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Abstract: Compressive spectral depth imaging (CSDI) is an emerging technology aiming to
reconstruct spectral and depth information of a scene from a limited set of two-dimensional
projections. CSDI architectures have conventionally relied on stereo setups that require the
acquisition of multiple shots attained via dynamically programmable spatial light modulators
(SLM). This work proposes a snapshot CSDI architecture that exploits both phase and amplitude
modulation and uses a single image sensor. Specifically, we modulate the spectral-depth
information in two steps. Firstly, a deformable mirror (DM) is used as a phase modulator to
induce a focal length sweeping while simultaneously introducing a controlled aberration. The
phase-modulated wavefront is then spatially modulated and spectrally dispersed by a digital
micromirror device (DMD) and a prism, respectively. Therefore, each depth plane is modulated by
a variable phase and binary code. Complimentary, we also propose a computational methodology
to recover the underlying spectral depth hypercube efficiently. Through simulations and our
experimental proof-of-concept implementation, we demonstrate that the proposed computational
imaging system is a viable approach to capture spectral-depth hypercubes from a single image.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Spatial light modulators (SLM) has allowed precise and dynamic shaping of light beams,
becoming increasingly popular in imaging devices. In particular, SLM devices have been used in
computational imaging applications to modulate and disambiguate different dimensions of the
scene such as space [1], wavelength [2], polarization [3] and time [4], to name a few. Depending
on their operating principle, SLMs can be classified into two groups: i) phase modulators, such
as deformable mirrors (DM), liquid crystal on silicon (LCOS), diffractive optical elements (DOE)
and ii) amplitude modulators, such as digital micromirrors devices (DMD), coded apertures (CA),
color-coded apertures (CCA). So far, depth and spectral imaging frameworks have separately
exploited either phase or amplitude modulation to disambiguate the high-dimensional data of
interest in the scene low dimensional projections [5–7].

Depth imaging (DI) refers to the process of estimating the relative distance of 3D objects
from 2D projections. Traditional depth estimation approaches exploit different physical aspects
to extract 3D information. These are conventionally classified into two main modalities: i)
active illumination, such as structured light (SL) or time-of-flight imaging (ToF), and ii) passive
illumination, such as stereo vision (SV), light field (LF), or depth-from-defocus (DFD). Lately,
compressive imaging approaches to DI [8,9] have used dynamic focus modulators with fixed
coded apertures to disambiguate the focus stack. Spectral imaging (SI) refers to the process of
estimating a 3D spectral datacube from 2D projections. Traditional SI uses time multiplexing of
one of the spatial or the spectral dimension to acquire the datacube. In contrast, compressive
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spectral imaging devices often rely on amplitude modulators to code the spectral datacube onto
single or multiple detector array measurements.

Recent works have proposed modifications to either DI/SI architectures to also capture the
complementary spectral or depth information, leading to spectral depth imaging (SDI) devices
able to acquire the 4D hypercube that may find many practical applications in precision agriculture,
autonomous navigation, anomaly detection, gesture recognition, or environment mapping, among
others [10,11]. SDI has been traditionally implemented by optical systems that basically split
the tasks into depth imaging (DI) and spectral imaging (SI) using beam splitters or multiple
sensor arrays [12,13]. However, the huge volumes of data collected are challenging to handle,
which grow linearly with the number of scanned zones and the desired depth, spatial or spectral
resolution [14,15]. Nonetheless, since both DI and SI frameworks share the same basic idea
of projecting 3D information onto 2D projections, we may also be able to share part of the
sensing scheme and even optical elements while tackling the inherent dimensionality problem
of SDI systems. Thus, compressive spectral depth imaging (CSDI) systems [16,17] aim to
capture two-dimensional coded projections of the SDI datacube, which can be later estimated by
compressive reconstruction algorithms [18,19].

Initial approaches for CSDI systems have utilized hybrid systems based on a compressive
spectral imager along with a conventional depth imaging device [12,15,17,20–22]. Since the
coded aperture snapshot spectral imager (CASSI) [23] is one of the most popular architectures for
compressive spectral sensing due to its high spectral resolution, several CSDI systems have been
proposed using the CASSI design, merging it with traditional depth schemes such as SL [22],
ToF [17], SV [12], and LF [21]. Although these methods allow obtaining high accurate depth
estimation, its performance is highly sensitive to environmental light–e.g. active depth sensing
methods–and dependent on the use of multiple acquisitions. On the other hand, recent passive
CDI and CSI systems have separately exploited the use of DM as a programmable phase coding
device to perform wavefront modulation at the pupil plane [24–26]. By combining the DM and a
DMD (such as in multishot CASSI), in this work we propose a CSDI optical system that jointly
modulates phase and amplitude to acquire compressive measurements of the SDI 4D hypercube
in a single snapshot. Specifically, we propose to sweep the focal plane over a range of depths
within the exposure time of a single image acquisition, while incorporating additional phase
modulation and a dynamic coded aperture during the focal sweep. In terms of the mathematical
model, we propose an alternating direction method of multipliers (ADMM)-based reconstruction
methodology, which exploits the properties of the designed compressed measurement to jointly
estimate a high spatial resolution grayscale image and a focal stack grayscale image, which are
then used as prior information to recover an all-in-focus spectral hypercube. In contrast with
[12,17,21,22], a distinctive feature of the proposed architecture and reconstruction method is that
it lacks of the need for stereoscopic settings or multi-shot strategies to obtain SDI. We present
an extensive set of simulations on spectral depth images, illustrating the spectral and depth
reconstruction quality. Besides, we implemented a proof of concept prototype to experimentally
corroborate our findings.

