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Abstract: Compressive Spectral Imaging (CSI) is an emerging technology that aims at
reconstructing a spectral image from a limited set of two-dimensional projections. To capture
these projections, CSI architectures often combine light dispersive elements with coded apertures
or programmable spatial light modulators. This work introduces a novel and compact CSI
architecture based on a deformable mirror and a colored-filter detector to produce compressive
spatio-spectral projections without the need of a grating or prism. Alongside, we propose
a tensor-based reconstruction algorithm to recover the spatial-spectral information from the
compressed measurements. Experimental results on both simulated and real datasets demonstrate
efficacy of the proposed acquisition architecture and the especially crafted inversion algorithms.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Spectral imaging (SI) has become a powerful analytical tool in various fields, such as remote
sensing, agriculture, environmental monitoring and medicine [1-3]. The datasets acquired by
a SI system are three-dimensional images that comprise a large amount of spatial information
across a multitude of wavelengths. Conventional imaging spectroscopy scan adjacent zones of the
underlying scene and combine the readings to construct spectral data cubes [4—6]. Specifically,
these sampling techniques are based on pushbroom, whiskbroom or spotlight systems, which
measure the signal at a certain constant sampling rate on each of the three dimensions [7].
As a result, these sensing techniques require scanning a number of slices of the datacube that
grow linearly in proportion to the desired spatial-spectral resolution. Thus, these systems are
impractical in dynamic or fast-moving scenarios.

To alleviate these difficulties, compressive spectral imaging (CSI) has emerged as an alternative
acquisition framework based on the compressive sensing (CS) theory that captures and compresses
simultaneously the relevant information embedded in the spectral image of interest [8]. CSI
aims at recovering a spatio-spectral data cube by acquiring two-dimensional projections of
encoded and shifted versions of the spatio-spectral source through exploiting the use of coded
apertures and optical dispersive elements [7,9]. In particular, the original coded aperture
snapshot spectral imager (CASSI) paradigm was introduced by the seminal dual disperser
(DD-CASSI) [10] architecture, which employed two dispersive elements and one coded aperture,
leading to measurements that only encode the spectral content for each spatial position. As an
evolutionary step, the single disperser (SD-CASSI) [11] has become one of the most popular
spectral imaging sampling schemes since it uses only one coded aperture located a the image
plane which is later dispersed by a single prism or grating before being projected onto a detector,
producing a particular spatio-spectral coded projection onto the detector, but effectively reducing
the calibration complexity in contrast with the DD-CASSI. All CASSI schemes rely on CS sparse
reconstruction algorithms to recover the data cube by exploiting spatio-spectral redundancies
in a transform domain such as Wavelet and DCT. Several variations of the SD-CASSI have
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Fig. 1. Diagram of four multishot compressive multispectral cameras: (a) DD-CASSI, (b)
SD-CASSI, (c) 3D-CASSI and (d) proposed architecture.

been proposed since its inception, such as the approach in [12] where the prism and coded
aperture have been interchanged, generating a different class of spatio-spectral coding and using
dictionary learning with overlapped patches for improving the reconstruction quality. Another
modification to the CASSI systems that can be used to enhance the reconstruction quality is the
use of dynamic optical elements such as a digital micromirror devices (DMDs), which can be
used as programmable coded apertures enabling the possibility of taking different projections
of the data cube. The schemes for the multishot DD-CASSI [10] and SD-CASSI [11] can be
found in Fig. 1(a) and 1(b), respectively. Similarly, a spatial light modulator (SLM) based on
LCOS technology enables the ability to produce predetermined spectral filters, and together
with the use of the DMD has enabled the development of the colored coded aperture spectral
imager (3D-CASSI) [13], providing a rich and flexible multishot spatio-spectral coding scheme,
as seen in Fig. 1(c). It is worth noting that the reconstruction quality attained by the 3D-CASSI
surpasses the results obtained by the DD-CASSI or SD-CASSI, at the expense of additional
optical elements, more sensitivity to calibration errors, and a diminished light throughput.

