improved
prognosis [32].

Another proposed colocalization metric borrowed
from the ecology literature is the Morisita-Horn index.
The method is raster-based and generates a scaled score
between 0 and 1 based on the calculated ratios of cell
densities for two cell types within each raster cell [7],
with scores close to 1 indicating colocalization and
scores close to 0 indicating spatial independence of the
two cell types. In a breast cancer cohort, higher Morisita-
Horn indices between ICs and cancer cells were prog-
nostic for disease-free survival, particularly in
HER?2-positive breast cancer. This metric outperformed
IC density or hotspot analyses [16]. Numerous alterna-
tive methods for quantifying colocalization patterns
have been reported, again highlighting the lack of stan-
dardization in the field and the need for investigators to
justify their selection of test [6].

Using multiplex assays, recurrent structures of com-
plex cell—cell spatial interactions can be uncovered
within the tumor microenvironment. Using a spatial
database of 458 breast tumors, hierarchical clustering
methods were used to uncover 10 cell—cell interaction
profiles, defined by unique clustering patterns of mix-
tures of cell types [46]. Examples of profiles include a
tertiary lymphoid structure-like profile and a regulatory-
cell profile that included Tregs combined with cells with
upregulated checkpoint proteins such as PD-1.
Classification of tumors according to the presence/
absence of these structures was found to predict long-
term survival [46]. In another study, a graph neural-
network ML approach was used to analyze patterns of
cell—cell distances and predict long-term survival in a
cohort of gastric carcinomas [47].

Segmentation and interface metrics

Segmentation of a tumor into biologically distinct tissue
compartments (such as epithelial nest versus stroma) is a
crucial component of spatial IC analysis. The
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segmentation process can be either manual (e.g. via
visual pathologist inspection, as exemplified in the
breast cancer sTIL score, or by using pan-cytokeratin
stains to identify epithelial populations) [1,48], semi-
automated using supervised ML (e.g. using the InForm
package for mIF or QuPath) [9,12,49], or fully auto-
mated with novel ML platforms [8,50]. In the breast
cancer sTIL score, ICs are separately scored across stro-
mal versus intraepithelial compartments, providing a
powerful prognostic tool (described below) [1,40].

In many epithelial cancers, such as invasive ductal
carcinoma of the breast, the epithelial/stromal boundary
is well-defined and can be further characterized
according to the distributions of cellular phenotypes at
various distances from the boundary or by the geometric
shape of the boundary. Using multiplex staining it has
been shown that certain cell phenotypes (such as
myofibroblasts) are enriched at the stromal boundary of
breast cancers, whereas other phenotypes (including
B-cells) are depleted [46]. With fractal dimension anal-
ysis, the geometric complexity of the interface is quan-
tified (with a simple line receiving the lowest score and
jagged interfaces receiving higher scores) [7,34]. The
epithelial/stromal fractal dimension may reflect differ-
ences in underlying tumor biology. For example, a high
fractal dimension in breast cancer is associated with
higher cancer cell proliferation indices (measured by
Ki67 labeling) [38]. Because a high fractal dimension
results in increased stroma/cancer cell surface area, it has
been proposed that the fractal dimension could modulate
suppressive immune reactions between stromal fibro-
blasts that reside at the interface [34]. Supporting this
hypothesis, the fractal dimension of NSCLC specimens
was higher in immune cold regions compared with
immune hot regions [34]. Fractal dimension analysis of
fibers of the extracellular matrix, and other features
of matrix fibers, can be quantified with image analysis
software, and may contain prognostic information [51].

