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In this paper we have studied two non-linear black holes in 2+1 dimensions. They are regular and could
have two horizons for chosen values of the parameters in the theory. Thermodynamics of the two black
holes are studied in the extended phase space where the pressure P = —A /8. In order to satisfy the
Smarr formula and the first law of thermodynamics, a renormalization parameter is introduced. Hence
there is an additional thermodynamical parameter for the black hole. We have also studied the two
black holes in the context of heat engines. A thermodynamical cycle, consisting of two isobaric and
two isochoric is considered. Efficiency is computed by varying the non-linear parameter and the electric
charge of the black hole. It is observed that when the non-linear parameter and the charge increases, the
efficiency increases. When compared to the charged BTZ black hole, the efficiency for the rectangle cycle
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1. Introduction

Black holes in 2+1 dimensions provide insights into physical
phenomena of black holes in a simpler setting compared to its
counterparts in 3+1 dimensions. The well known BTZ black hole
in 2+1 dimensions has been immensely useful in understanding
variety of issues with regard to black holes [1]. On the other hand,
non-linear electrodynamics has attracted much interest since the
Born-Infeld non-linear electrodynamics [2]. Some black holes in
2+1 dimensions in non-linear electrodynamics coupled to grav-
ity has been proposed [3-9]. In this paper, the focus is on the
2+1-dimensional regular black holes, proposed by He and Ma in
Ref. [6].

Black holes in anti-de Sitter space have been center of at-
traction due to variety of interesting properties they hold. The
seminal work by Hawking and Page demonstrated that there is a
first order phase transition between the Schwarzschild anti-de Sit-
ter black hole and the thermal AdS space [10]. The discovery of
phase transitions similar to Van der Waals liquid/gas transitions in
Reissner-Nordstrom AdS black holes by Chamblin et al. [11] [12]
was another landmark in black hole thermodynamics. When the
negative cosmological constant is considered as the thermodynam-
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ical pressure as P = —A/(87), the resulting first law of black hole
has a VdP term: here the mass of the black hole is treated as the
enthalpy of the black hole as first presented by Kastor et al. [13].
One of the first works to explore thermodynamics in AdS black
holes where the negative cosmological constant is considered as
the dynamical pressure was the paper by Kubiznak and Mann [14].
There the thermodynamics of the charged black hole in 4 dimen-
sions was studied in detail. Extended phase space in anti-de Sitter
black holes have been studied extensively. Many black holes have
demonstrated first order phase transitions similar to van de Waals
phase transitions between liquid and gas. There are large number
of papers to mention on this topic: few examples are [15] [16] [17]
[18] [19] [20]. Due to the limitation of space, we would instead
mention an interesting review on Black hole chemistry by Kubiznak
et al. which has a comprehensive summary on thermodynamics of
black holes in AdS space [21].

Another interesting property of AdS black holes is that they can
be used as heat engines. Since the pressure and the volume of the
black hole is dynamic, one can extract mechanical work via the
PdV term. A suitable thermodynamical cycle can be defined so
that there is a net work done by the system. In classical thermo-
dynamics, there are several thermodynamical cycles that are used
in heat engines: Carnot cycle, Otto cycle and Brayton cycle are few
examples. Carnot cycle has the highest efficiency and is made of
two pairs of isothermal and adiabatic processes. There have been
several papers on AdS black holes as heat engines [22-30]. In this
paper, we will present the non-linear black hole as a heat engine.
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The paper is organized as follows: in section 2, the black hole
considered is presented. In section 3 thermodynamics of the black
holes are given. In section 4 the black holes are studied in the
context of heat engines and finally in section 5 the conclusion is
given.

2. Regular 2+1-dimensional black holes

A class of regular black holes with non-linear electrodynamic
sources was proposed by He and Ma in Ref. [6]. The corresponding
action is given by,

(R —2A) ]
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Here, L(F) is given by the Lagrangian for the non-linear electro-
dynamics were F = F;,F*¥, g is the determinant of the metric
tensor and A = —llz is the Cosmological constant. The metric was

given in the form
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—— +r’d¢? )
f

The electromagnetic tensor is Fy, = E(r) (8&6(, - 8,58;), where

E(r) is the electric field.

In this paper, we will consider two static regular black hole so-
lutions presented in Ref. [6] by He and Ma. They are referred to as
case Il and case III in the paper and we will follow the same name
for the two black holes.