2. Compressive spectral depth imager

The proposed CSDI system– coded aperture snapshot spectral depth imaging via depth from
coded aberrations (CASSDI-DFA)– is depicted in Fig. 1. It is comprised of a DM located at the
pupil plane that is responsible for the focal sweep and coding additional aberrations, while the
modulated image is passed through a dynamic coded aperture implemented by a DMD that is
further dispersed by a prism and projected onto a detector array.
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2.1. Continuous sensing model

The mathematical generative model implemented by the CASSDI-DFA is described as follows.
Formally, let f (x, y, λ, z) be the spatial-spectral source density, where (x, y) index the spatial
coordinates, λ index the wavelength and z the depth dimension. First, an objective lens forms an
image in the focal plane of a 4f system that has a DM located at the pupil plane. The wavefront
coding system is imaged onto a coded aperture located at the focal plane. The phase modulation
and the focal plane coding applied to the spatio-spectral density can be expressed as

f1(x′′, y′′, λ, z) = γ(x′′, y′′, z)
∬

f (x, y, λ, z)hM(x′′ − x, y′′ − y, λ, z)dxdy, (1)

with
hM(x′′, y′′, λ, z) =

1
λz

∫ ∞

−∞

∫ ∞

−∞

P(x′, y′)ei2πW(x′,y′)e−i 2π
λz (x

′x′′+y′y′′)dx′dy′, (2)

and
γ(x′′, y′′, z) =

∑︂
ix,iy,iz

Cix,iy,iz rect
(︃
x′′

∆c
− ix,

y′′

∆c
− iy

)︃
, (3)

where hM(x′′, y′′, λ, z) is the point-spread-function introduced by the DM, γ(x′′, y′′, z) represent
the coded aperture, P(x′, y′) is the pupil function,W(x′, y′) is the wavefront aberration function,
Cix,iy,iz ∈ {0, 1} is the coding performed on the (ix, iy)th voxel at depth zi, ∆c, and ∆d account
for the pixel sizes of the CA, with ix = {0, . . . , Nx − 1}, iy = {0, . . . , Ny − 1} indexing the
rows and columns inside each z depth, and iz = {0, . . . , Nz − 1} indexing the depth dimension.
Specifically, the wavefront can be expressed as W(x′, y′) =

∑︁∞
j=1 ajZj(x′, y′), where Zj(x′, y′)

represents the j-th Zernike polynomial (ZP) in the Noll’s notation and aj its amplitude coefficient
[27]. Then, the spatially modulated wavefront propagated through the dispersive element is
spectrally decomposed following a wavelength-dependent horizontal shifting S(λ) [23], such that
the density can be seen in the detector plane as

g(x′′′, y′′′) =
⨌

f1(x′′′, y′′′, λ, z)hP(x′′ − x′′′ − S(λ), y′′ − y′′′, λ)dx′′dy′′dλdz, (4)

where hP(x′′ − x′′′ − S(λ), y′′ − y′′′, λ) accounts for the impulse response of the optical system.

2.2. Discrete sensing model

We first defined C as the discrete version of the coded aperture with C ∈ RNx×Ny×Nz . Hence,
based on C and Eq. (4), the discretized version of the compressed measurement can be expressed
as

Gix,i′y =

Nz∑︂
iz=1

Nλ∑︂
iλ=1

F̃:,(i′y−iλ), ◦ C:,(i′y−i3),iz , (5)

with F̃:,:,iλ ,iz = F:,:,iλ ,iz ∗ (HM):,:,iz , where G ∈ RNx×(Ny+Nλ−1) is the discrete compressed measure-
ment, HM ∈ R

Nx×Ny×Nz is the discrete point-spread-function introduced by the DM, and
F ∈ RNx×Ny×Nλ×Nz is the discrete spatio-spectral-depth source. Note that the compressed
measurement in 5 yields a compression ratio of (Ny+Nλ−1)

NyNλNz
, where the spectral and depth dimension

are projected onto a 2D image. Here, note that the spectral and depth-sensing model is inspired
in the CASSI sensing geometry [23] and the depth-dependent image formation [28], respectively.
Based on Eq. (5), the proposed optical system can be represented as a linear system of the form,

g = HΦf + ϵ , (6)

where g ∈ Rm×1 represents the vectorized version of G with m = Nx(Ny + Nλ − 1), f ∈ Rn×1

represents the vectorized version of F with n = NxNyNλNz, Φ ∈ Rn×n is the matrix that models
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Fig. 1. Sketch of the proposed CASSDI-DFA system. Here, the deformable mirror’s
function is to sweep the depth planes and introduce a phase modulation. The coded aperture
and the prism encode and disperse the spatial and spectral information, respectively, to be
integrated by the sensor.

the aberrations introduced by the deformable mirror, H ∈ Rm×n is the sensing matrix that models
the spatial codification and spectral dispersion, and ϵ ∈ Rm×1 represents the noise. Note that, in
6 the defocus effect is encoded as an intrinsic feature of the high dimensional object f, i.e., the
spatially varying PSF associated with the depth information is an unknown variable. Specifically,
the entries of the H are given by

Hi,j =

{︄
cu, if i = mod(j, NxNy) + Nx ⌊

mod(j,NxNyNλ)

NxNy
⌋

0, otherwise
, (7)

for i = {0, . . . , m − 1}, j = {0, . . . , n − 1}, u = mod(j, NxNy) + NxNy⌊
j

NxNyNλ
⌋, and cu are the

entries of c ∈ RNxNyNz×1, which is the vectorized version of C. A conventional approach to obtain
an estimation of f from its compressed measurement g, considering Eq. (6) and the use of sparsity
promoting priors, is given by

θ = arg min
θ
∥g −HΦΨθ ∥22 + τ∥θ ∥1, (8)

where ∥·∥1 represents the ℓ1-norm, θ ∈ Rn×1 is a sparse representation of f in the orthonormal
basis Ψ ∈ Rn×n with ΨTΨ = I, and τ ∈ R+ is a regularization parameter. Here it is important to
note that although the optimization problem established in 8 allows to obtain an approximation
of the sparse high dimensional data cube θ, it requires high computational complexity, which is
bounded by O(n3).