In this regard, compressive spectral imaging (CSI) systems with more flexibility, versatility,
better light throughput, and lower calibration complexity are highly desired [14]. Taking
advantage of the simplicity of the RGB Bayer filter design, a static color-coded aperture placed
in front of the detector array has been included as a robust solution to snapshot multispectral
imaging [15], at the expense of light throughput from the filters. However, spatial resolution is
severely affected as more spectral bands are demanded [11], which can be enhanced by properly
designing the filters [16], which can also be forced to have a defined throughput. Nonetheless, the
usefulness of colored filter arrays can be improved by adding a fixed grating [17] or prism [18].
Similar to the case of the multishot CASSI systems, the performance can be greatly improved by
adding variability, which can be achieved by moving the dispersive element [19]. In order to
not depend on a dispersive element, in [20] a DMD is used for dynamically coding the spatial
domain before reaching an array of Fabry-Perot filters placed before the detector, although these
filters are narrow and may significantly reduce the light throughput. Moreover, 3D-CASSI finally
provides with a mixed solution where both spatial and spectral coding are dynamic; one by the
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DMD while the other provided by the LCOS SLM, although not as arbitrary nor selective as the
Fabry-Perot array. Nevertheless, it is well known that using a binary coded aperture scheme,
such as what can be provided by a DMD, may jeopardize even further the diminished light
throughput of a colored filter array. In this regard, deformable mirrors (DM) have become an
attractive solution as programmable phase coding devices to perform wavefront modulation at
the pupil plane to compensate for the effects of atmospheric turbulence in astronomy images [21],
correct the aberrations of the eye [22], encoding depth-of-field [23], and performing compressive
imaging [24], among others, with a low loss of radiant energy flow. In particular for compressive
imaging [24], the DM provides with dynamic phase modulation capabilities that can also enable
a multiframe coding approach.

In this work, we propose a novel multishot CSI system along with the mathematical framework
required to efficiently reconstruct spectral images from compressed measurements. The optical
architecture relies on a DM for the spatial coding, and an imaging sensor with a color-coded
aperture for the spectral coding, as can be seen in Fig. 1(d). The main technical benefits
of the Deformable Mirror (DM) is that it offers high speed modulation with straightforward
calibration and high light throughput due to its controlled continuous phase modulation. Apart
from allowing multiple shots, the proposed CSI system enables the design of spatial/spectral
coding in arbitrary directions in contrast with CASSI systems. We also propose a methodology
that includes the spatial-spectral multiplexing sensing protocol and an alternating direction
method of multipliers (ADMM)-based tensor reconstruction algorithm.

2. Optical sensing model of the proposed architecture

Let f,(x, y, 1) denotes the 3D function that represents the spatial-spectral source density with
(x, y) being the spatial coordinates and A being the spectral dimension. Light is firstly transmitted
through a beamsplitter to a deformable mirror (phase mask) located on the pupil plane, which
allows adding controlled aberrations to f,(x, y, 4). This phase modulation can be expressed as

fl(x’ y’/l) = / / |h(x_xl7y_yl’ /l)lzﬁl(xl’ y,7 A)dx,dy/’ (1)
with
1 e e » ’ 7’ ;LT ’ ’
h(x, y, A) = /1_ / / p(xl’ yl)eIZHW(X Ly )e—l%(xx +yy )dx'dy', )
T J—c0 J -0

where h(x, y, 1) represents the PSF, z € R the image distance, $(x, y) the pupil function, and
“W(x, y) is the wavefront aberration function. Specifically, the wavefront can be expressed as
W(x,y) = 2.2, aiZi(x,y), where Z;(x, y) represents the i-th Zernike polynomial in the Noll’s
notation and g; its the aberration coefficient [25]. Although the DM is achromatic in nature note
that the fact of using lenses in the system with potential chromatic aberrations introduce the
need to model a spectral depedent PSF. The code applied by the color-coded aperture to the
spatio-spectral density is fi(x, y, )t(x, y, 1), with
A

X .y . .
t(x,y,1) = E Ty in,istect | — — i1, =— — 2, — — i3], 3
(x y ) L i1,02,13 (Ac 131 A, 2 Ay 13 3)

where T;, ;,,i; € [0, 1] is the coding performed on the (iy, i2, i3) h spectral voxel, and A, and Ay
account for the pixel sizes of the color-coded aperture and focal plane array (FPA) detector,
respectively. Furthermore, there exists one-to-one matching between the elements of the color
filter array and those of the FPA; thus, the energy in one detector pixel is affected by just one
optical filter element. The continuous image on the detector can be then expressed as

