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A B S T R A C T   

Relative growth rates (RGR) have both intrigued and irritated many plant scientists since they were proposed as 
characteristics of growth performance in the early 20th century. Particularly, the common trend of RGR to 
decrease with increasing size, also referred to as ontogenetic drift, has given rise to many debates and much 
criticism. In this study, we showed that, with plants that germinated at the same time, it is common to obtain a 
linear relationship between RGR and size for each survey year which – when pulled together in one graph – 
eventually form a system of cascading elliptical point clouds over time. This system of data point clouds reflects 
the well-known exponential decline of RGR with size, the aforementioned ontogenetic drift. Using 12 individual- 
tree time series of Pinus radiata in Chile we studied the ontogenetic drift based on a new spatially explicit 
explanatory model allowing the reconstruction of individual-tree RGR trajectories. Favourable environmental 
conditions enforced the RGR decline over size and accelerated growth dynamics. Less favourable environmental 
conditions reduced the strength of the ontogenetic drift and slowed down growth. We also found that the model 
parameter estimates were more precise the stronger the RGR decline over size. Both, interpretable model pa
rameters and evaluation characteristics, described the ontogenetic drift well. Interestingly, the slopes of the semi- 
major axes of the RGR-size data ellipses changed signs precisely at the time when smaller trees ceased to 
dominate population growth and larger trees started to contribute disproportionately to the overall growth 
processes.   

1. Introduction 

Relative growth rate (RGR) is a measure widely considered in 
various fields of plant science including plant physiology, plant ecology 
and plant growth. RGR is an important indicator of life performance of 
organisms and therefore closely related to plant physiology and plant 
mortality (Houghton et al., 2013; Bigler and Bugmann, 2003). It is a pre- 
requisite for quantifying and modelling allometric relationships in 
plants (Niklas, 1994). A crucial benefit of studying relative plant growth 
is the avoidance, as far as possible, of the inherent differences in scale 
between contrasting organisms so that their performances may be 

compared on an equitable basis (Hunt, 1990). Wenk et al. (1990) stated 
that relative growth rate is an expression of “growth energy” and 
Causton (1977) asserted that RGR is a measure of the efficiency of plant 
material to produce new organic material, i.e. net primary production 
(NPP) as a proportion of plant biomass, and that it is therefore a crucial 
physiological characteristic. In more recent work, efficiency is often 
defined as the ratio of net primary production (NPP) and gross primary 
production (GPP) (Rose et al., 2009; Rees et al., 2010). RGR has also 
become an important characteristic for separating species into func
tional groups according to their growth strategy (Houghton et al., 2013; 
Grime, 1977). 
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Relative growth rate is primarily a function of time and is defined as 
the increase in size relative to the size characteristic itself. As instanta
neous growth rates cannot be measured in the field, the difference be
tween size characteristics of interest is usually studied at discrete points 
in time, k, which, for example, are scheduled survey years (Pommer
ening and Muszta, 2016). According to Blackman (1919), Fisher (1921), 
Whitehead and Myerscough (1962) and Hunt (1982, 1990), mean pe
riodic relative growth rate, p̄k, is the difference of the logarithms of yk 
and yk− 1 divided by the difference in time, see also Causton (1977, p. 
213): 

p̄k =
loge yk − loge yk− 1

tk − tk− 1
(1) 

where k = 2,⋯, n denote scheduled survey years, t is time in years 
and y is an arbitrary size characteristic, e.g. tree stem diameter. Black
man (1919) originally referred to Eq. (1) as “efficiency index” and 
“specific growth rate” and the characteristic is thought to reflect sys
tematic variation in physiology, allocation and leaf construction 
(Houghton et al., 2013). Mean periodic relative growth rate is in fact the 
most common RGR measure used in plant sciences and as such the 
characteristic reflects intrinsic growth physiology when comparing 
plant growth potential (Turnbull et al., 2008). In the remainder of the 
text, for ease of reading we will use RGR and ̄pk (p) as synonyms, but note 
there are different characteristics of RGR (see Pommerening and Gra
barnik, 2019, Chap. 6) and the abbreviation sometimes refers to discrete 
measures (e.g. in Eq. (1), ̄pk) and sometimes to functions (e.g. in Eq. (2), 
p). 