3. Reconstruction algorithm

Conventional reconstruction algorithms based on multiresolution approaches aim to rewrite a
high-complexity optimization problem into a set of low-complexity subproblems. We build on
this concept to propose a multiresolution spectral-depth reconstruction methodology, splitting the
high dimensional optimization problem into three low-complexity problems that allow estimating
an all-in-focus grayscale fg ∈ R

ng×1 with ng = NxNy, an all-in-focus spectral fs ∈ R
ns×1 with

ns = NxNyNλ, and a grayscale focal stack version ff ∈ R
nf×1 with nf = NxNyNz, respectively,
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from a single compressed measurement g. Having estimated the focal-stack grayscale image fs,
these are used as an input for a pre-trained U-net neural network [29] to estimate the depth map
information fd ∈ R

nd×1 with nd = ng. Figure 2 shows the pipeline of the proposed reconstruction
methodology.

Fig. 2. Structure of spectral-depth image reconstruction pipeline

3.1. Reconstructing fg

Mathematically, fg is defined as fg ≈ Dgf, where Dg = 1T
Nz
⊗

[︂
1T

Nλ
⊗ Ing×ng

]︂
is a depth decimator

matrix with Dg ∈ R
ng×n. Then replacing fg in 6, we can obtain the equivalent sensing model for

the all-in-focus grayscale version as

g = HΦDT
g fg + ϵg, (9)

where ϵg = HΦ
[︁
DT

g Dg − I
]︁−1 f + ϵ . Note that 9 can be solved following an ℓ2 − ℓ1-norm

approach, where the ℓ2 model is only optimal when the noise is white Gaussian, and it tends to
over-smooth the image details. In contrast, the ℓ1-norm approach effectively preserves the edges
in the image [30]. More precisely, fg can be estimated via(︁

fg, θg, w
)︁
= arg min

fg,θg,w

1
2
∥g−HΦDT

g fg∥
2
2+τw∥w∥1+τg∥θg∥1,

subject to w = T fg, θg = Ψgfg

(10)

for ∥fg∥TV = ∥T fg∥1, where T is an operator matrix that computes the first-order finite differences
of the neighboring features across horizontal/vertical directions, T TT ≈ I, τg ∈ R+ is a
regularization parameter,Ψg ∈ R

ng×ng is an orthonormal representation basis withΨT
gΨg = Ing×ng ,

and θg ∈ R
ng is a sparse representation of fg in the basis Ψg. Following an ADMM methodology,

an alternative form of 10 can be expressed as(︁
fg, w, θg

)︁
= arg min

fg,w,θg

1
2
∥g−HΦDT

g fg∥
2
2+ α1∥w − T fg − ν

ι
1∥

2
2+α2∥θg − Ψgfg − ν

ι
2∥

2
2

+τw∥w∥1+τg∥θg∥1,
(11)

where {ν1, ν2} ∈ R
ng×ng are scaled dual variables with ν ι+1

1 = ν ι1 −
(︂
wι+1 − T f ι+1

g

)︂
, and

ν ι+1
2 = ν ι2 − (θ

ι+1
g −Ψgf ι+1

g ), and {α1,α2}>0 terms are the weights of the augmented Lagrangian
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term. The method to solve Eq. (10) via 11 is summarized in Algorithm 1. In summary,
the computational complexity of the all-in-focus grayscale image estimation algorithm is
O(2n2ng + n3

g + n2
g(9+ n)+ ng(15+ 2mn)), and its computational complexity is bounded by O(n3

g).

Algorithm 1: All-in-focus grayscale algorithm fg

Input:g, fg,α1,α2, τ2, τg
Result: fg
1. {ν0

1, ν0
2, w0, θ0

g} ← 0 ∈ Rng×1

for ι = 0 to Iter do
2. f ι+1

g =[︁
DgΦ

THTHΦDT
g + (α1 + α2) I

]︁−1
·
[︁
DgΦ

THTg + α1T(wι − ν ι1) + α2Ψ
T
g (θ

ι
g − ν

ι
2)
]︁

3. wι+1
1 = soft

(︂
T f ι+1

g + ν ι1, τw/α1

)︂
4. θ ι+1

g = soft
(︂
Ψgf ι+1

g + ν ι2, τg/α2

)︂
5. ν ι+1

1 = ν ι1 −
(︂
wι+1 − T f ι+1

g

)︂
6. ν ι+1

2 = ν ι2 −
(︂
θ ι+1

g − Ψgf ι+1
g

)︂
end

3.2. Reconstructing ff

Similarly to Eq. (9), ff can be directly related to f as ff = Df f, where Df = INz×Nz ⊗

[︂
1T

Nλ
⊗ Ing×ng

]︂
is a spectral decimator matrix with Df ∈ R

nf×n. Then replacing ff in 6, we can obtain the
equivalent sensing model for the focus stack grayscale version as

g = HΦDT
f ff + ϵ f , (12)

where ϵ f = HΦ
[︂
DT

f Df − I
]︂−1

f + ϵ . Having calculated the all-in-focus grayscale version fg from
g in 10, and relating ff to f in Eq. (9), an estimation of the focal stack grayscale version ff from g
and fg can be obtained. Moreover, to limit the solution space and exploit the spatial correlation,
we establish a ℓ2 fidelity function based on the all-in-focus grayscale version fg. More precisely,
ff can be estimated via(︁

ff , θ f
)︁
= arg min

ff ,θf

1
2
∥g−HΦDT

f ff ∥
2
2+
σf

2
∥fg − Bf ff ∥

2
2+τf ∥θ f ∥1, subject to θ f = Ψf ff (13)

where τf ∈ R+ is a regularization parameter, Bf ∈ R
ng×nf is a depth decimator matrix with

Bf = 1T
Nz
⊗ Ing , and Ψf ∈ R

nf×nf is an orthonormal representation basis with ΨT
f Ψf = Inf×nf .