L pAd pAd
glx,y) = / / / t(x,y, ) fi(x’,y', Ddx'dy’dA. 4)
A J-ad J-Ad
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Equation (4) can be posed as a compressed sensing problem, which is traditionally modeled as
the linear system g = ®f + €. In this sense, g represents the discrete vectorized version of the
measurements, f is the discrete vectorized version of the spectral image, and ® € R">" is a matrix
including the sensing transfer function with n = NML and m = Ny N>K, whit K is the number of
snapshots. Here, for each snapshot, the membrane of the deformable mirror is deflected according
to an arbitrary Zernike polynomial W(x, y)*) = 2y agk)Z,- with k € {1,..., K}, where W(x, y)®
represents the membrane deformation for the k-th snapshot. Such linear system requires the
product between a big sparse matrix ® with a vector, demanding a mathematical operation of
order O(mn). To alleviate this problem, we model the acquisition process Eq. (4) in tensor form,
following the procedure described in Appendix 5, as

3 3
G=|To l—lwo l—[EXJ-Aj x4 1| x; AT || x5 17 5)
i=1 j=1

where G € RM*NXIXK represents the measurements, T € RM*NXEXK jg the color-coded aperture,
W e CMXNXLXK corresponds to the wavefront aberration matrix, A3 = I € RE%E is an identity
matrix, and matrices A; € RM*M A, ¢ RV*N are the direct Discrete Fourier transform basis.
Note here that the tensorial representation in Eq. (5) preserves the original structure of the data,
critical for the analysis of their intrinsic properties. The conventional problem to obtain an
estimation of F from the set of compressed measurements G, considering Eq. (5), is given by

e [l6- o (L [wo ([ e A n)<a) oo

where ||-||  represents the Frobenius-norm. To promote correct solutions of F from its compressive
measurements G, CSI theory demands the use of sparsity promoting priors. Sparsity indicates
that F must be S-sparse in an arbitrary set of orthogonal basis ¥; € RNi*Nj with j € {1,2,3}
and {N;, N2, N3} = {M, N, L}, such that F = H;Zl 0O x; ¥;, where @ € RM*N*L ig the sparse
tensor that contains S << M NL non-zero coefficients. Therefore, the reconstruction problem
described in Eq. (6) can be rewritten as

2
argmin |G- [To (T, [Wo ([T @ A/%] xa 1)] xi A7) | s 17|+ a]j@ll,. )
where ||-||; represents the £;-norm.

3. Proposed reconstruction algorithm

The goal of the proposed algorithm, summarized in Algorithm 1, is to reconstruct ® from its
compressive measurements G in Eq. (7). Algorithm 1 solves Eq. (7) via a proximal alternating
optimization methodology which finds @ through
2
3 3
[C argmin |G — |T o [TIWel|[]@xiA¥)|xa1]|| xi AT || xs 1"

i=1 Jj=1 F

3
+Ble - ol + el + x| [ex ¥ . ®)
J=1 TV

where || - ||y represent the total variation regularization, 4; > 0, A, > 0 and 8 > 0 are regular-
ization parameters, where Eq. (8) is solved using an ADMM approach [26]. For this purpose,
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Algorithm 1: Spectral image reconstruction
Data: W, T, G, u
Result: F € RM*NxL
Initialization:
1.t <0,
2. [0, 2,&,p', n'] — 0 e RMNxL

repeat

3. Update @“*! via (10)
Update Q! via (11)
Update E*! via (12)

4.
5.
6. ZL1+1 — ZLI _ (QHI _gul)
7.
8.

+l _ =t 3 o+l o, .

Y, =V, — ('5 —Hj:19 Xj ‘PJ)
te—1t+1

9. F=E'

until some stopping criterion is satisfied,

return F

2
we introduce the following functions I';(®) = HQ - [I o (H?Zl [WoTI(0)] x; AIT)] X3 ITHF,
2(0) = ([Hizl 0 Xx; Aj‘l',-] X4 1), L@ = g[@ - 9| + 4[], and Ty@) = [[E]], with
the splitting variables Q = @ and E = I—[?:l O x; ¥;, such that Eq. (8) can be rewritten as

3
agmin - N@+H@+0LE st 8=0 E=[[ex ¥, ©)

alternative form of Eq. (9) can be decoupled in three independent optimization problems

