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In this paper we have studied two non-linear black holes in 2+1 dimensions. They are regular and could 
have two horizons for chosen values of the parameters in the theory. Thermodynamics of the two black 
holes are studied in the extended phase space where the pressure P = −�/8π . In order to satisfy the 
Smarr formula and the first law of thermodynamics, a renormalization parameter is introduced. Hence 
there is an additional thermodynamical parameter for the black hole. We have also studied the two 
black holes in the context of heat engines. A thermodynamical cycle, consisting of two isobaric and 
two isochoric is considered. Efficiency is computed by varying the non-linear parameter and the electric 
charge of the black hole. It is observed that when the non-linear parameter and the charge increases, the 
efficiency increases. When compared to the charged BTZ black hole, the efficiency for the rectangle cycle 
is smaller for the regular black holes.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Black holes in 2+1 dimensions provide insights into physical 
phenomena of black holes in a simpler setting compared to its 
counterparts in 3+1 dimensions. The well known BTZ black hole 
in 2+1 dimensions has been immensely useful in understanding 
variety of issues with regard to black holes [1]. On the other hand, 
non-linear electrodynamics has attracted much interest since the 
Born-Infeld non-linear electrodynamics [2]. Some black holes in 
2+1 dimensions in non-linear electrodynamics coupled to grav-
ity has been proposed [3–9]. In this paper, the focus is on the 
2+1-dimensional regular black holes, proposed by He and Ma in 
Ref. [6].

Black holes in anti-de Sitter space have been center of at-
traction due to variety of interesting properties they hold. The 
seminal work by Hawking and Page demonstrated that there is a 
first order phase transition between the Schwarzschild anti-de Sit-
ter black hole and the thermal AdS space [10]. The discovery of 
phase transitions similar to Van der Waals liquid/gas transitions in 
Reissner-Nordstrom AdS black holes by Chamblin et al. [11] [12]
was another landmark in black hole thermodynamics. When the 
negative cosmological constant is considered as the thermodynam-
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ical pressure as P = −�/(8π), the resulting first law of black hole 
has a V dP term: here the mass of the black hole is treated as the 
enthalpy of the black hole as first presented by Kastor et al. [13]. 
One of the first works to explore thermodynamics in AdS black 
holes where the negative cosmological constant is considered as 
the dynamical pressure was the paper by Kubiznak and Mann [14]. 
There the thermodynamics of the charged black hole in 4 dimen-
sions was studied in detail. Extended phase space in anti-de Sitter 
black holes have been studied extensively. Many black holes have 
demonstrated first order phase transitions similar to van de Waals 
phase transitions between liquid and gas. There are large number 
of papers to mention on this topic: few examples are [15] [16] [17]
[18] [19] [20]. Due to the limitation of space, we would instead 
mention an interesting review on Black hole chemistry by Kubiznak 
et al. which has a comprehensive summary on thermodynamics of 
black holes in AdS space [21].

Another interesting property of AdS black holes is that they can 
be used as heat engines. Since the pressure and the volume of the 
black hole is dynamic, one can extract mechanical work via the 
PdV term. A suitable thermodynamical cycle can be defined so 
that there is a net work done by the system. In classical thermo-
dynamics, there are several thermodynamical cycles that are used 
in heat engines: Carnot cycle, Otto cycle and Brayton cycle are few 
examples. Carnot cycle has the highest efficiency and is made of 
two pairs of isothermal and adiabatic processes. There have been 
several papers on AdS black holes as heat engines [22–30]. In this 
paper, we will present the non-linear black hole as a heat engine.
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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The paper is organized as follows: in section 2, the black hole 
considered is presented. In section 3 thermodynamics of the black 
holes are given. In section 4 the black holes are studied in the 
context of heat engines and finally in section 5 the conclusion is 
given.