Similar to 11, Eq. (10) can be solved by

(ff , θ f ) = arg min
ff ,θf

1
2
∥g−HΦDT

f ff ∥
2
2+
σf

2
∥fg − Bf ff ∥

2
2+α∥θ f − Ψf ff − ν∥

2
2+τf ∥θ f ∥1, (14)

where ν ∈ Rnf is a scaled dual variable with ν ι+1 = ν ι−
(︂
θ ι+1

f − Ψf f ι+1
f

)︂
and α>0 is the weighting

of the augmented Lagrangian term. The method to solve Eq. (13) via 14 is summarized in
Algorithm 2. In summary, the computational complexity of the focal-stack grayscale image
estimation algorithm is O(n3

f + n2(2nf + 1) + n2
f (n + ng + 8) + nf (n + ng + 2mn + 11) + mn), and

its computational complexity is bounded by O(n3
f ).
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Algorithm 2: Grayscale focal stack algorithm ff

Input:g,α,σ, τf
Result: ff
1. {ν0, θ0

f } ← 0 ∈ Rnf×1

for ι = 0 to Iter do
2.
f ι+1
f =

[︂
DfΦ

THTHΦDT
f + σBT

f Bf + αI
]︂−1
·

[︂
DfΦ

THTg + σBT fg + αΨ
T
f

(︂
θ ιf − ν

ι
)︂]︂

3. θ ι+1
f = soft

(︂
Ψf f ι+1

f + ν ι, τf /α
)︂

4. ν ι+1 = ν ι −
(︂
θ ι+1

f − Ψf f ι+1
f

)︂
end

3.3. Reconstructing fs

Finally, fs can be defined as fs = Dsf, where Ds =
[︂
1T

Nz
⊗ Ins×ns

]︂
is a depth decimator matrix

with Ds ∈ R
ns×n. Then replacing fs in 6, we can obtain the equivalent sensing model for the

all-in-focus spectral data cube as
g = HΦsDT

s fs + ϵ s, (15)

where ϵ s = HΦs
[︁
DT

s Ds − I
]︁−1 f + ϵ , and Φ ∈ Rn×n is a matrix that models the aberrations

introduced by the deformable mirror along with the associated defocus aberration. Specifically,
this defocus aberration (spatially varying PSF) is obtained from the deformable mirror focal
sweeping prior information and the neuronal network’s depth map estimation. To improve the
spatial quality in the reconstruction of the all-in-focus spectral image, we included two ℓ2 fidelity
norms based on the all-in-focus grayscale fg and the focal stack grayscale versions ff . Then, the
optimization problem to estimate the all-in-focus spectral data cube is mathematically expressed
as

{fs, θs} ∈ arg min
fs,θs
∥g −HΦsDT

s fs∥
2
2 + ∥Bf ff − Bsfs∥

2
2 + ∥fg − Bsfs∥

2
2 + τs∥θs∥1

subject to θs = Ψsfs

(16)

where τs ∈ R+ is a regularization parameter, Bs ∈ R
ng×ns is a depth decimator matrix with

Bs = 1T
Nλ
⊗ Ing , and Ψs ∈ R

ns×ns is an orthonormal representation basis with ΨT
s Ψs = Ins×ns .

Similar to 11 and 14, an ADMM methodology is used to solve 16 starting with the calculation of
the augmented Lagrangian as

(fs, θs) ∈ arg min
fs,θs

1
2
∥g −HΦsDT

s fs∥
2
2 + α1∥Bf ff − Bsfs∥

2
2 + α2∥fg − Bsfs∥

2
2 + τs∥θs∥1

+α3∥θs − Ψsfs − ν∥
2
2 ,

(17)

where ν ∈ Rns is a scaled dual variable with ν ι+1 = ν ι −
(︁
θ ι+1

s − Ψf f ι+1
s

)︁
, and α3>0 is the

weighting of the augmented Lagrangian term. The method to solve Eq. (16) via 17 is summarized
in Algorithm 3. In summary, the computational complexity of the focal-stack grayscale image
estimation algorithm is O(n3

s + n2(2ns + 1) + n2
s (n + 3) + nm(2ns + 1) + ng(nf + 3) + 4ns), and its

computational complexity is bounded by O(n3
s ). In general, the computational complexity of the

proposed reconstruction methodology for a 4-dimensional spectral-depth image is bounded by
O
(︂ (︁

NxNy ·max (Nλ, Nz)
)︁3)︂ in contrast to 8 which is bounded by O((NxNyNλNz)

3). Therefore,
the complexity ratio between 8 and the proposed reconstruction methodology for a DSI with
Nx = Ny = Nλ = Nz =

4√n is O
(︂

1
4√n3

)︂
.
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Algorithm 3: All-in-focus spectral algorithm fs