In a negative exponential fashion, RGR continuously decreases with 
increasing time and size, a trend sometimes referred to as ontogenetic 
drift (Evans, 1972). The ontogenetic drift is consistent with the explan
atory model involving the concept of growth dominance proposed by 
Binkley et al. (2006), which is supported by recent thinking on changes 
in physiological processes with tree size. The ontogenetic drift has been 
attributed to a decline in photosynthetic production in consequence of 
increased water stress in leaves of larger trees as described by the hy
draulic limitation hypothesis (Ryan and Yoder, 1997; Ryan et al., 2006). 
Other studies (Yoda et al., 1965; Binkley, 2021; Rees et al. 2010; see 
West, 2020 for an overview) have suggested the phenomenon is a 
consequence of increased respiratory losses (respiration hypothesis), as 
taller trees incur greater metabolic costs. These physiological effects 
interact with tree competition and together determine the changes of 
RGR in relation to tree size. 

Since age information is not always available and for obtaining a 
clearer understanding of growth trends, RGR has increasingly been 
related to plant size (Rose et al., 2009; Rees et al., 2010). In experiments 
in general plant science and in tree plantations, where commonly all 
individuals are of the same age and species, the relationship between 
RGR and plant size in a given survey year often appears to be linear and 
the data points are arranged in elliptic point clouds (Fig. 1). This has 
given rise to several linear models, see, for example, Iida et al. (2014) 
and Dyer (1997). However, the RGR-size point-cloud shape can vary 
considerably between data sets (Larocque and Marshall, 1993): Ac
cording to Perry (1985), Larocque and Marshall (1993), a decline in RGR 
with increasing tree size (phase 1, e.g. point cloud of 1994 in Fig. 1) 
indicates that competition does not exist or is not severe enough to 
induce mortality. This period corresponds to a phase in which the effi
ciency of trees to produce new biomass is inversely related to their size: 
the smaller the tree, the more efficient it is at producing new biomass. 
Although dominant trees with large crowns have the highest photo
synthetic production, they would be less efficient because of greater 
maintenance respiration needs resulting from larger roots, stems and 
branches. When RGR remains constant with tree size (phase 2, e.g. point 
cloud of 1995 in Fig. 1), it indicates that competition is beginning to 
become important enough to induce mortality. Finally, an increase in 
RGR with an increase in tree size (phase 3, e.g. point clouds of 1996 and 
1997 in Fig. 1) indicates severe competition: suppressed trees become 

less efficient at producing biomass than larger trees. This interpretation 
is consistent with the growth dominance model proposed by Binkley 
et al. (2006). 

In natural forests, however, RGR values mostly follow a declining 
exponential trend in each survey year with small trees having large RGR 
values and large trees showing small RGR values (Pommerening and 
Grabarnik, 2019). The same pattern is confirmed for the RGR develop
ment of individual trees with time, for example, when carrying out stem 
analyses or when considering the growth rates of individual trees 
measured in repeated forest inventories (Bragg, 2001; Pommerening 
and Grabarnik 2019, Chap. 6). In even-aged tree plantations and in 
greenhouse/field experiments involving other plants, the RGR-size 
point-clouds often have elliptic shapes thus suggesting linear relation
ships (Ramseier and Weiner, 2006). This first impression of data ellipses 
may continue to persist, but when data from more than one survey of the 
same population are available, it can be shown that pulling all RGR-size 
point clouds together and arranging them in one graph gives the same 
declining or negative exponential trend observed in natural ecosystems 
(Pommerening and Grabarnik, 2019, Fig. 1). At the beginning of such 
time series, i.e. at a stage of early size development, the point clouds are 
almost vertical with only a small tilt to the right or left, i.e. RGR declines 
with increasing tree size (Fig. 1, phase 1). With progressing plant 
development and increasing plant size the tilt increases and there is 
some overlap between point clouds (phase 2). The aforementioned trend 
is progressively lost and RGR tends to bear little or no relation to tree 
size. By the final two survey periods there is a clear tendency for RGR to 
increase with increasing size (phase 3). 

The tilting and the shape of the data ellipses is partly a consequence 
of increasing size variance and decreasing RGR variance in subsequent 
surveys. These two simultaneous effects initially increase but then 
gradually decrease the strength of the linear relationship (Pommerening 
and Grabarnik, 2019). This can be thought of as being caused by indi
vidual trees with larger RGR values moving faster on declining trajec
tories of relative growth than trees with small initial RGR values. As a 

Fig. 1. Temporal progression of the RGR (p̄k)-d point clouds in even-aged P. 
radiata plot 410211 (see Section 2.8). The colours refer to different discrete 
census years reflecting different tree development stages and are highlighted by 
95%-confidence ellipses. d is individual-tree stem diameter. (For interpretation 
of the references to colour in this figure, the reader is referred to the web 
version of this article.) 
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consequence, trees with larger RGR values tend to develop larger tree 
sizes faster. However, tilting and shape of the data ellipses are also a 
consequence of the effects of size on growth. 