The case II solution is defined by the metric function

ds? = — f(r)dt* +

2 2 2

r q r
f(r):—m+l7—q21n<ﬁ+l7> (3)
where | is related to the cosmological constant by A = —1/[% and

the corresponding electric field is given by

4,3
E=— (a)

167 (g2 + a°r?)

Black hole mass M = % and the electric charge Q = 8mq. This

black hole solution was also derived by Cataldo and Garcia [4] with
two differences: instead of —q? ln(% + ?—;) term in the metric
function f(r), they had —q?In(a® 4 r?). The black hole in case II
has two, one or no horizons for positive mass.

On the other hand the case III solution is defined by the follow-
ing metric function

2
—ma " o (LT
fry=—-m+ 2 2q [ln(al—i— l)+

and the corresponding electric field is given by

q
ar—i—q] (5)
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Black hole mass M = % and the electric charge Q = 8mq. For case

11, there is a horizon when 0 < a < e3/2 and two horizons when
a>e3?,

In both case I and case II, the electric field asymptotically be-
haves as the 2+1-dimensional Maxwell solution and it vanishes as
r— 0.

Note that with these solutions we recover the charged BTZ
black hole [31] when a — oo. Similarly when r — oo this solu-
tion behaves as the charged BTZ black hole.

2

Er) = (6)

3. Thermodynamics of black holes in 2+1 dimensions

Before we proceed to discuss thermodynamics of the non-
linear black holes in section 2, some discussion of 2+1-dimensional
charged black hole in Maxwell electrodynamics (well known as
charged BTZ black hole) is in order. The charged BTZ black hole
is given with the metric function

2
r r
f(r)=-m—2¢°In (7) +a 7)
In 2+1 dimensions, the Smarr formula [32] for a static charged
black hole is given by TS — 2PV =0, as demonstrated by Frassino
et al. in Ref. [33]. The first law of thermodynamics of black holes

with pressure defined as P = — & = 112 and mass M (considered

as the enthalpy) is given by thsg expSrJ(Tession dM = TdS + VdP +
®dQ. Here, entropy S =nry/2, T = f'(ry)/4m and @ is the po-
tential conjugate to the electric charge Q. It was shown in Ref. [33]
that the Smarr formula and the first law of thermodynamics for
the charged BTZ black hole is satisfied if the relevant thermody-

namic quantities are defined as,
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Here the mass is defined as
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In this approach, the volume depends on the charge Q and the
Reverse Isoperimetric Inequality is violated [33].

An alternate approach was presented in Ref. [33], where V =
nri: a renormalization length scale R is introduced where the
metric function is rewritten as

r? 0 (T
f)=—mo+ 5 —2q ln(i) (11)
Here mg =m — 2q%In(I/R). Now the mass is,
m=To D () (12)
A new thermodynamic variable, K = (%)S 0.p is introduced as

the conjugate to the parameter R. The modified Smarr formula and
the first law of thermodynamics are,

TS—2PV+KR=0 ; dM=TdS+VdP+ ®dQ +KdR (13)

So that in the limit r — oo, then R — oo, thus allowing r/R =
1 [34].

When regular black hole in case II is studied for its thermo-
dynamic properties, in the extended phase space, the Smarr for-
mula, TS — 2PV =0 is satisfied. The first law of thermodynamics,
dM = TdS + VdP + ®dQ is also satisfied with the mass M given
as

r2 q2 q2 1’2
_ 5 +
M= -S| 5+5 (14)

However, in order to achieve this, a slight modification of the met-
ric function has to occur as [6],

r2 2 r2
f(r):—m+l7—q21n(2—2+l—2> (15)
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In this case the volume is given by

IM 212 2
vz<—> = (1- 2T (16)
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which depends on the charge q and the Reverse Isoperimetric In-
equality is violated just like for the charged BTZ black hole. Fur-
thermore, with this modification the parameter | appears in the
electric field. On the other hand, in the weak field approximation
the problem associated with the term In(r) is inherited.

4. Thermodynamics of black hole in case II and case Il

In order to rectify the problems mentioned, and to obtain vol-
ume V = nri while satisfying the Smarr formula and the first
law of thermodynamics, we will use the second approach pre-
sented in Ref. [33]: we introduce a new thermodynamic parameter
R associated with the renormalization length scale. The non-linear
parameter a is redefined as % in both metrics where R is a renor-
malization length scale.