Input:fg, ff , g,α1,α2,α3, τs
Result: fs
1. {ν0, θ0

s } ← 0 ∈ Rns×1

for ι = 0 to Iter do
2. f ι+1

s =
[︁
DsΦ

T
s HTHΦsDT

s + (α1 + α2)BT
s Bs + α3I

]︁−1
·[︁

DsΦ
T
s HTg + BT

s (α1Bf ff + α2fs) + α3Ψ
T
s (θ

ι
s − ν

ι)
]︁

3. θ ι+1
s = soft

(︁
Ψsf ι+1

s + ν ι, τs/α3
)︁

4. ν ι+1 = ν ι −
(︁
θ ι+1

s − Ψsf ι+1
s

)︁
end

4. Simulation results

The performance of the proposed optical system and reconstruction method is firstly evaluated by
simulated compressed measurements using the model described in 6, and reconstructing them
using the CSLI-SR reconstruction algorithm. For these simulations, the public dataset [31], and
the hierarchical regression network for spectral reconstruction from RGB images [32] were used
to generate a synthetic spectral depth dataset. Then, these spectral images were resized to have
spatial and spectral dimensions Nx × Ny = 512 × 512 and Nλ = 12, respectively. We analyze the
system performance by considering three main aspects. Firstly, we evaluate the advantages of
multiplexing spectral-depth information via a sequential phase-amplitude modulation approach.
Secondly, we test the phase mask structure’s impact in the rendering fidelity of the 4D information,
varying the pure Zernike polynomials and its amplitude coefficients. Third, we evaluate the
impact of introducing controlled aberrations in the focal length sweeping step by comparing the
proposed CASSDI-DFA system with a depth-from-defocus CASSI system, which is a variation
of the proposed CASSDI-DFA system but setting the amplitude coefficient to zero (aj = 0).
The depth-from-defocus CASSI approach is simulated by sweeping the focal lengths using pure
defocus (Z4). The focal stack images are solely coded by the CASSI system and then integrated
into a single frame. This particular sensing case is called CASSDI-DFD, and its sampling
protocol is analogous to using a varifocal lens instead of a DM.

The measurements are simulated using a set of random black-and-white coded apertures
with 50% transmittance. To obtaining a fast and precise segmentation of the depth map from
the focal stack grayscale estimation, we train and use a convolutional U-net neural network.
Specifically, the network consists of 5 downsampling layers (Conv-BN-ReLU×2→MaxPool2×2)
followed by 5 upsampling layers with skip connections(ConvT+Concat→Conv-BN-ReLU×2).
The output is the predicted depth map at the same spatial resolution as the input image. We
use the standard ADAM optimizer with a mean-square-error (MSE) loss on the logarithmic
depth. We train the models for 100,000 iterations at a learning rate of 0.0001 and a batch size
of 4. The sparse promoting bases are set to be Ψw = Ψ1D−W ⊗ Ψ1D−W , Ψz = Ψ1D−DCT ⊗ Ψw,
and Ψf = Ψ

′

1D−DCT ⊗ Ψw, where Ψ1D−W ∈ R
Nx×Nx - and Ψ1D−DCT ∈ R

Nλ×Nλ -Ψ′1D−DCT ∈ R
Nz×Nz

represent the 1D Wavelet (Symlet 8) basis, and the 1D discrete cosine transform [33], respectively.
All simulations were conducted and timed using an Intel Core i7 3960X 3.30 GHz processor with
32 GB of RAM. To compare the quality of the reconstructions, we use the root mean squared
error (RMSE), the spectral angular mapper (SAM), and the structural similarity (SSIM) metrics.
Specifically, the SSIM metrics are calculated band-per-band and averaged, the RMSE metric is
calculated pixel-wise, and the SAM metric is estimated for each spectral signature and averaged.



Research Article Vol. 29, No. 6 / 15 March 2021 / Optics Express 8150

Fig. 3. Zernike cross-validation analysis for the reconstruction of (a) fg (Algorithm 1), (b)
ff (Algorithm 2), and (c) fs (Algorithm 3). The experiments were performed by using pure
ZP per simulation.

4.1. Reconstruction performance for given aberrations

One of the most important parameters in designing the proposed sensing protocol is the additional
optical aberration induced by the deformable mirror. Thus, we estimate this aberration in terms
of the ZP that yields the best reconstruction quality. Specifically, this analysis is developed
by varying the pure ZPs along with its amplitude coefficient, i.e., W(x, y) = ajZj(x, y) with
j ∈ {5, 6, 7, 8, 9, 10, 12, 13, 14, 15} and aj ∈ {0, 0.1, . . . , 0.9, 1}. This cross-validation analysis
is developed for each one of the three steps of the proposed reconstruction methodology, more
precisely, it is developed for the estimation of fg (Algorithm 1), ff (Algorithm 2), and fs (Algorithm
3). Figure 3 shows a 2D histogram that illustrates the SAM, RMSE, and SSIM metrics of (a) fg,
(b) ff , and (c) fs reconstruction on the set of 50 spectral depth images. In Fig. 3, the axes -x and
-y represents the amplitude coefficient and the pure ZP, respectively, and for clarity, the ZP that
allows obtaining the best results are bounded with a red box. There, it can be seen that the ZPs
that allow obtaining the best reconstruction performance of fg, ff , and fs, are Z8, Z5, and {Z6, Z12},
respectively. Nevertheless, the polynomial that exhibits the best reconstruction trade-off between
fg, ff , and fs is vertical astigmatism (Z6) with a6 = 1. Specifically, for the reconstruction of fg,
the best results are achieved when using a horizontal coma (Z8) with an amplitude coefficient of
a8 = 1. Here it is worth noting that the maximum relative absolute error between the best and
worst result in terms of the SSIM and RMSE is approximately 1.06% and 6%, respectively. In the
case of ff , the optimal reconstruction is achieved by oblique astigmatism (Z5) with an amplitude
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aberration of a5 = 1. Here, the second and third ZP that achieves the best reconstruction results
are Z9 and Z6, respectively, where the maximum absolute error between them are 0.25%, and
9.45% in terms of SSIM and RMSE, respectively.. Finally, for the reconstruction of fs, the
best spectral result in terms of SAM metric is achieved when a vertical astigmatism (Z6) with
an amplitude coefficient of a6 = 1 is used. In contrast, in terms of SSIM and RMSE metrics,
the best performance is achieved by the use of a vertical secondary astigmatism (Z12) with an
amplitude coefficient of a12 = 1. Here, to select the optimal ZP, we compare the reconstruction
performance achieved by Z6 and Z12 in terms of the SAM, SSIM and RMSE metrics, where it is
found that the maximum relative absolute error between them is in average 3% for Z12 and 2% for
Z6. In this manner, the optimal ZP for the reconstruction of fs is Z6 with an amplitude coefficient
of a6 = 1. In summary, the optimal ZP to reconstruct the grayscale focus-stack and spectral
information are Z5, and Z6, respectively, both with a5 = a6 = 1. Although the results obtained by
the use of Z5, and Z6 are close, we select to Z6 as the optimal pure ZP for the reconstruction of
the SDI information, since it establishes the best reconstruction trade-off for fg, ff , and fs. The
regularization parameters used on algorithms 1,2 and 3 were obtained experimentally through
cross validation by minimizing the RMSE values.