The objective of this paper is to better understand and to model the 
dynamics of RGR and their dependence on plant size. To achieve this 
goal we developed a simple, spatially explicit model explaining and 
simulating the development of elliptic RGR-size relationships. This new 
dynamic model sheds light into the gradual ontogenesis of relative 
growth rate – size point clouds. The modelling approach is generic and 
can be applied to data from any plant field or laboratory trial. In this 
study, we used tree data as application data. 

2. Materials and methods 

2.1. Spatially explicit RGR modelling concept 

We modelled relative growth rates (RGR) based on an extension of 
the Gompertz function (Gompertz, 1825) following Wenk (1969) and 
Wenk et al. (1990, p. 80). This modified Gompertz function is: 

p = e− c1 × d × (1− e− c2 × S) with d, S > 0 (2) 

where p is RGR, d is tree stem diameter (cm) representing tree size 
and S is the spatially explicit hyperbolic tangent index expressing plant 
dominance and exposure to competition (Pommerening et al., 2020). S is 
unlikely to take the value of 0. Theoretically d and S can be replaced by 
other suitable plant characteristics describing size and interaction. Even 
non-spatial measures of plant interaction can be considered. The hy
perbolic tangent index is convenient because its values always lie within 
a range of 0 and 1. It has also proved to explain growth rates well 
(Pommerening et al., 2020). Using d as size characteristic the variant of 
the hyperbolic tangent index S used in our study is defined for subject 
tree i as 

Si =
1

∑
wj

∑n

j=1

d2α
i

d2α
i + d2α

j
× wj (3) 

The number of nearest neighbours is denoted by n and parameter α 
accounts for symmetric (α = 0) or asymmetric (α→∞) competition 
(Freckleton and Watkinson, 2001). Symmetric competition is regarded 
as an equal sharing of resources amongst individuals, whilst asymmetric 
competition describes an unequal sharing, where large trees have a 

disproportionate advantage in competition with smaller trees (Weiner 
et al., 2001). The subject tree for which S is calculated is denoted by i 
and the nearest neighbours by j. The index values lie between 0 and 1 
and the larger the index value the more dominant is the tree at hand. In 
addition, we defined a weight wj as 

wj =
gj

distδ
j

(4) 

where gj = π
(
dj/2

)2 and distj is the Euclidean distance between 
subject tree i and a neighbour tree j. This weight (Eq. (4)) models the 
decay of size dominance with increasing distance and therefore puts 
greater emphasis on close neighbours and on neighbours of large size. 
(The same weight can also be employed when size variables other than 
d were selected and biomass or volume would be alternatives.) The 
larger δ the stronger the focus on neighbouring trees in close proximity 
to subject tree i. We selected n = 30 neighbours to deliberately include a 
large number of nearest neighbours in order not to miss any important 
competitor and used periodic boundary conditions in all calculations 
(Illian et al., 2008, p. 184) to take edge effects into consideration. 

The RGR function (Eq. (2)) was designed in such a way as to explain 
RGR (p) mainly in terms of plant size, in our case tree stem diameter d. 
Size dominance and competition, as represented by S, are only sec
ondary considerations in Eq. (2), which particularly affect trees when 
they are medium-sized (Wenk et al., 1990). RGR of larger trees is then 
increasingly influenced by plant size alone (see Fig. 2A), i.e. with 
increasing size the influence of competition fades out which is very 
realistic. 

By design, model parameter c1 in Eq. (2), also referred to as the 
growth parameter, always has a stronger effect on RGR than parameter c2 
(Eq. (2)). Only small values of c2 move the curve of the RGR function 
upwards. The growth parameter is negatively correlated with RGR and 
for individual trees lower values of c1 imply increased growth. Smaller, 
more suppressed trees have lower RGR and accordingly higher c1 values 
(Murphy and Pommerening, 2010). RGR increases with increasing 
values of size dominance S. For very low values of S, tree size does not 
matter much, but with increasing development, size influences the S-p 
relationship much more (Fig. 2B). Small trees benefit markedly more 
from increasing S than comparatively large trees. 