2. Regular 2+1-dimensional black holes

A class of regular black holes with non-linear electrodynamic 
sources was proposed by He and Ma in Ref. [6]. The corresponding 
action is given by,

S =
∫

d4x
√−g

[
(R − 2�)

16πG
+ L(F )

]
(1)

Here, L(F ) is given by the Lagrangian for the non-linear electro-
dynamics were F = Fμν F μν , g is the determinant of the metric 
tensor and � = − 1

l2
is the Cosmological constant. The metric was 

given in the form

ds2 = − f (r)dt2 + dr2

f (r)
+ r2dφ2 (2)

The electromagnetic tensor is Fμν = E(r) 
(
δt
μδr

ν − δt
νδr

μ

)
, where 

E(r) is the electric field.
In this paper, we will consider two static regular black hole so-

lutions presented in Ref. [6] by He and Ma. They are referred to as 
case II and case III in the paper and we will follow the same name 
for the two black holes.

The case II solution is defined by the metric function

f (r) = −m + r2

l2
− q2 ln

(
q2

a2l2
+ r2

l2

)
(3)

where l is related to the cosmological constant by � = −1/l2 and 
the corresponding electric field is given by

E(r) = a4q r3

16π
(
q2 + a2r2

)2
(4)

Black hole mass M = m
8 and the electric charge Q = 8πq. This 

black hole solution was also derived by Cataldo and Garcia [4] with 
two differences: instead of −q2 ln

(
q2

a2l2
+ r2

l2

)
term in the metric 

function f (r), they had −q2 ln
(
a2 + r2

)
. The black hole in case II 

has two, one or no horizons for positive mass.
On the other hand the case III solution is defined by the follow-

ing metric function

f (r) = −m + r2

l2
− 2q2

[
ln

( q

al
+ r

l

)
+ q

ar + q

]
(5)

and the corresponding electric field is given by

E(r) = a3qr2

16π(ar + q)3
(6)

Black hole mass M = m
8 and the electric charge Q = 8πq. For case 

III, there is a horizon when 0 < a < e3/2 and two horizons when 
a > e3/2.

In both case I and case II, the electric field asymptotically be-
haves as the 2+1-dimensional Maxwell solution and it vanishes as 
r → 0.

Note that with these solutions we recover the charged BTZ 
black hole [31] when a → ∞. Similarly when r → ∞ this solu-
tion behaves as the charged BTZ black hole.
3. Thermodynamics of black holes in 2+1 dimensions

Before we proceed to discuss thermodynamics of the non-
linear black holes in section 2, some discussion of 2+1-dimensional 
charged black hole in Maxwell electrodynamics (well known as 
charged BTZ black hole) is in order. The charged BTZ black hole 
is given with the metric function

f (r) = −m − 2q2 ln
( r

l

)
+ r2

l2
(7)

In 2+1 dimensions, the Smarr formula [32] for a static charged 
black hole is given by T S − 2P V = 0, as demonstrated by Frassino 
et al. in Ref. [33]. The first law of thermodynamics of black holes 
with pressure defined as P = − �

8π = 1
8π l2

and mass M (considered 
as the enthalpy) is given by the expression dM = T dS + V dP +
�dQ . Here, entropy S = πr+/2, T = f ′(r+)/4π and � is the po-
tential conjugate to the electric charge Q . It was shown in Ref. [33]
that the Smarr formula and the first law of thermodynamics for 
the charged BTZ black hole is satisfied if the relevant thermody-
namic quantities are defined as,

V =
(

∂M

∂ P

)
S,Q

= πr2+ − q2π l2 (8)

� =
(

∂M

∂ Q

)
S,P

= − q

16π
ln

( r+
l

)
(9)

Here the mass is defined as

M = m

8
= r2+

8l2
− q2

4
ln

( r+
l

)
(10)

In this approach, the volume depends on the charge Q and the 
Reverse Isoperimetric Inequality is violated [33].

An alternate approach was presented in Ref. [33], where V =
πr2+: a renormalization length scale R is introduced where the 
metric function is rewritten as

f (r) = −m0 + r2

l2
− 2q2 ln

( r

R

)
(11)

Here m0 = m − 2q2ln(l/R). Now the mass is,

M = m0

8
= r2+

8l2
− q2

4
ln

( r+
R

)
(12)

A new thermodynamic variable, K = (
∂M
∂ R

)
S,Q ,P is introduced as 

the conjugate to the parameter R . The modified Smarr formula and 
the first law of thermodynamics are,

T S − 2P V + K R = 0 ; dM = T dS + V dP +�dQ + KdR (13)

So that in the limit r → ∞, then R → ∞, thus allowing r/R =
1 [34].