4.2. Depth and spectral performance

Fig. 4. Reconstructed focal-stack grayscale image and its respective depth map estimation
(first row) using the CASSI-DFD (second row) and the CASSDI-DFA (third row) sensing
approaches.

Figure 4 illustrates the grayscale focal stack and depth map estimation. Here, the depth
map estimation is obtained via a pre-trained U-net neural network. Specifically, Fig. 4 in the
first row shows the ground-truth focal stack and depth map features of the toy cars image, the
second and third-row shows the reconstruction obtained by the CASSDI-DFA and CASSI-DFD
approaches, respectively. Here, it can be noticed that the disambiguation of the focal stack
features exhibit better results when the DFA approach is used. In the same manner, the depth
map estimation shows improvements by using the DFA sensing approach. To further evaluate
the spatial reconstruction quality, in Fig. 5 the results are evaluated in three fronts: first, the
illustration of RGB composites of the attained reconstructions along with the SAM and SSIM;
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second, the cumulative absolute errors per spectral band along with the RMSE metric; and third,
an illustration of 6 out of the 12 reconstructed bands is included. It can be noticed that the visual
quality attained by performing a phase-amplitude modulation overcomes the results attained by
performing just an amplitude modulation. Moreover, the metric results in terms of SAM, RMSE,
and SSIM, validate the visual quality results. This comparison shows that spectral signature
reconstruction obtained by the CASSDI-DFA approach overcomes the results obtained by the
CASSI-DFD approach.

Fig. 5. (a) Reconstructed data cubes mapped to RGB. (b) Reconstruction relative error. (c)
Two zoomed portion of (a) RGB and (b) error images. (d) Illustration of 6 out of the 12
reconstructed spectral bands of the toy cars scene.

5. Proof-of-concept experiments

We have built a testbed in our laboratory so as to demonstrate the proposed system through a
proof-of-concept prototype, as shown in Fig. 6(a). This prototype uses a Navitar (12 mm Fixed
Focal Length, MVL12M23 - 12 mm EFL, f/1.4) as the objective lens to image the scene onto the
focal plane of a relay lens (Achromatic Doublet Lens f=75 mm, Thorlabs, AC254-075-A-ML) to
transmit the wavefront onto a deformable mirror (Actuator Piezo DM, Thorlabs, DMP40-P01-40).
Then, a standard relay lens (Achromatic Doublet Lens f=75 mm, Thorlabs, AC254-075-A-ML),
located at its focal length of the DM, is used to image the scene onto a digital micromirror device
(DMD, Texas Instruments, D4120). Then, a standard relay lens (Thorlabs AC254-100-A-ML,
f=100 mm, ϕ1") located at 100 mm of the DMD is used to attain two 4F-systems, split by the
beam splitter (Thorlabs CCM1-BS013, 30 mm non-polarizing beamsplitter), which transfers half
the light to the CASSI-arm (transmissive) and the other half to a side-arm (reflective). Here it is
worth noting that the side-arm is just used for calibration and analysis purposes, but this arm
is removed for the final version of the proposed CASSDI-DFA system. In the CASSI-arm, a
lens (Thorlabs AC254-100-A-ML, f=100 mm, ϕ1") and a double Amici prism are coupled to
a rotation mount (Thorlabs CRM1P, 30 mm cage rotation mount, ϕ1") to precisely adjust the
dispersion angle horizontally. A CCD sensor (Stingray F-080B, 4.65 µm pixel size) is located
at the focal length of the lens, where the phase-modulated, spatial modulated, and spectral d
two-dimensional projection of the scene is acquired. In the reflective arm, the wavefront is
propagated to a relay lens (Thorlabs AC254-100-A-ML, f=100 mm, ϕ1") to image the scene onto
a CCD sensor (Stingray F-080B, 4.65 µm pixel size) located at the focal length of the lens. In this
section, the reconstructions were attained using the single compressed measurement acquired
with the CASSI-arm. For the sensing process, the deformable mirror is configurated with vertical
astigmatism (Z6) with a6 = 0.9. The point-spread function (PSF) of the CASSDI-DFA system
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is illustrated in Fig. 6(b), where it can be appreciate the vertical distortion and the horizontal
dispersion introduced by the DM and the prism, respectively. The PSF is characterized using an
optical fiber (Ocean BIF200-UV-VIS) as a point source connected to a monochromator (Newport
TLS130B) as a tunable light source. Then, the PSF characterization is developed in function
of the spectral response, mirror deformation, and the three fixed depth planes. Figure 6(b)
illustrated the spectral description of the PSF in the spectral range from 450 to 700 in steps
of 10 nm with a full width at half maximum (FWHM) of 10 nm. Finally, to better appreciate
the PSF behavior in Fig. 6(c) are illustrated 10 PSFs. The characterized PSF is then used to
construct the matrix Φ and matrix Φs. Finally, to better appreciate the PSF behavior in Fig. 6(c)
is illustrated 10 PSF. The characterized PSF is then used to construct the matrixΦ and matrixΦs.
The experiments consider one target scene named, Flowers, for which three depth planes were
acquired using the controlled aberrations {Z4, Z6} = {0, 0.9} (first plane), {Z4, Z6} = {0.12, 0.9}
(second plane), and {Z4, Z6} = {0.2, 0.9} (third plane). For each depth plane, the coded aperture
is varied and set with a transmittance of 0.5, and the resulting compressed measurement is
illustrated in Fig. 7(a). Specifically, this target is composed of two colored wooden flowers
and a card with the HDSP logo, which are located at 50, 58, and 72 cm from the objective
lens, respectively. The raw compressive projection exhibits a spatial resolution of 512 × 523
pixels, i.e., L = 523 − 512 + 1 = 12 spectral bands can be recovered. Following the proposed
reconstruction methodology, the raw measurement is processed by Algorithms 1-2, and the
obtained focal-stack grayscale ff estimation is analyzed in Fig. 7(b). The raw measurements
are processed by the Algorithms 1-3, and the obtained focal-stack grayscale ff is analyzed in
Fig. 7(c) (First to third column). Then, the estimated focal-stack grayscale is introduced to the
U-net neural network to obtain the depth map, which is illustrated in Fig. 7(c) (fourth column).
Finally, the compressed measurement along with the estimations fg and ff , are introduced to
the Algorithm 3 to reconstruct the all-in-focus spectral datacube ff , and the RGB composite of
the attained reconstruction is depicted in Fig. 8(a). Figure 8(b) shows the spatial reconstruction
per band to evaluate the accuracy of the spectral reconstruction, 10 out of the 12 spectral bands
are depicted. In summary, it can be observed that the proposed CASSDI-DFA testbed system
allows estimating simultaneously the spectral and depth information of a scene from a single
compressed measurement.