2

3
0" —argmin[Y - |To ]_[ [Wol@)] x; AT || %3 17|| + m1]1©° — @ = v
© i=1 F

3
tllE - [ ] © % ¥ - il (10)

j=1
2! = argmin B[} - Q[f; + i 10 - 2~ i + 2[j2]],. an

3

=t = arngin”E”TV + 1||E - HQ‘ x; W = Vi (12)

j=1

To solve the optimization problems in Egs. (10)-(12), we use the Sherman-Morrison-Woodbury
matrix inversion algorithm [27], soft-thresholding, and a fast TV algorithm approach, respectively.
The goal of the proposed algorithm, summarized in Algorithm 1, is to reconstruct the datacube F
from its compressive measurements G.
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Fig. 2. Experimental setup implemented in the laboratory.

4. Simulations and experimental results

In this section, the performance of the proposed CSI architecture is evaluated using synthetic
and experimental compressive measurements. First, the results obtained with the compressive
sensing (CS) reconstruction algorithm are presented using the simulated acquisition process of
the CSI architecture. Then, a testbed implementation of the proposed system is used for capturing
experimental measurements, as can been see in Fig. 2.

4.1. Quality metrics

To compare the quality of the rendered spectral images obtained with the proposed architecture
those obtained by against the SD-CASSI, DD-CASSI, and 3D-CASSI architectures, two metrics
were selected, the peak signal-to-noise-ratio (PSNR), defined as,

L
1
PSNR = > [1010g10

=1

maX(F:, 503 )2

MSE (F, F) )

and the spectral angular mapper (SAM), defined as,

iy B i,
SAM— i3=1 111213 112,13 (14)
Z Z ( ”F 13”2 ”F m||2

ll 1ip=

where max(-) : RM*N — R is a function that returns the maximum possible value of F¢, .iy» MSE s
the mean squared error between F. . ;, and its approximation INT':, Lizs ||I~?';, sl = ||Vec(F;, .iz)|l2, and
213 VB isFinini, = (vec(F..;,), vec(F. . ;,)) with (-, -) representing the dot product between
two vectors. Thus, the PSNR metric is defined as the ratio between the maximum possible power
of a signal and the power of the corrupting noise related to the fidelity of the reconstruction,
while the SAM metric provides the spectral angle between the spectral signature of the reference
image and its approximation.

4.2. Simulated acquisition process

In order to verify the proposed CSI architecture, the compressive measurements are simulated
using the forward model in Eq. (5), adding Gaussian noise with zero mean and variance given
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Fig. 3. Spectral image reconstruction with K = 2 and SNR = 50[dB]. Here, for the first
snapshot, in the two cases (a) and (b), the measurement is generated by using W(x, y) = a;Z;,
where i € {4,...,15} and aq; € {0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5}. For the second
snapshot, the measurement is generated by using (a) W(x, y) = 0 and (b) W(x, y) Z,IZ 4 GiZi.

by a specific signal-to-noise-ratio (SNR). The spectral images used to test the performance of
the proposed architecture are Beads [28], Feathers [28], Ribeira [29], and Flowers [29]. The
spectral images have a spatial resolution of M X N = 512 x 512 and L = 26 spectral bands. The
transmission function of the fixed color-coded aperture is generated using a Bernoulli distribution
with p = 0.5. For each data set, we test three noise scenarios with signal-to-noise ratios
(SNR) of {20, 30, 50} [dB], and a compression level of ¢ = 100 x (1 - %) ~ {93%, 90%, 85%},
obtained using K = {2, 3, 4} snapshots, respectively. The latter means that the spectral estimation
is attained from only ~ {7%, 10%, 15%} of the original data. To select the set of Zernike
polynomials that exhibit better performance in the proposed architecture, a cross-validation
analysis by varying the used of two Zernike polynomials for the reconstruction of the spectral
image was developed, as can been see in Fig. 3. Specifically, this analysis was developed in
two aspects. First, one of the measurements is simulated by deforming the surface of the DM
from using a pure Zernike polynomial W(x, y) = a;Z;, and the second measurement is simulated
by setting the DM without aberration in its surface W(x, y) = 0, as can been see in Fig. 3(a).
Second, one of the measurements is simulated by deforming the surface of the DM from using
random Zernike coeflicients W(x, y) = lez 4 @i Z;, and the second measurement is simulated by