In breast, colon, and other cancers, ICs congregate in
greater density at the IM of the tumor relative to the
tumor center [2,37] and thus the margin could influence
overall IC density within a specimen. This is especially
relevant for the formation of tertiary lymphoid structures
that form IC ‘hotspots’ found preferentially near the IM
and provide relevant insights into activation of the
immune system [52,53]. Biologically, differences at
the IM could be related to physical impediments such
as desmoplastic/fibrous stroma or interstitial pressure,
versus chemical barriers related to secreted factors such
as chemokines [37,54]. The IM is most commonly iden-
tified by pathologist visual annotation [6,37]; however,
ML approaches are also being developed to automate
this process [2,8]. In spatial analyses, the IM is often
defined as a subregion of tissue spanning a fixed distance
from the invasive edge. The colon cancer Immunoscore
uses 360 pm, but other cut-offs have been proposed,
including 500 or 100 pm [6,37,55]. Once these regions
are defined, metrics can be calculated, such as the IM cell
density [2] or ratios of densities [37]. These metrics can
also be used to categorize tumors according to the degree
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of infiltration at the IM tumor center (i.e. ‘immune
desert’, which describes low IC density at both, versus
‘immune excluded’, which describes low IC density in
the tumor center but higher IC density at the IM sur-
rounding the tumor). Using vector datasets, more sophis-
ticated metrics, such as density gradients, can be
calculated [39]. One proposed method is to partition
the tumor area into bands defined by Euclidean distance
from the IM and to estimate IC densities and 95% Cls of
density across each distance range [6,56].

Case discussions: the breast cancer sTIL score and
colon cancer Immunoscore

Here, from a spatial data perspective, we summarize two
leading IC clinical biomarkers, breast cancer sTIL score
and the colon cancer Immunoscore, and describe future
enhancements that could be achieved by applying
advanced spatial analysis techniques, such as those
described above.

sTIL score in breast cancer

The breast cancer sTIL score is a visual estimation of the
mean proportion of stromal area occupied by lympho-
cytes from a single H&E slide. Based upon early obser-
vations of the prognostic significance of sTILs [22], the
International Immuno-Oncology Working Group (TIL
working group or TIL-WG) was created to standardize
and validate a method of scoring sTILs [1], which has
since been shown in multiple datasets to be prognostic
[40,57,58] and predictive of chemotherapy + immuno-
therapy response [23,59]. These efforts have contributed
to the endorsement of the sTIL score for clinical use in
early-stage breast cancer by the St. Gallen International
Consensus Guidelines [60]. Because the TIL-WG sTIL
score relies on visual estimation, it exhibits only modest
interobserver scoring concordance [61]. The RING stud-
ies demonstrated a modest concordance score (intraclass
correlation of 0.70 by untrained pathologists [95% CI
0.62-0.78]), which was improved to 0.89 (0.85-0.92)
with the incorporation of training, additional safeguards
including visual controls/scales, and the requirement for
sub-sampling or the evaluation of at least three regions of
tumor. An intraclass correlation greater than 0.8 is gener-
ally considered to be sufficient for adoption in clinical
practices. Many of these safeguards are addressed in a
continuing medical education (CME)-accredited FDA
course on TILs available on the TIL-WG website [62].
A root-cause analysis identified the following recurring
contributors to discordance: intratumoral heterogeneity of
sTIL density, poor-quality staining, misclassification of
cell type or cell segment, and insufficient spatial sampling
(in biopsies with minimal evaluable tumor area).
Ongoing efforts are underway to evaluate whether
novel imaging platforms or spatial analyses could produce
spatial metrics that perform similarly or superior to the
H&E SsTIL score for clinical prognosis/prediction (illus-
trated and summarized in Figure 4) [3,11,63—65]. These
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can be summarized across several discrete steps of the
STILs scoring process: (1) segmentation; (2) subregion
sampling and density estimation; and (3) calculation of
an overall sTIL score. In the segmentation step, a tumor
must be accurately separated into stromal and non-stromal
compartments, and cells must be accurately categorized as
lymphocytes versus other cells. This step was identified as
a frequent source of discordance in the RING studies, with
pathologists erroneously categorizing intraepithelial TILs
as sTILs, or categorizing neutrophils, histocytes, and
apoptotic cells as sTILs [66]. Proposed methods for
improving segmentation involve the use of automated
image analysis/ML methods that can more accurately
classify tissues and cell types (summarized in [11]) or the
use of mIF/mIHC to enable more precise segmentation
through the use of cytokeratin staining of cancer cell-
containing regions, as well as multiple cellular markers
to discern lymphocytes from non-lymphocytes [12,63].