Unlike in other modelling approaches, in our study each tree of a 
given tree population has a specific set of parameters c1 and c2. More 

Fig. 2. RGR (p) function (Eq. (2)) for plot 205107 (see Section 2.8) and three different values of the hyperbolic tangent index S (0.25, 0.50, 0.70) with parameters c1 

and c2 estimated through Eqs. (5) and (6) depicted over size (represented by stem diameter d, A) and spatial dominance (represented by the hyperbolic tangent index 
S (Eq. (3)), B) for three different values of d (20, 50, 80 cm). (For interpretation of the references to colour in this figure, the reader is referred to the web version of 
this article.) 
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importantly, these two parameters can change from simulation year to 
simulation year to better adapt to changing environmental conditions. 
This allows a tree to flexibly change the specific trajectory, according to 
which its RGR decreases, from simulation year to simulation year 
(Fig. 2A). We therefore replaced population parameters c1 and c2 in Eq. 
(2) by the two corresponding individual-tree parameters c(1)i,t and c(2)i,t 

using tree and time indices in the notation. In each simulation year, the 
two parameters are estimated based on the current values of d and S 
using Eqs. (5) and (6): 

c(1)i,t = a0 × Si,t
− a1 (5)  

c(2)i,t = b0 × di,t
− b1 (6) 

This approach of estimating the parameters of the growth function is 
reminiscent of the parameter-prediction method described in growth 
modelling textbooks (Clutter et al., 1983; Weiskittel et al., 2011; Bur
khart and Tomé, 2012), but to our knowledge has not been applied to 
growth functions so far. The main purpose of Eqs. (5) and (6) is to 
achieve an individualisation of the function defined in Eq. (2) and the 
corresponding model parameters and thus greater flexibility. Individual- 
tree growth curves are now allowed to deviate from the common pop
ulation trend of Eq. (2) and to follow observed individual-tree RGR 
trajectories. Both parameters c(1)i,t and c(2)i,t were found to correlate with 
both d and S and therefore, the decision was made to alternate the use of 
these two independent variables in Eqs. (5) and (6) compared to their 
role in Eq. (2). Once RGR (pt) has been estimated using Eq. (2), stem- 
diameter growth is updated in the simulation for the next growth 
period based on Eq. (7): 

di,t+Δt = di,t × ept (7) 

We modelled tree annual mortality rate, m, as a function of the 
reciprocal of tree size and of RGR of the previous growth period, p̄i,t− Δt, 
and we again applied the Gompertz function due to its statistical ad
vantages (Gompertz, 1825; Salas-Eljatib and Weiskittel, 2020). The 
functional form of mortality rate mi,t is: 

mi,t = 1 − e− e
m0 + m1 × 1

di,t
+ m2 × p̄i,t− Δt

(8) 

where m0,m1 and m2 are model parameters. Birth and ingrowth 
models were not considered here, as they hardly occur in general plant 
field trials, laboratory trials or in forest plantations. 

2.2. Parameter estimation 

Based on time-series data from observational plots the a/symmetry 
parameter α (Eq. (3)) and the distance exponent δ (Eq. (4)) were initially 
estimated through a grid search. That combination of α and δ was sup
posed to be selected that maximised the correlation between S and RGR. 
However, in most cases the grid-search results either led to situations 
where the range of S was extremely limited or to inferior simulation 
results with regard to the end diameter density distribution and the 
slope characteristic described in Section 2.6. Therefore, we decided to 
use the default values of α = 1 and δ = 2 for all 12 time series. These 
defaults have proved useful in other studies (Boyden et al., 2005; 
Pommerening et al., 2020): α = 1 represents moderate asymmetric 
competition whilst δ = 2 is often preferred in (Gaussian) competition 
kernel functions for its plausible behaviour including a focus on very 
close neighbours. 

Parameters a0, a1, b0 and b1 (Eqs. (5) and (6)) were estimated 
simultaneously through least-squares regression. In addition, we esti
mated parameters c1 and c2 of Eq. (2) to quantify the mean growth trend 
of the entire tree population, however, these two parameters were not 
used in the model simulations. The mortality parameters were estimated 
separately using a Gompit regression model based on Eq. (8) that was 
fitted in a generalised linear modelling framework (Salas-Eljatib and 

Weiskittel, 2020). 

2.3. Model scheduling 

The model operates in discrete, annual time steps and at the begin
ning of each simulation year, first the mortality rule is applied followed 
by the removal of all dead trees. Afterwards the hyperbolic tangent 
index S is calculated. Current stem diameter and hyperbolic tangent 
index are used to estimate parameters c(1)i,t and c(2)i,t and thus contribute to 
the simulated annual relative growth rate based on Eq. (2). After 
calculating RGR, all stem diameters are updated synchronously using 
Eq. (7) to result in the stem diameters for the following year. A memory 
function saving previous RGR values is updated as the last step in each 
simulation year. 