SD-CASSI mm 3D-CASSI
©a DD-CASSI =m Proposed

=dNS

[ap] oz

=dNS

[ap] o¢

=4NS

Lap] os

Fig. 4. Reconstruction quality analysis for K = {2,3,4} and SNR = {20,30,50}. Fur-
thermore, a measurement example generated from the Zernike polynomials (b) W = 0, (c)
W =2Zs5,(d) W =Z and (e) W = Z;3 are illustrated.
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deforming the surface of the DM from using a pure Zernike polynomial W(x, y) = a;Z;, as can
been see in Fig. 3(b). For the second case, one hundred runs were performed and the mean
values were calculated. Based on the simulation results, illustrated in Fig. 3, the proposed
architecture exhibit better performance when the deformation in the first snapshot is a; = 0 and
the following snapshots are acquired with i = {12, 13,5, 14, 15} and a; = 0.4, respectively. This
sequence of Zernike polynomials is select taking into account the trade-off between PSNR and
SAM performance.

To evaluate the impact of the total of acquisitions and noise level on the quality of the
reconstruction, we analyze the performance of the SD-CASSI, DD-CASSI, 3D-CASSI and the
proposed architecture in terms of the PSNR metric. In Fig. 4, it can be seen that the perfomance
of the proposed novel approach is the best in all cases, and the improvement in performance
of the proposed architecture in contrast with the traditional architectures diminishes as the
amount of snapshots grow. Specifically, the Zernike polynomials used in Fig. 4 were {Zy, Z1»},
{Zy, Z12, Z13} and {Zy, Z12, Z13, Zs}, for K = {2, 3,4}, respectively. Moreover, the compressive
measurements generated with the aforementioned Zernike polynomials are illustrated in Z, (Fig.
4(b)), Zs (Fig. 4(c)), Z» (Fig. 4(d)) and Z;3 (Fig. 4(e)). Here, it is important to note that
even if the proposed architecture improves its performance as more snapshots are taken, an
optimum trade-off between the compression ratio and reconstruction quality has been found when
K = 3. As such, the following experiments are developed for K = 3, where the compressive
measurements are generated from the Zernike polynomials Zy, Z;5 and Z;3 with a; = 0.4.

Table 1 illustrates the averaged spatial and reconstruction quality measured in terms of both
metrics. For clarity, the best results are bold-faced and the second best are underlined. There, it
can be seen that the proposed architecture overcomes the results obtained with the 3D-CASSI,
DD-CASSI and SD-CASSI architecture overall in all the noise levels. Specifically, the proposed
architecture gains up to 0.91, 1.03 and 5.4 dB in averaged PSNR, against the 3D-CASSI,
DD-CASSI and SD-CASSI architecture, and attains 1.6°, 2.7° and 2.8° less spectral degrees
in averaged SAM against the 3D-CASSI, DD-CASSI and SD-CASSI architecture, respectively.
Figure 5(a) illustrates an RGB composite of the attained reconstructions for the SD-CASSI,
DD-CASSI, 3D-CASSI and proposed approaches with a compression ratio of ¢ ~ 90% (K = 3)
and a noise level of SNR = 20 [dB]. Further results with all the datasets can be appreciated
online in the supplemental Visualization 1. To verify the accuracy of the experimental results,
Fig. 5(b) shows the cumulative absolute error between the ground-truth Beads image and the
reconstruction. It can be observed that the error obtained by the proposed approach is lower
than that of 3D-CASSI, DD-CASSI, and SD-CASSI, approaches, respectively. Finally, Fig. 5(c)
shows a visual comparison between 8 out of the 26 spectral bands. To evaluate the spectral
accuracy of the reconstructions, three different points of each scene are illustrated in Fig. (6).
This comparison shows that despite the good approximation of the spectra obtained with the
SD-CASSI, DD-CASSI, and 3D-CASSI approaches, the proposed architecture provides better
approximations of the spectral information. Overall, in Fig. 5 and Fig. 6 can be observed that
the proposed architecture overcomes the reconstructions obtained from the rest of the evaluated
architectures.