When regular black hole in case II is studied for its thermo-
dynamic properties, in the extended phase space, the Smarr for-
mula, T S − 2P V = 0 is satisfied. The first law of thermodynamics, 
dM = T dS + V dP + �dQ is also satisfied with the mass M given 
as

M = r2+
8 l2

− q2

8
ln

(
q2

a2
+ r2+

l2

)
(14)

However, in order to achieve this, a slight modification of the met-
ric function has to occur as [6],

f (r) = −m + r2

2
− q2 ln

(
q2

2
+ r2

2

)
(15)
l a l
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In this case the volume is given by

V =
(

∂M

∂ P

)
S,Q

= πr2+

(
1 − a2l2q2

a2r2+ + l2q2

)
(16)

which depends on the charge q and the Reverse Isoperimetric In-
equality is violated just like for the charged BTZ black hole. Fur-
thermore, with this modification the parameter l appears in the 
electric field. On the other hand, in the weak field approximation 
the problem associated with the term ln(r) is inherited.

4. Thermodynamics of black hole in case II and case III

In order to rectify the problems mentioned, and to obtain vol-
ume V = πr2+ while satisfying the Smarr formula and the first 
law of thermodynamics, we will use the second approach pre-
sented in Ref. [33]: we introduce a new thermodynamic parameter 
R associated with the renormalization length scale. The non-linear 
parameter a is redefined as a

R in both metrics where R is a renor-
malization length scale.

After rescaling a as a/R , the metric in case II solution simplifies 
to

f (r) = −m + r2

l2
− q2 ln

(
q2 R2

l2a2
+ r2

l2

)
(17)

which is rewritten as,

f (r) = −m0 + r2

l2
− q2 ln

(
q2

a2
+ r2

R2

)
+ q2 ln

(
q2

a2
+ 1

)
(18)

where

m0 = m + q2 ln

(
R2

l2

)
+ q2 ln

(
q2

a2
+ 1

)
(19)

And f (r) → −m0 + r2/l2 as r → ∞.
The corresponding electric field is

E(r) = a4qr3

16π
(
a2r2 + q2 R2

)2
(20)

Note that the last term in the metric function does not contribute 
to it. In the limit r → ∞, r/R → 1, so, E(r) becomes

E(r) = q′

16πr
(21)

where this effective charge is q′ = q 
(

1 + q2

a2

)−2
. If a → ∞ then 

q′ = q. This is the charged BTZ black hole limit. On the other hand, 
E(r) → 0 as r → 0.

If we define pressure as P = − �
8π , then l can be replaced as 

l =
√

1
8π P . Hence the mass of the black hole M in terms of P is 

given by,

M = π Pr2+ − q2

8
ln

(
q2

a2
+ r2+

R2

)
+ q2

8
ln

(
q2

a2
+ 1

)
(22)

here r+ is the horizon radius. The Hawking temperature is given 
by

T = 1

4π

∣∣∣∣df (r)

dr

∣∣∣∣
r=r+

= r+
2π

(
8π P − a2q2

a2r2+ + q2 R2

)
(23)

The entropy of the black hole, S = πr+/2. In order to verify the 
Smarr formula and the first law of thermodynamics, we will com-
pute the volume V, the electric potential � and the thermody-
namic conjugate to R , K as follows
V =
(

∂M

∂ P

)
S,Q ,R

= πr2+ (24)

� =
(

∂M

∂ Q

)
S,P ,R

= q

32π
ln

(
R2q2 + R2a2

R2q2 + r2+a2

)

+ q3a2(r2+ − R2)

32π(a2 + q2)(a2r2+ + q2 R2)
(25)

K =
(

∂M

∂ R

)
S,Q ,P

= q2r2+

4R3

(
q2

a2 + r2+
R2

) (26)

With the above quantities, it can be shown that the Smarr formula 
and first law of the form (13) are held.