After rescaling a as a/R, the metric in case II solution simplifies

to
2 2 2
q°R r
fn= —m—i—ﬁ—q ln(l2 +12> (17)
which is rewritten as,
) @ >
f) = —mo+l2 q 1n< +R2)+q ln(a—z—H) (18)

where

R2
mop=m+q ln(P)—i—q ln( +1) (19)

And f(r) —» —mg 412/ as r — oo.
The corresponding electric field is
atqr?
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Note that the last term in the metric function does not contribute

to it. In the limit r — oo, r/R — 1, so, E(r) becomes

q/

E r = — 21
® 167r 21

E(r) =

(20)
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where this effective charge is ¢’ = q (1 +Z—z . If a > oo then

q’ =q. This is the charged BTZ black hole limit. On the other hand,
E(r)y >0asr— 0.

If we define pressure as P = then [ can be replaced as

87t’

= Hence the mass of the black hole M in terms of P is

87[P
given by,
2 2 2 2 2
q q T q q
M= nPr+——ln( +R2)+§ln<a_2+1> (22)

here r, is the horizon radius. The Hawking temperature is given

by
2.2
r4 a=q
=— |87 P - ———— 23
ror, 27 ( azri—i—quZ) (23)

The entropy of the black hole, S = mr, /2. In order to verify the
Smarr formula and the first law of thermodynamics, we will com-
pute the volume V, the electric potential ® and the thermody-
namic conjugate to R, K as follows

1 |df(r)
471 dr

M
( ) =nri (24)
P )5 o x
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With the above quantities, it can be shown that the Smarr formula
and first law of the form (13) are held.
The equation of state for the black hole can be described from

Eq. (23) as
_TJm N a’q?
4JV  8(a?V +mq’R?)
It is observed that when P vs V is plotted, no criticality emerges,
leading to no phase transitions for this black hole.

Now we follow the same procedure as was done for Case II in
rescaling a and reformulate f(r) as follows

¢ [ln (g + %) + arj—RqR}
+2¢ [m (g+1)+i] (28)

(27)

2
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and thus asymptotically behaves as f(r) = —mg + ;72 where

R q q
= | 2% |In(2 +1 29
mo=m — ¢ “(12>+q[n(a+)+a+q] (29)

The corresponding electric field is given by

alqr?
167 (ar + qR)3

In the limit r — oo and maintaining r/R — 1, this solution behaves
as

E(r) = (30)

/

q
16mrr

where the effective charge q' is ¢ =q (1+ 1)
And, as above, | can be replaced in terms of P and the mass M
of the black hole can be written as

2
a2 p (4T IR
M=mr2 P 4[ln(a+ )+ }

E(r) =

(31)
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2
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The Hawking temperature is given by,
1 |df(r a’q?r
T:—‘f() —apr, - AT (33)
ar | dr |, 27 (ary +qR)

In order to verify the Smarr formula and the first law of thermo-
dynamics, we compute the electric potential ® and the thermody-

namic conjugate to R, K as follows
_ (8M> _ag®(ry — R)(4a’r, +2q*R +3aq(ry + R))
\0Q Jspr 327 (a+ q)2(ary + qR)>?

Ra+ R
4y, (RatRe (34)
167 Rq +ary
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Fig. 1. The figure shows P vs V for Case II for varying temperature. Here ¢ =1, R =
1,a =1. For large temperature the pressure is higher.
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The volume is similar to that of Eq. (24). With these quantities, it
can be shown that the Smarr formula and first law of thermody-

namics in the form given in Eq. (13) are held. The equation of state
for the black hole can be described from Eq. (33) as

b TJ7 N a’q?
T 4JV ' 8@aV + JmqR)?

When P vs V is plotted, no criticality emerges, leading to no phase
transitions for this black hole.

(35)

(36)

5. Black holes as heat engines

Now that an equation of state is clearly defined for the above
black holes, one could use them as heat engines to do useful work.
This is a special feature of black holes in extended phase space
with a pressure term. The PdV term in the first law provides the
mechanical work of the heat engine and the working substance is
the black hole solution discussed earlier in the paper. For a heat
engine, the black hole is set in a thermodynamical cycle and let
it produce work via the PdV term. Heat will flow into the system
and out of the system in certain part of the cycle. The efficiency
of the heat engine is calculated by n = Yt where Wy is the
net work done by the black hole and Qg the net heat flow into
the black hole. If Q¢ is the net heat flow out of the black hole,
Whet = Qn — Qc.

In this paper, we define a closed cycle in the state space with
two isochoric and two isobaric paths as given in Fig. 1. The effi-
ciency of the cycle is given by
p=1- M (37)

My — My
The above formula was obtained by using the enthalpy and first
law of thermodynamics by Johnson [35] for the specific cycle in
Fig. 1.