4.3. Experimental results

To experimentally evaluate the effectiveness of the proposed architecture, we built a proof-of-
concept CSI system using a monochrome detector as seen in Fig. 2. The laboratory prototype is
composed of a main objective lens coupled with a 4f system that has a phase modulating element
at 2f. The detector array (Point Grey Grasshopper GS3-U3-23S6M-C) is placed at the image
plane. In detail, the intermediate image plane is formed by a 16mm objective lens (Computar
M1614-MP2) which is relayed by a pair of 75Smm Fourier transforming lenses (Thorlabs
AC254-075-A-ML). Using a beamsplitter (BS, Thorlabs CCM1-BS013), we placed a deformable
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Fig. 5. (Visualization 1) (a) Visual comparison of the spectral reconstructions, mapped to an
RGB profile, (b) absolute error of the reconstructions, and (c) comparison of 8 out of the 26
spectral bands. These simulations were developed with the parameters SNR = 20 [dB] and
K =3.
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Table 1. Reconstruction Results Comparison for Simulations using K = 3.
Architecture
Images SD-CASSI DD-CASSI 3D-CASSI Proposed
Metrics
20 30 50 20 30 50 20 30 50 20 30 50
Bead PSNR | 21.8 | 227 | 22.8 | 243 | 273 | 276 | 251 | 273 | 279 | 28.0 | 288 | 298
cads
SAM | 213 | 175 | 17.1 | 214 | 165 | 162 | 207 | 156 | 12.0 | 199 | 142 | 9.5
PSNR 26.5 | 29.2 | 31.1 | 29.1 32.6 37.1 | 293 | 32.5 | 360 | 294 | 331 | 37.2
Ribeira —
SAM 8.1 5.5 3.6 7.2 52 3.1 7.0 53 31 6.2 44 2.8
PSNR 27.7 | 294 | 29.7 | 304 | 33.81 | 37.2 | 30.7 | 33.8 | 36.1 | 314 | 34.7 | 373
Flowers —
SAM | 235 | 159 | 143 | 231 | 163 | 106 | 228 | 16.1 | 105 | 20.1 | 139 | 6.9
PSNR 28.0 | 28.2 | 28.8 | 30.1 33.6 353 | 319 | 33.6 | 353 | 30.7 | 33.8 | 36.6
Feathers —
SAM | 159 | 11.8 | 90 | 175 | 114 | 82 | 157 | 112 | 80 | 148 | 1.1 | 5.5

mirror (DM, Thorlabs DMP40-PO1) at the pupil plane at a distance of 2 f = 150mm from the
intermediate image plane. Finally, the detector array si placed at a distance of 2 f = 150mm from
the deformable mirror. Also, spectral filters mounted on a filter wheel are used before the camera.
Specifically, a set of twelve color filters of 10 A1 nm with steps of ~ 20 nm between the 460-680
nm spectral range were used. In this way, we can emulate any potential colored-filter array
detector. Similarly to the simulations, the transmission function of the emulated color-coded

aperture is generated using a Bernoulli distribution with p = 0.5.

For the experiments we

used two kind of targets to acquire the experimental spectral datasets with the implemented
testbed: an OLED screen with a spatial resolution of 128 x 128 (OLED-128-G2, 4D Systems)
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Fig. 7. Experimental results using the “Digital beads" scene, where (a) is an RGB version of
the reconstruction and (b) is a visualization of 12 reconstructed spectral bands. Spectral
signature reconstructions of four points of the scene, using K = 3 snapshot measurements.




Vol. 27, No. 13 | 24 Jun 2019 | OPTICS EXPRESS 17805

Optics EXPRESS

«@- Spectrometer nn@rn Spectrometer =@ Spectrometer

1 —&— Proposed (SAM=6°) 1 —&— Proposed (SAM=9°) 1 —8— Proposed (SAM=12°)
= e = - ¥
=P1 N JE P2 E
@ g @ @
g 05 893 £ o5 .
L] 5] ] g e
= = =
7} & 3} L s
(=4 0.1 o2 NS Nefon = .28

450 550 650 450 550 650 45 550 650

Wavelength Wavelength Wavelength

(b)

-

|
460 nm 480 nm ‘500 nm 520 nm 540 nm

i

(©

Fig. 8. Experimental result using the “Toys" scene, where (a) is an RGB version of the
reconstruction and (b) is a visualization of 12 reconstructed spectral bands. (c) Spectral
signature reconstructions of four points of the scene, using K = 3 snapshot measurements.