The equation of state for the black hole can be described from 
Eq. (23) as

P = T
√

π

4
√

V
+ a2q2

8(a2 V + πq2 R2)
(27)

It is observed that when P vs V is plotted, no criticality emerges, 
leading to no phase transitions for this black hole.

Now we follow the same procedure as was done for Case II in 
rescaling a and reformulate f (r) as follows

f (r) = −m0 + r2

l2
− 2q2

[
ln

(q

a
+ r

R

)
+ qR

ar + qR

]

+ 2q2
[

ln
(q

a
+ 1

)
+ q

a + q

]
(28)

and thus asymptotically behaves as f (r) = −m0 + r2

l2
, where

m0 = m − q2 ln

(
R2

l2

)
+ 2q2

[
ln

(q

a
+ 1

)
+ q

a + q

]
(29)

The corresponding electric field is given by

E(r) = a3qr2

16π(ar + qR)3
(30)

In the limit r → ∞ and maintaining r/R → 1, this solution behaves 
as

E(r) = q′

16πr
(31)

where the effective charge q′ is q′ = q 
(
1 + q

a

)−3
.

And, as above, l can be replaced in terms of P and the mass M
of the black hole can be written as

M = πr2+ P − q2

4

[
ln

(q

a
+ r+

R

)
+ qR

ar+ + qR

]

+ q2

4

[
ln

(q

a
+ 1

)
+ q

a + q

]
(32)

The Hawking temperature is given by,

T = 1

4π

∣∣∣∣df (r)

dr

∣∣∣∣
r=r+

= 4Pr+ − a2q2r

2π(ar2+ + qR)2
(33)

In order to verify the Smarr formula and the first law of thermo-
dynamics, we compute the electric potential � and the thermody-
namic conjugate to R , K as follows

� =
(

∂M

∂ Q

)
S,P ,R

= aq2(r+ − R)(4a2r+ + 2q2 R + 3aq(r+ + R))

32π(a + q)2(ar+ + qR)2

+ q

16π
ln

(
Ra + Rq

Rq + ar+

)
(34)
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Fig. 1. The figure shows P vs V for Case II for varying temperature. Here q = 1, R =
1, a = 1. For large temperature the pressure is higher.

K =
(

∂M

∂ R

)
S,Q ,P

= a2q2r2+
4R(ar+ + qR)2

(35)

The volume is similar to that of Eq. (24). With these quantities, it 
can be shown that the Smarr formula and first law of thermody-
namics in the form given in Eq. (13) are held. The equation of state 
for the black hole can be described from Eq. (33) as

P = T
√

π

4
√

V
+ a2q2

8(aV + √
πqR)2

(36)

When P vs V is plotted, no criticality emerges, leading to no phase 
transitions for this black hole.

5. Black holes as heat engines

Now that an equation of state is clearly defined for the above 
black holes, one could use them as heat engines to do useful work. 
This is a special feature of black holes in extended phase space 
with a pressure term. The PdV term in the first law provides the 
mechanical work of the heat engine and the working substance is 
the black hole solution discussed earlier in the paper. For a heat 
engine, the black hole is set in a thermodynamical cycle and let 
it produce work via the PdV term. Heat will flow into the system 
and out of the system in certain part of the cycle. The efficiency 
of the heat engine is calculated by η = Wnet

Q H
where Wnet is the 

net work done by the black hole and Q H the net heat flow into 
the black hole. If Q C is the net heat flow out of the black hole, 
Wnet = Q H − Q C .

In this paper, we define a closed cycle in the state space with 
two isochoric and two isobaric paths as given in Fig. 1. The effi-
ciency of the cycle is given by

η = 1 − M3 − M4

M2 − M1
(37)

The above formula was obtained by using the enthalpy and first 
law of thermodynamics by Johnson [35] for the specific cycle in 
Fig. 1.
Since the entropy of a black hole is proportional to the volume 
of it, the isochoric path and the adiabatic paths coincide for a ther-
modynamic cycle for a black hole.