2.4. Stochasticity 

A Gaussian random number with a mean of 0 and a standard devi
ation given by the standard error of residuals was added to the results of 
Eqs. (2). The mortality rule (Eq. (8)) was applied in such a way that the 
predicted mortality rate mi,t was compared with a uniform random 
number on the interval 0–1. Tree i is considered to have died, if mi,t is 
larger than the random number. 

2.5. Model initialisation and simulations 

The model was initialised with the tree list including all trees alive of 
the first year of the time series considered. For the application of the 
global envelope test (Myllymäki and Mrkvička, 2019), 4499 simulations 
were carried out independently for each of the 12 plots. 

2.6. Model evaluation 

For evaluating the regression results relating to the growth processes 
we quantified standard error of residuals, bias and RMSE. These char
acteristics always related to stem-diameter RGR. In addition, and for 
better comparison between data sets, we calculated relative bias and ef
ficiency and these two characteristics also related to the growth pro
cesses only. Relative bias, B, is defined as 

B =

∑n
i=1(ŷi − yi)

nȳ
, (9) 

where ̂yi is the ith prediction (modelled stem-diameter RGR), yi is the 
ith observation (observed stem-diameter RGR), n is the number of ob
servations and ȳ is the mean observation. Efficiency, E, is defined as 

E = 1 −
∑n

i=1(ŷi − yi)
2

∑n
i=1(yi − ȳ)2 . (10) 

Efficiency values approach one with improving model performance. 
A value of zero indicates that the model explains no more variation than 
the mean value of the observations alone and negative values highlight 
biased estimates. 

In addition to these evaluation characteristics we also compared the 
stem-diameter density distribution of the last survey year with the en
velopes obtained from 4499 simulations using the global envelope test 
(Myllymäki et al., 2018). Following the approach suggested by Dyer 
(1997), we also approximated the semi-major axes of the RGR-d/d̄ data 
ellipses based on the slope parameter of this linear relationship using 
robust regression to minimise the influence of outliers. Here size was 
expressed as individual-tree stem diameter, d, relative to the mean stem 
diameter, d̄, of the tree population in a given survey or simulation year. 
This slope characteristic is particularly important to judge whether the 
sequence of data ellipses (Fig. 1) was modelled correctly. These two 
additional evaluation characteristics reflected the performance of the 
entire model. Additionally, we compared the observed slope values with 
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the growth dominance coefficient. Growth dominance characterises the 
contributions of different tree sizes to total population growth (Binkley 
et al., 2006; West, 2014). The characteristic puts plant size and growth 
into a population-level representation by ranking plants from the 
smallest to the largest and plotting cumulative plant size over the cor
responding cumulative growth. This results in a graph similar to the 
Lorenz curve (Lorenz, 1905). In contrast to the Lorenz curve, the growth 
dominance statistic considers tree sizes and tree growth rates at the same 
time. The growth dominance curve can be summarised in a single 
number, the growth dominance statistic or growth dominance coeffi
cient G, which can also take negative values, particularly in the inter
esting case of forests with high tree size diversity. This number is the 
proportional area enclosed by the growth dominance curve. Negative G 
indicate situations where the growth of the largest plants is less than 
their proportional contribution to cumulative population size. Positive G 
highlight a situation where the growth of the largest plants is greater 
than their contribution to cumulative population size. Values of G = 0 
imply that the growth of each plant is proportional to its contribution to 
cumulative population size. 

For this analysis we used our own R (R Development Core Team, 
2021) and C++ code additionally applied the GET package (Myllymäki 
and Mrkvička, 2019). 

2.7. Mapping the parameter space 

We wanted to understand how the individual model parameters of 
RGR growth processes related to the general population trend. To this 
end we plotted all individual-tree c(1)i,t and c(2)i,t parameters against each 
other in such a way that for each plot separately they were both 
standardised between 0 and 1 using the common min–max normal
isation method. We also standardised the population parameters c1 and 
c2 in the same procedure. Finally, we subtracted standardised parame
ters c1 and c2 from the corresponding individual-tree c(1)i,t and c(2)i,t pa
rameters so that population parameters c1 and c2 were located at (0, 0), 
i.e. the origin of the system of coordinates. 

2.8. Study data 

In principle, any plant data could be used for this study and stem 
diameter could be replaced by biomass, stem volume or weight. We used 
tree data as an example and deliberately selected observations from 
plantations to make the data more similar to data from general plant 
trials. 