In the subregion sampling step, pathologists must
sample enough subregions of the tumor space to reflect
the entirety of the specimen. In the RING studies,
interobserver concordance improved substantially when
pathologists were explicitly required to evaluate at least
three tumor subregions [66], thus raising the hypothesis
that pathologists, when unassisted, may not visually
assess enough areas of the tumor. In this regard, auto-
mated imaging and/or multispectral imaging would pro-
vide a clear advantage over H&E visual sTIL estimation.
ML-based software platforms could permit efficient
sampling across the entirety of the tumor slide or even
provide whole-slide analysis. However, further work is
necessary to optimize the accuracy of these platforms
and to evaluate their prognostic/predictive utility in com-
parison with the standard visual TIL-WG method [11].
Alternatively, high-resolution multispectral imaging
permits sampling of many HPFs across a specimen.
In a recent evaluation of mlF in breast cancer, using
Monte Carlo simulation studies, it was shown that at
least 15 HPFs per patient would be required to
adequately characterize changes in sTILs in the context
of an immunotherapy clinical trial [12]. Before mIF can
be used clinically, significant progress must be made to
standardize the mIF/mIHC workflow across institutions
and validate the assay [3,67].

When TIL densities are estimated for each subregion,
pathologists must accurately visually estimate the propor-
tion of stromal area occupied by sTILs within a given
subregion. This was a frequent cause of interobserver dis-
cordance. However, it was improved in the second RING
study, when pathologists were provided standardized
images of various sTIL scores for visual comparison [66].
Nonetheless, this step can be improved tremendously
with automated analysis and/or mlIF, which has
adequate resolution to localize individual TILs, their
precise geometric location in relation to the stromal
compartment, and to compute the overall stromal area
for each subregion.

The last step is calculation of overall sTIL density,
which is where spatial data analysis can provide the
largest gains for accuracy and precision. In the RING
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D Potential applications of spatial analysis to improve the sTIL score and Immunoscore

STIL score

* Automated counting using machine learning platforms

¢ Machine learning to improve stromal/intraepithelial segmentation
* Multispectral imaging to improve classification of TILs from other cells
* Increased sampling of subregions (or raster-based sampling of entire tumor area)

* Correcting for density gradient of the invasive margin (using Immunoscore approach or spatial regression models)
« Evaluating characteristics of the stromal interface (density gradient, fractal dimension)

Immunoscore
* Assessment of different definitions of the invasive margin

¢ Assessment of immune cell gradients according to distance to IM (band densities)

« Evaluation of different rasterization methods (voronoi tesselation, smaller/larger raster cell sizes)
¢ Evaluation of co-localization metrics of CD3+ and CD8+ subpopulations

* Evaluating characteristics of the IM (density gradient, fractal dimension)

* \ector-based spatial regression to create spatially adjusted Immunoscore

Figure 4. sTILs score and Immunoscore: methodology and opportunities for spatial applications. (A) Segmentation step: for the sTILs score, the
intraepithelial versus stromal tumor compartment are visually determined by a pathologist, whereas for Immunoscore, the IM versus tumor
center is determined using an automated ML platform. (B) Sampling and density estimation steps: for the sTIL score, several representative
subregions are visually selected and sTIL counts are estimated across each subregion, whereas for Immunoscore, the entirety of the tumor
area is divided by a rectangular raster grid, and CD3™ and CD8™ ICs are counted for each raster cell. (C) Calculation step: for the sTIL score, the
arithmetic mean of sTIL densities for each subregion is calculated, whereas for Immunoscore, the arithmetic mean of cohort-level percentile
scores across the four cellular compartments is calculated (cD3™ IM, CD3™ TC, CD8™ IM, CD8™ TC). (D) Advanced ML, histologic imaging, and
spatial analytic approaches can be applied to the sTIL score and Immunoscore to potentially improve predictive/prognostic utility.

studies, pathologists were instructed to report the arith-
metic mean of sTIL scores across the various tumor
subregions. However, from a spatial analytic perspec-
tive, this method relies on a simplistic assumption that
IC density is homogenous, when in fact biologically the
IC density can vary tremendously across various sub-
regions of the tumor, and can be influenced by spatial
interdependencies (i.e. spatial autocorrelation) as well
as anatomic features (such as the IM, which exhibits
inherently higher IC density relative to the tumor cen-
ter). Using vector-based datasets that include (x, y)
coordinates of ICs as well as anatomic landmarks (such
as the IM), spatial regression methods (such as