0.6305
0.6300 |
0.6295 |

n 06290 |

0.6285 [ 0%
q=0.26 = — = =
0.6280 | q=0.27 ee—
0.6275 ‘
5 6 7 8 9 10

Since the entropy of a black hole is proportional to the volume
of it, the isochoric path and the adiabatic paths coincide for a ther-
modynamic cycle for a black hole.

Now we will compute the efficiency for the cycle given above.
There are two parts for the computation: in both cases R is held
fixed. First, the efficiency is computed by varying the charge g
and keeping a fixed. Second, the efficiency is computed by varying
the non-linear parameter a while q is fixed. In both computations,
the volume V and P for the coordinates 1 and 4 are kept con-
stant. Here the volume V, = V3 is varied to see how the efficiency
changes with it (Fig. 2). For chosen values for the parameters, the
mass of the black holes are computed to make sure that it is posi-
tive.

Utilizing Eq. (22) and definitions of P and S, the efficiency for
case II is obtained as

32(P1 — P4) (55— S2)

n= (38)
32P1 (S5 —S7) —mq?InF(S1, S2)
where, for short, we have introduced the following definition
4(1252 + JTquRZ
F($1,S0) = —2———— 39
(51, 52) 4072 - 2R (39)
From Eq. (32) the efficiency can be obtained as
16 (P1 — P4) (S5 —5%) (40)
7” =
16P1 (S5 — 59) — 1q%G (51, S2)
where we have introduced the following definition
2aS; + mqR 1 1
G(S1,52):ln(2aszian> ) ~ % (41)

Note that if a — oo either in Eq. (38) or Eq. (40), then we re-
cover the expression of the heat engine efficiency for the charged
BTZ black hole [26].

6. Conclusions

In this paper, we have studied two regular black holes in 2+1
dimensions arising in non-linear electrodynamics with a cosmo-
logical constant. Both black holes could have two horizons for
appropriate parameters of the theory. Both black holes are regu-
lar at the origin and in the weak field limit they approximate to
the Maxwell electrodynamics.

Thermodynamics of the black holes are studied in the extended
phase space where the pressure P = —A /8. In order for the black
hole to satisfy the Smarr formula and the first law of thermo-
dynamics, an approach presented in Ref. [33] is followed. In this
approach, a new parameter, a renormalization length scale R is in-
troduced. It allows for a volume which is equal to the geometric

0.695
0.690 |
0685 |

n 0680 |
0675 |

0.670

0.665

Fig. 2. The figure shows 1 vs V;, for case II for varying q and a respectively. In both cases R is fixed at 1. When q is varied, a=1 and when a is varied, g = 1.
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Fig. 3. The figure shows 1 vs a for case Il. Here q and R are held fixed: ¢ =1 and
R=1.
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Fig. 5. The figure shows n vs a for case IIl. Here q and R are held fixed: ¢ =1 and
R=1.
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Fig. 4. The figure shows n vs V; for case III for varying q and a respectively. In both cases R is held fixed at 1. When q is varied, a=1 and when a is varied, ¢ = 1.

volume of the black holes and avoids the violation of the Reverse
[soperimetric Inequality. As a result, there are two additional ther-
modynamic variables, R and K. Here K is the conjugate quantity
to R. An equation of state is derived for both black holes. When
the pressure P against the volume V is plotted, the behavior is
similar to an ideal gas. Hence there are no phase transitions for
both black holes.

Since there is a valid first law of thermodynamics, the non-
linear black holes can be treated as heat engines. The thermody-
namical cycle considered in this work is a rectangle where there
are two isochoric and isobaric processes. The efficiency of the heat
engine is computed by varying the non-linear parameter a and the
charge g. It was observed that when the charge and the non-linear
parameter increased, the efficiency increases for both black holes.
In both case II and case III black holes, for a — oo, the black hole
approaches the charged BTZ black hole. Hence from Fig. 3 and 5,
it is clear that the efficiency increases and become a stable value
(Fig. 4). Hence it could be concluded that the charged BTZ black
hole has a higher efficiency than both non-linear black holes. To
authors knowledge there are no studies done to compare the BTZ
black hole heat efficiency with the efficiency of the charged BTZ
black hole which may be an interesting avenue to do further study.

In extending this work, it would be interesting to study the
black holes in 2+1 dimensions where the electric field is Coulomb
like [5]. In that case it may not be necessary to introduce the
renormalization parameter R since there would not be a logarith-
mic term in the metric.
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