Spatio-temporal data for Monterey pine (Pinus radiata D. DON) trees 
growing in Chile were obtained from a network of silvicultural trials 
established between 1992 and 1996 by Modelo Nacional de Simulación 
(MNS). These trials were located in highly productive forest stands at the 
age of 5-years, originally with the purpose to evaluate the main and 
interactive effects of thinning, pruning and fertilization on tree- and 
stand-growth. Each trial was established as a randomized block design 
with three replicates. The average plot size was 1600 m2 ranging from 
1594 to 1676 m2 and the average planting spacing was 3.0 m between 
rows and 2.5 m within row. From this network, two trials located on 
contrasting sites were selected for testing the proposed modelling 
approach. To make the study data more comparable to data from general 
plant trials, we selected two unthinned and unpruned plots from each 
block that were established without fertilization. Thus, for each trial, six 
plots were available for this study. Trial 205 is located in the Coastal 
Range (35◦14′ S, 72◦12′ W) on granite soils at 460 m a.s.l. with a mean 
annual temperature of 12.1 ◦C and a mean annual precipitation of 688.4 
mm. The measured site index was 33.3 m at base age 20 years. By 
contrast, trial 410 is located in the Andean Piedmont (36◦30′ S, 71◦39′

W) on volcanic ash soils at 460 m a.s.l. with a mean annual temperature 
of 13.5 ◦C and a mean annual precipitation of 1207.4 mm. The measured 
site index was 36.3 m (at base age 20 years) showing higher productivity 

and carrying capacity in comparison to trial 205. Both trials were 
established in 1994 and were re-measured annually over a period of 14 
(trial 205) and 16 years (trial 410). However, in both trials re- 
measurements were not performed in 2005 and 2009. 

3. Results 

3.1. RGR trajectories 

The observed trajectories of relative growth rates markedly differed 
between the two trials 205 and 410. The trajectories of trial 205 are 
much flatter than those of the more productive trial 410 which have 
much more curved trajectories, i.e. a greater ontogenetic drift (Fig. 3). 

In both trials there were occasional deviations of individual-tree 
trajectories from the population trend. These deviations occurred in 
all plots, however, they were greatest in plots 205211, 410107 and 
410211. In some plots, this variability of RGR trajectories was particu
larly large in early years, e.g. in plots 205107, 410111, 410211 and 
410307. 

It is also evident that mortality trees, i.e. trees that do not survive the 
whole duration of the experiments, occupied the lower ranks of RGR 
trajectories particularly in survey years nearer to the time of their 
deaths. This is good confirmation of our mortality model (Eq. (8)), which 
included RGR of the previous growth period as independent variable. 
Some mortality trees had fairly high RGR values in early years of the 
experiments, but these values subsequently decreased more than those 
of other trees. 

3.2. Model performance 

The c1 parameter of the general population trend is fairly homoge
neous across trials. Arithmetic mean c1 of trial 205 (Table 1) was 0.13 
whilst the corresponding mean on trial 410 (Table 2) was 0.17. As 
parameter c1 is an interpretable growth parameter, this difference re
flects a difference in productivity (Murphy and Pommerening, 2010) 
which is higher in trial 410. As mentioned in Section 2.8, this trial 
showed a higher yield level (measured as site index) compared to trial 
205. The higher productivity is a function of better environmental 
conditions for this species. Parameter c2 is more related to tree domi
nance and there was no interpretable trend here, the values markedly 
varied from plot to plot. 

It is interesting to note that in trial 410 all model parameters b1 were 
negative, i.e. parameter c(2)i,t increases with increasing stem diameter 
(Table 2) whilst in trial 205 in the majority of plots parameter b1 was 
positive (except for plot 205107; Table 1). Positive b1 implies that 
parameter c(2)i,t decreases with increasing stem diameter. Plot 205107 
had the strongest ontogenetic drift in trial 205 which may explain why 
parameter b1 was negative here like for all plots in trial 410. 

Mortality rates were generally very low in all 12 plots and the gen
eral pattern of mortality parameter values is consistent with no anom
alies. The Gompertz mortality model (Eq. (8)) has proved to be a robust 
and reliable model. 