6. Conclusions

This paper proposed the CASSDI-DFA system to capture spectral-depth images within a single
compressed snapshot measurement. CASSDI-DFA performs dynamic phase and amplitude
coding-through a DM and a DMD at different optical path stages during the detector array’s
integration time. The achieved multiplexing of depth-from-aberration along with a coded-and-
dispersed projection allowed the estimation of an all-in-focus grayscale focal-stack and also an
all-in-focus spectral version of the scene, which are used as prior information for the spectral
image reconstruction. To estimate the low-dimensional projections, we proposed a sequential
reconstruction methodology composed of three based-ADMM optimization problems. The
proposed CASSDI-DFA system relies on a single sensor, as a potential advantage in contrast
with state-of-the-art systems that rely on stereo or multi-sensors. The optimal aberration for
the CASSDI-DFA was concluded as vertical astigmatism Z6 with an amplitude coefficient of
a6 = 0.9. Further, the proposed imaging system performance was demonstrated via simulations
against a depth-from-defocus sensing alternative of the proposed CASSDI-DFA, and through a
proof-of-concept implementation, which confirmed that our proposed approach represents an
efficient alternative to capture spectral-depth images with a single sensor in a single snapshot.
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Fig. 6. (a) Testbed implementation of the CASSDI-DFA. (b) Point spread function of the
CASSDI-DFA system by setting the deformable mirror with {Z4, Z6} = {0, 0.9}. (c) PSF
splitting as a function of the wavelength.

Fig. 7. Testbed results. (a) Compressed measurements. (b) Top-view of the flower scene.
(c) Illustration of the three reconstructed focal stack images and the depth map estimation
via a pre-trained U-net network [29].
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Fig. 8. Testbed result. (a) RGB composite of the all-in-focus reconstructions. (b) Illustration
of 10 out of the 12 reconstructed spectral bands of the Flowers scene.

Appendix A.

Based on the ADMM theory, Eq. (11) can be decoupled into the following three independent
optimization problems

fg = arg min
fg

1
2
∥g−HΦDT

g fg∥
2
2+ α1∥w − T fg − ν

ι
1∥

2
2+α2∥θg − Ψgfg − ν

ι
2∥

2
2 , (S1)

w = arg min
w
α1∥w − T fg − ν

ι
1∥

2
2 + τw∥w∥1, (S2)

and
θg = arg min

θg
α2∥θg − Ψgfg − ν

ι
2∥

2
2 + τg∥θg∥1. (S3)

To solve S1, we first differentiate it with respect to fg such that

∇fg =
1
2

AT
g
(︁
Agfg − g

)︁
+ α1T

T (︁
T fg + ν

ι
1 − w

)︁
+α2Ψ

T
g
(︁
Ψgfg + ν

ι
2 − θg

)︁
, (S4)

where Ag = HΦDT
g . Equating S4 to zero and rearranging we have that[︃

1
2

AT
g Ag + (α1 + α2)Ig

]︃
fg =

1
2

AT
g g + α1T

T (︁
w − ν ι1

)︁
+ α2Ψ

T (︁
θg − η

ι
2
)︁
, (S5)

where T TT = Ig and ΨT
gΨg = Ig with Ig ∈ R

ng×ng as a identity matrix. Considering that[︁ 1
2AT

g Ag + (α1 + α2)Ig
]︁

results from the product between a full column rank matrix and its
transposed version, the matrix

[︁ 1
2AT

g Ag + (α1 + α2)Ig
]︁

is invertible. Then, the closed form
solution for Eq. (11) can be expressed as

fg =

[︃
1
2

AT
g Ag + (α1 + α2)Ig

]︃−1 [︃1
2

DgΦ
THTg + α1T

T (︁
w − ν ι1

)︁
+ α2Ψ

T (︁
θg − η

ι
2
)︁ ]︃

. (S6)

To solve the optimization problems in S2 and S3, a total variation approach is used, which
entails the closed-form solutions

wι+1
1 = soft

(︂
T f ι+1

g + ν ι1, τw/α1

)︂
, and θ ι+1

g = soft
(︂
Ψgf ι+1

g + ν ι2, τg/α2

)︂
, (S7)

respectively.
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Appendix B.