with a displayed RGB image and a constructed scene using a collection of different colored toys.
Using the OLED screen, an image composed of several color beads is loaded into the screen
and the resulting “Digital beads" dataset exhibit a spatial resolution of M X N = 128 x 128
pixels, and L = 12 spectral bands. On the other hand, the constructed scene was illuminated by a
125 [W] mercury lamp and a calibrated quartz tungsten-halogen (QTH) lamp (Newport QTH
63355), recording the “Toys" dataset with a spatial resolution of M x N = 512 x 512 pixels, and
L = 12 spectral bands. Moreover, to validate the spectral reconstruction fidelity, several spatial
points of the real scenes were also measured with a spectrometer in the same range of the color
filters (SR-2500 Spectral Evolution). In both experiments, we considered a compression ratio
of ¢ ~ 25%, obtained when only K = 3 snapshots are captured. Figure 7(a) and 8(a) show an
RGB spectral-mapped version of the two reconstructed scenes from compressive measurements
for the “Digital beads" and “Toys" scenes acquired with the proposed architecture. Although
spectral reconstruction can be seen from Fig. 7(c) and 8(c) for several bands, only the specific
spectra shown in Fig. 7(b) and 8(b) corroborate the accuracy and spectrum resolution achieved
by the experimental reconstructed results when using the proposed architecture with our novel
reconstruction algorithm.

5. Conclusion

In this article, we presented a novel and compact multishot CSI architecture based on a deformable
mirror and a colored-filter detector to produce arbitrary spatio-spectral projections. The image
reconstruction problem was formulated as an inverse problem with two regularization functions,
ensuring a smooth reconstructed image and a sparse decomposition of the image in an appropriate
representation basis, respectively. We developed an ADMM algorithm in tensor representation
to efficiently solve the high-dimensional reconstruction problem. The proposed architecture is
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compared with three state-of-the art CSI architectures on four spectral images, where simulations
results showed an improvement of up to 5.4 dB in PSNR and attained 2.8 less spectral degrees
in averaged SAM when the proposed CSI scheme was using as few as 10% of the data. In
contrast with traditional CSI architectures, the proposed spectral imaging system established a
better trade-off between reconstruction quality and light throughput. In particular, the obtained
simulated and experimental reconstruction results validate the idea that moderate phase coding
coupled with a colored filter detector is a useful and practical tool to dynamically modulate
information in the spatial and spectral domain, allowing a more compact CSI system.

Appendix
Preliminaries on tensors

In this section, we first summarize some main notations and then introduce some useful product,
decomposition, and tensorial representation properties [30,31]. Here, scalars are denoted
as lowercase letters (a, b, . . .), vectors as bold-faced lowercase letters (a, b, ...), matrices as
bold-faced capital letters (A, B, . . .), and tensors as underlined bold-faced capital letters (A, B, . . .).

s Tensor notation: Let X € CN*N2X-XNt pe 3 T-dimensional tensor with a vector
. T T
representation x = vec(X), where x € Clln=1 Nn and vec(+) : {CN*N2X- XNty ¢l Nuy,

* n-Mode product: Let X € CN*-*NT and A € CM*Nn be an T-dimensional tensor and

a matrix, respectively. Then, n-mode tensor by the matrix product (Y =X X, A) €
CN]XN,,,]XMX,IHX‘..XNT is defined by

N
Vityowin-tsfsins1seemit = E Xit, ooy eosi Ui (15)
in

where iy € {1,2,..., Ny} with k #nand j € {1,2,..., M} with {Ng, M} € N.

s Tensor decomposition: Let X € CN*-*Nt and A, € CN=*Nn be a T-dimensional tensor
and orthogonal matrices, respectively. Then, a tensor representation of X in the orthogonal
basis A, can be expressed as

T
0=[]XxAn (16)

n=1

where @ € CN-XNT represents the core tensor which reveals the underlying in-
teractions between the orthogonal matrices A; with X = ::1 O x, AT, and X =

ne
T T T _ T CATA with ATA. — T.
L (T2 X x5 Ag) xi AT =TT, X x; AT A; with ATA; = .
s Tensor notation to linear-matrix model: Let A; € CMi*Ni and X € CN1>-*NT g collection

of matrices and T-dimensional tensor, respectively. Then, the N-mode product between X
and the set of matrices A; can be expressed in matrix notation as

T
[ [X0 A
n

where A € CUTT7 MOXIT{ No) with A = (AT ®A7_1®...QA)),y € cliziMi angd y €
CIiZi Mi are the vector versions of Y and X, respectively.

y = vec (Y) = vec = Avec(X), a7
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