© 2023 The Pathological Society of Great Britain and Ireland. www.pathsoc.org

inhomogeneous Poisson process models) [20] could
be used to generate adjusted sTIL scores that may more
accurately reflect the intrinsic immunogenicity of the
tumor. With inhomogeneous Poisson process models,
IC densities are estimated repeatedly across the tumor
sample (using kernel density smoothing, radial densi-
ties, or other methods). Furthermore, for each observa-
tion, spatial covariates such as proximity to the IM can
be estimated and included as parameters in a regression
model, thus allowing for a spatially adjusted estimation
of IC density. Other variables of interest could also be
included in the model, such as local PD-L1 protein
expression or treatment exposure [20].
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Whole-slide TIL density metrics have also been shown
to be prognostic in melanoma, and there are ongoing
efforts to standardize and automate scoring. Recently,
automated TIL density estimation using ML classifiers
(NN192 or QuIP TIL CNN) has been shown across mul-
tiple datasets to improve prognostication compared with
the historical Clark grading system for TILs [68-71]. A
detailed analysis of the potential pitfalls of ML assessment
is provided in a companion article [72].

The colon cancer Immunoscore

Immunoscore was developed as a prognostic biomarker
in the context of early-stage colon cancer. It differs from
the breast cancer sTIL score in several regards. First, it is
based upon quantification of T-cell populations using
IHC staining of CD3 and CD8. The selection of these
markers was based upon expert consensus, genomic
studies illustrating the prognostic value of Thl-type
gene signatures (that would correlate with CD3 and
CDS infiltration and initially also on T-cell activation
reflected by granzyme B expression) [73], and the rela-
tive stability and quality of staining of these antigens.
Second, whereas the H&E sTIL score aims to character-
ize the mean cell density across the entirety of the tumor
stroma, Immunoscore addresses spatial heterogeneity by
segmenting and quantifying IC densities within two
compartments, the tumor center and the IM, with the
margin defined as a region surrounding the border
between normal cells and cancerous cells. Analysis of
these two distinct compartments was shown in a large
cohort to better predict colon cancer outcomes, com-
pared with single-region analysis. Third, Immunoscore
relies on image analysis software (Immunoscore
Analyzer, HalioDx), and the coding and detailed
methods are not available publicly.

Extensive collaborative efforts by a SITC consortium
have been undertaken to clinically validate Immunoscore
as a prognostic biomarker for colon cancer [2]. In this
study, Immunoscore was found to be prognostic across a
training set, a validation set, and an external validation set.
Consistency of staining was established through the use of
a biomarker reference center that disseminated an opti-
mized immunostaining protocol and control specimens.
Cut-offs for high versus low Immunoscore were defined
using the training set. Cut-offs of 25% and 70% were
selected to create a three-tier Immunoscore (low versus
intermediate versus high). A cut-off of 25% was selected
for a two-tier Immunoscore (low versus high). Using this
methodology, Immunoscore was proven across training
and two validation cohorts to be highly prognostic of
disease-free and overall survival, independent of other
clinical factors. Recently, Immunoscore was also shown
to have prognostic significance in the context of metastatic
colorectal carcinoma [29].

Reframed using spatial metrics, the Immunoscore
method includes the following steps: (1) segmentation of
the tumor into IM versus tumor center; (2) rasterization of
each compartment and estimation of IC densities in each
raster cell; (3) calculation of mean IC densities for each
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compartment and calculation of a composite Immunoscore.
Like the breast cancer sTIL score, Immunoscore could be
enhanced by leveraging novel spatial analytic techniques
across each of these steps. In the segmentation step, tumor
regions are segmented into one of two tissue types, IM or
tumor center. This is conducted by defining an IM buffer
zone as 360 pm spanning each side of the border separating
tumor from normal tissue. This approach is reasonable,
albeit arbitrarily defined, but there exist alternative methods
for adjusting spatial heterogeneity in relation to the
IM. Across multiple tumor types, ICs have been shown
to exhibit a density gradient according to distance from the
margin. To capture the data inherent to the density gradient,
IC and IM spatial locations could be collected in vector
dataset format, allowing for computation of densities across
regions spanning various distances from the margin. These
densities could then be assessed for prognostic significance
using regression modeling. One caveat of Immunoscore is
that the IM may not be adequately sampled in every
biopsy.