Based on the ADMM theory, Eq. (14) can be decoupled in two independent optimization
problems

ff = arg min
ff

1
2
∥g −HΦDT

f ff ∥
2
2 +
σf

2
∥fg − Bf ff ∥

2
2 + α∥θ f − Ψf ff − ν∥

2
2 , (S8)

and
θ f = arg min

θf
α∥θ f − Ψf ff − ν∥

2
2 + τf ∥θ f ∥1 (S9)

To solve S8, we first derivative it with respect to ff

∇ff =
1
2

AT
f
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Af ff − g
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2
BT

f
(︁
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where Af = HΦDT
f . Letting S10 be equal to zero and clearing the resulting equation with respect

to ff , Eq. (S10) can be rewritten as[︃
1
2

AT
f Af +

σf

2
BT

f Bf + αIf
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1
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whereΨT
f Ψf = If with If ∈ R

nf×nf as a identity matrix. Considering that
[︂
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σf
2 BT

f Bf + αIf
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results from the product between a full column rank matrix and its transposed version, the matrix[︂
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is invertible. Then, the closed form solution of Eq. (14) can be
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To solve the optimization problems in S9, a total variation approach is used, which entails the
closed-form solution

θ ι+1
f = soft

(︂
Ψf f ι+1

f + ν ι, τf /α
)︂

. (S13)

Appendix C.

Based on the ADMM theory, Eq. (17) can be decoupled in two independent optimization
problems

fs = arg min
fs

1
2
∥g −HΦsDT
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and
θs = arg min

θs
α3∥θs − Ψsfs − ν∥

2
2 + τs∥θs∥1. (S15)

To solve S14, we first derivative it with respect to fs
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where As = HΦsDT
s . Letting S16 be equal to zero and clearing the resulting equation with

respect to ff , Eq. (S16) can be rewritten as[︃
1
2

AT
s As + (α1 + α2)BT

s Bs + α3I
]︃

fs =
1
2

AT
s g + α1Bf ff + α2BT

s fg + α3Ψ
T
s (θs − ν) , (S17)

where ΨT
s Ψs = Is with Is ∈ R

nf×nf as a identity matrix. Considering that [ 12AT
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α2)BT
s Bs + α3I] results from the product between a full column rank matrix and its transposed
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version, the matrix
[︁ 1
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is invertible. Then, the closed form solution
of Eq. (S14) can be expressed as
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To solve the optimization problems in S15, a total variation approach is used, which entails the
closed-form solution

θ ι+1
s = soft
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Ψsf ι+1

s + ν ι, τs/α3

)︂
. (S19)

Appendix D.

Algorithm 1 All-in-focus grayscale algorithm fg. The initialization of ν0
1, ν0

2, w0, θ0
g in Line 1, is

an assignation process with a computational complexity of O(4ng). To estimate f ι+1
g , in Line

2, the closed-form solution is obtained via five matrix multiplications, four vector additions, a
matrix inversion, and three matrix-vector product, exhibiting a computational complexity of
O(2n2ng + n3

g + n2
g(5 + n) + ng(5 + 2mn)). Then, to estimate wι+1 and θ ι+1

g , the closed-form
solutions are obtained via soft-thresholding in Line 3 and 4, with a computational complexity
of O(2n2

g + 4ng). To update ν ι+1
1 and ν ι+1

2 , Lines 5-6 are executed, whose computational
complexities are given by O(2n2

g + 4ng). The total computational complexity is given by
O(n3

g + n2
g (9 + n) + ng

(︁
17 + 2n2 + 2mn

)︁
).

Appendix E.

Algorithm 2 Grayscale focal stack algorithm ff . The initialization of ν0, θ0
f in Line 1, is an

assignation process with a computational complexity of O(2nf ). To estimate f ι+1
f , in Line

2, the closed-form solution is obtained via six matrix multiplications, two matrix additions,
three vector additions, a matrix inversion, and six matrix-vector multiplications, exhibiting a
computational complexity of O(n3

f + n2
f
[︁
5 + ng + n

]︁
+ nf

[︁
2n2 + 2mn + 3

]︁
+ n2 + nm). Then,

to estimate θ ι+1
f the closed-form solution is obtained via soft-thresholding in Line 3 , with

a computational complexity of O(n2
f + 2nf ). To update ν ι+1, Line 4 is executed, whose

computational complexities are given by O(n2
f + 2nf ). The total computational complexity is

given by O(n3
f + n2

f
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]︁
+ nf

[︁
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]︁
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Appendix F.

Algorithm 3 All-in-focus spectral algorithm fs. The initialization of ν0, θ0
s in Line 1, are an

assignation process with a computational complexity of O(2ns). To estimate f ι+1
s , in Line 2, the

closed-form solution is obtained via six matrix multiplications, two matrix additions, four vector
additions, a matrix inversion, and seven matrix-vector multiplications, exhibiting a computational
complexity of O(n3

s + n2
s [7 + n] + ns

[︁
2n2 + n2

g + 2mn + 3 + n
]︁
+ nf

(︁
2ng + 1

)︁
+ n2 +mn). Then,

to estimate θ ι+1
s the closed-form solution is obtained via soft-thresholding in Line 3 , with

a computational complexity of O(n2
s + 2ns). To update ν ι+1, Line 4 is executed, whose

computational complexities are given by O(n2
s + 2ns). The total computational complexity is

given by O(n3
s + n2

s [7 + n] + ns
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2n2 + n2
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