Now we will compute the efficiency for the cycle given above. 
There are two parts for the computation: in both cases R is held 
fixed. First, the efficiency is computed by varying the charge q
and keeping a fixed. Second, the efficiency is computed by varying 
the non-linear parameter a while q is fixed. In both computations, 
the volume V and P for the coordinates 1 and 4 are kept con-
stant. Here the volume V 2 = V 3 is varied to see how the efficiency 
changes with it (Fig. 2). For chosen values for the parameters, the 
mass of the black holes are computed to make sure that it is posi-
tive.

Utilizing Eq. (22) and definitions of P and S , the efficiency for 
case II is obtained as

η = 32 (P1 − P4)
(

S2
2 − S2

1

)
32P1

(
S2

2 − S2
1

) − πq2 ln F (S1, S2)
(38)

where, for short, we have introduced the following definition

F (S1, S2) = 4a2 S2
2 + π2q2 R2

4a2 S2
1 + π2q2 R2

(39)

From Eq. (32) the efficiency can be obtained as

η = 16 (P1 − P4)
(

S2
2 − S2

1

)
16P1

(
S2

2 − S2
1

) − πq2G (S1, S2)
(40)

where we have introduced the following definition

G(S1, S2) = ln

(
2aS2 + πqR

2aS1 + πqR

)
+ 1

2aS2
πqR + 1

− 1
2aS1
πqR + 1

(41)

Note that if a → ∞ either in Eq. (38) or Eq. (40), then we re-
cover the expression of the heat engine efficiency for the charged 
BTZ black hole [26].

6. Conclusions

In this paper, we have studied two regular black holes in 2+1 
dimensions arising in non-linear electrodynamics with a cosmo-
logical constant. Both black holes could have two horizons for 
appropriate parameters of the theory. Both black holes are regu-
lar at the origin and in the weak field limit they approximate to 
the Maxwell electrodynamics.

Thermodynamics of the black holes are studied in the extended 
phase space where the pressure P = −�/8π . In order for the black 
hole to satisfy the Smarr formula and the first law of thermo-
dynamics, an approach presented in Ref. [33] is followed. In this 
approach, a new parameter, a renormalization length scale R is in-
troduced. It allows for a volume which is equal to the geometric 
Fig. 2. The figure shows η vs V 2 for case II for varying q and a respectively. In both cases R is fixed at 1. When q is varied, a = 1 and when a is varied, q = 1.
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Fig. 3. The figure shows η vs a for case II. Here q and R are held fixed: q = 1 and 
R = 1.

Fig. 5. The figure shows η vs a for case III. Here q and R are held fixed: q = 1 and 
R = 1.

Fig. 4. The figure shows η vs V 2 for case III for varying q and a respectively. In both cases R is held fixed at 1. When q is varied, a = 1 and when a is varied, q = 1.
volume of the black holes and avoids the violation of the Reverse 
Isoperimetric Inequality. As a result, there are two additional ther-
modynamic variables, R and K . Here K is the conjugate quantity 
to R . An equation of state is derived for both black holes. When 
the pressure P against the volume V is plotted, the behavior is 
similar to an ideal gas. Hence there are no phase transitions for 
both black holes.

Since there is a valid first law of thermodynamics, the non-
linear black holes can be treated as heat engines. The thermody-
namical cycle considered in this work is a rectangle where there 
are two isochoric and isobaric processes. The efficiency of the heat 
engine is computed by varying the non-linear parameter a and the 
charge q. It was observed that when the charge and the non-linear 
parameter increased, the efficiency increases for both black holes. 
In both case II and case III black holes, for a → ∞, the black hole 
approaches the charged BTZ black hole. Hence from Fig. 3 and 5, 
it is clear that the efficiency increases and become a stable value
(Fig. 4). Hence it could be concluded that the charged BTZ black 
hole has a higher efficiency than both non-linear black holes. To 
authors knowledge there are no studies done to compare the BTZ 
black hole heat efficiency with the efficiency of the charged BTZ 
black hole which may be an interesting avenue to do further study.

In extending this work, it would be interesting to study the 
black holes in 2+1 dimensions where the electric field is Coulomb 
like [5]. In that case it may not be necessary to introduce the 
renormalization parameter R since there would not be a logarith-
mic term in the metric.
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