In the rasterization step, the tumor is divided into
rectangular subregions. Each subregion is labeled as
margin or center, and the IC densities are estimated
within each subregion. Because raster grid size or shape
(e.g. rectangular, hexagonal, Voronoi polygon) has been
previously shown to influence overall IC estimation and
prognostic outcome, in the context of the SITC
Immunoscore validation project [2], it would be of inter-
est to use this dataset to conduct a sensitivity analysis
that illustrates the impact of rasterization method on
Immunoscore. These data may be helpful for improving
the performance of Immunoscore but may also enhance
other investigations in the field of spatial IC analysis.

In the calculation step, raster cell IC densities are used to
calculate the sample’s overall Immunoscore. First, for each
cell type (CD3 and CDS8) and compartment (IM and tumor
center), the mean IC density across all raster cells is com-
puted. The mean is then converted into a percentile score
by comparing against scores across the entire cohort of
samples. Finally, the percentiles across the four cell types
(CD3/margin, CD3/center, CD8/margin, CD8/center) are
averaged, creating a single Immunoscore for each patient,
which is prognostic of survival. Using the clinically anno-
tated SITC Immunoscore dataset, alternative spatial met-
rics could be developed and tested for clinical utility.
Examples would be to explore the prognostic significance
of colocalization metrics of ICs with tumor cells
(as summarized above), to evaluate the significance of the
shape of the IM (i.e. fractal dimension, as described above),
or to evaluate the prognostic impact of IC hotspots/
coldspots (as described above). A ML approach could be
adopted to identify a unique combination of spatial metrics
that confers the optimal prognostic utility.

Conclusion

Modern histologic imaging combined with ML has pro-
vided the opportunity to evaluate not only the overall IC
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density of tumors, but also the degree of heterogeneity of
IC infiltration, the absence/presence of IC clustering,
patterns of cell—cell colocalization, the complexity of the
tumor/stromal interface, and the gradient of IC density in
relation to the IM of the tumor. Two complementary
analytic approaches, raster-based and vector-based, can
be leveraged to generate spatial biomarkers that offer a
more fine-grained picture of tissue architecture. An impor-
tant future step is to amalgamate spatial and transcriptomic
data using next-generation spatial sequencing technolo-
gies, which provides us with the challenging opportunity
to analyze all cell types of a tissue in their spatial context.
Although most of the available technologies focus on
analysis of two-dimensional images, in the future, strate-
gies may be developed to analyze TIL patterns in three-
dimensional space. Additionally, sustainable strategies for
cohort generation, data sharing, and dimensionality reduc-
tion methods to decrease data storage requirements are
becoming more crucial than ever.

In this nascent field, a key deficiency is the lack of an
investigative path to establish that novel spatial bio-
markers can improve clinical prediction/prognosis
beyond that of existing biomarkers. With the advent of
cloud computing and with increasing emphasis on data
sharing by regulatory agencies and editorial boards, in
the future it may be possible to leverage shared databases
that contain digitized imaging files and outcomes data
from pivotal clinical trial datasets. Such databases could
provide necessary standardization, quality control, and
sample sizes to permit the validation of clinical utility of
a novel spatial biomarker. Efforts should be made by
industry, consortia, investigators, and other agencies to
contribute to these databases. Oversight by a committee
may be required to ensure that the data are used effi-
ciently, without bias, and without compromising patient
privacy. An additional validation step for a novel bio-
marker is external quality assessment, whereby multiple
laboratories replicate and confirm findings. In the con-
text of mIF/mIHC-based biomarkers, external validation
might be achieved via multi-institutional consortia spon-
sored by the National Institutes of Health, SITC, and
other organizations.
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