The efficiency of all 12 models was generally remarkably high and 
ranged between 0.73 in plot 205211 and 0.95 in plot 410211. Inci
dentally, fitting models based on population parameters c1 and c2 
instead of using Eqs. (5) and (6) in all 12 cases led to markedly lower 
efficiency values (not reported here) compared to those listed in Tables 1 
and 2. Efficiency values were higher the stronger the ontogenetic drift 
and the more homogeneous the RGR trajectories (Tables 1 and 2). 
Overall, the performance results suggest that the chosen model is 
generally suitable for describing RGR individual trajectories adequately 
and offers the benefit of interpretable model parameters. 
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3.3. Model evaluation 

The stem-diameter density distributions in the final survey year were 
all bell shaped as expected for data from tree plantations, i.e. the pop
ulation size structure is comparatively simple (Fig. 4). All of these 

distributions were well reproduced by the model regardless of trial. A 
few minor shortcomings relate to the peaks of the density distributions, 
e.g. in plots 20511, 205207 and 205307. With plots 410111 and 
410211, the observed curves were slightly outside the simulation en
velopes for larger stem diameters. 

Fig. 3. The RGR (p̄k) trajectories of the individual trees of the P. radiata plots over the 14 (trial 205) and 16 (trial 410) survey years. Red colour highlights the 
trajectories of those trees that died before the end of the experiments. (For interpretation of the references to colour in this figure, the reader is referred to the web 
version of this article.) 

Table 1 
Synopsis of the plot and model specific parameters and statistical characteristics related to RGR and trial 205. SE – standard error of residuals, RMSE – root mean square 
error, Bias – bias. B and E are defined in Eqs. (9) and (10), respectively. The parameter symbols are explained in Section 2.1.  

Model parameter Plot number 

205107 205111 205207 205211 205307 205311 

c1  0.15939  0.17217  0.16420  0.17574  0.17653  0.16720 
c2  55.98225  707.43522  334.12588  259.79045  602.37640  582.90519 
a0  0.06460  9.10519  4.07457  13.56038  8.17433  2.74637 
a1  1.03335  1.72485  1.70268  1.71785  1.64789  1.72615 
b0  0.68502  0.01503  0.03055  0.01192  0.01897  0.04251 
b1  − 1.19737  0.17188  0.12805  0.21109  0.19763  0.11388 
m0  − 5.34343  − 6.11832  − 5.10474  − 5.73618  − 7.40111  − 6.30705 
m1  26.15888  29.99608  28.85575  20.82506  31.99057  27.69963 
m2  − 60.12478  − 38.95843  − 76.58065  –32.74438  − 15.18590  − 38.91135 
SE  0.03221  0.03101  0.02818  0.03779  0.03252  0.02767 
RMSE  0.03218  0.03098  0.02816  0.03776  0.03250  0.02765 
Bias  0.00244  − 0.00001  − 0.00001  0.00086  0.00072  − 0.00024 
B  0.03343  − 0.00020  − 0.00018  0.01096  0.00938  − 0.00331 
E  0.78160  0.77534  0.83856  0.72959  0.76758  0.79879  

A. Pommerening et al.                                                                                                                                                                                                                         



Forest Ecology and Management 529 (2023) 120652

7

Across all trials, the slope values of the relationship RGR-d/d̄ first 
tended to increase and then to decrease in a non-linear fashion (Fig. 5). 
As such the slope of the linear RGR-d/d̄ relationship followed a pre
dictable pattern over mean population stem diameter (cf. Fig. 1). In 
early development stages, smaller trees have higher relative growth 
rates than larger trees. Over time the slope of the relationship increases 

and the larger trees in the corresponding data ellipses have a higher RGR 
than the smaller trees (Dyer, 1997). Stands with a stronger ontogenetic 
drift as in trial 410 consequently also tended to have much more varied 
slope curves than stands with a weaker ontogenetic drift (cf. Figs. 3 and 
5). As this difference in ontogenetic drift between trials 205 and 410 was 
mainly caused by environmental conditions, the corresponding 

Table 2 
Synopsis of the plot and model specific parameters and statistical characteristics related to RGR and trial 410. SE – standard error of residuals, RMSE – root mean square 
error, Bias – bias. B and E are defined in Eqs. (9) and (10), respectively. The parameter symbols are explained in Section 2.1.  

Model parameter Plot number 

410107 410111 410207 410211 410307 410311 

c1  0.13617  0.12535  0.13688  0.12665  0.12566  0.13014 
c2  226.30371  38.33011  82.24158  63.43836  46.88080  238.53881 
a0  0.04975  0.04580  0.04981  0.04422  0.04404  0.05010 
a1  1.33909  1.39201  1.39963  1.40244  1.38006  1.34378 
b0  0.40252  0.14389  0.62735  0.12559  0.05587  0.21272 
b1  − 1.09374  − 1.52683  − 0.86982  − 1.63586  − 2.10826  − 1.33389 
m0  − 4.92848  − 4.99777  − 4.65150  − 5.27744  − 5.38258  − 6.07952 
m1  40.27940  43.96823  30.88085  37.29797  42.48509  48.87110 
m2  –23.92730  − 46.15290  − 36.23400  − 34.17041  − 17.17859  − 30.09111 
SE  0.03712  0.04543  0.04543  0.03148  0.03404  0.03251 
RMSE  0.03710  0.04540  0.04540  0.03146  0.03401  0.03249 
Bias  0.00107  0.00084  − 0.00086  0.00171  0.00138  0.00105 
B  0.01155  0.00815  − 0.01014  0.01792  0.01391  0.01132 
E  0.91769  0.91925  0.84025  0.95029  0.94503  0.94051  

Fig. 4. Observed stem-diameter density distributions (continuous black line) of the 12 P. radiata plots in the final year of the experiments including the corre
sponding envelopes of 4499 model simulations using the global envelope test (Myllymäki et al., 2018). d is stem diameter. 
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differences in the slope curves reflect these conditions. 
It is interesting that in trial 205 the peak of the slope curves 

commonly occurred after a population stem diameter d̄ = 20 cm whilst 
this peak generally forms before a mean diameter of 20 cm in trial 410 
(Fig. 5). The same statement can be made for the d̄ value where the sign 
of the slopes change from negative to positive. Thus, good environ
mental conditions clearly accelerate the temporal growth trend 
including the sequence of elliptic point clouds as described in Fig. 1. It is 
reasonable to expect the switch from negative to positive correlation 
between RGR and size to be associated with some critical point in stand 
development. Dyer (1997), Perry (1985) and Larocque and Marshall 
(1993) hypothesised this switch to mark the point when competition for 
resources begins to become more intense and to impact growth. It is 
remarkable how well the simulations have been able to reconstruct the 
complicated slope development. Minor issues where the observed slope 
curves were not fully within the envelopes can be seen in plots 205107, 
205207, 205307, 410207 and 410211. 

Compared to other studies (Binkley et al., 2006; Pommerening et al., 
2016) the values of growth dominance G occurred in a limited range 
approximately between − 0.15 and 0.25 and the relationship between 
the slope values of the relationship RGR-d/d̄ and G was nonlinear 
(Fig. 6). The trend curves were similar to the solid black curves of 
observed slope values in Fig. 5. The reason for this is that G increased 
with increasing d̄. At the beginning of stand development, all 12 plots 
surprisingly had negative G implying that small trees disproportionately 

contributed to basal-area growth and large trees did not dominate the 
growth of the plantation. This changed precisely when the slopes of the 
relationship RGR-d/d̄ changed from negative to positive. At this point, G 
took a value of 0 in all 12 plots, i.e. here neither small nor large trees 
dominated the growth processes, but the growth of each tree was pro
portional to the size it contributes to overall population basal area. G 
further increased into the positive domain indicating that large trees 
increasingly dominated the plantation growth. 

In all plots, maximum slope was located at values of G of approxi
mately 0.1. Growth dominance, however, steadily kept increasing even 
after the slope maximum had been reached. 

3.4. Parameter space 

Mapping the standardised parameter space, as explained in Section 
2.7, produced very varied results. Only in plot 410307 the standardised 
population parameters c1 and c2 were not far from the centre of the 
individual-tree parameter point cloud (Fig. 7). The peripheries of point 
clouds in plots 205107, 410111 and 410211 also included the popula
tion parameters. For all other plots the population parameters c1 and c2 
were outside and at quite some distance from the individual-tree 
parameter point cloud. For all plots in trial 205 except for plot 
205107 the c2 parameters were so large that the much smaller 
individual-tree parameters c(2)i,t formed the lower boundary of the 
parameter space at around − 1, however, they varied slightly in value 

Fig. 5. Observed slopes f1 (continuous black line) of the relationship RGR = f0 +f1 × d/d̄ in the 12 P. radiata plots including the corresponding envelopes of 4499 
model simulations using the global envelope test (Myllymäki et al. 2018). d̄ is mean stem diameter in different survey years. 
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within a very narrow range. It is interesting to note that for all these 
plots with standardised c(2)i,t parameters around –1, model parameter b1 

was positive whilst for all other plots b1 < 0. It seems reasonable to 
think that negative b1 values substantially narrowed the range of c(2)i,t 

parameters and reduced their magnitude. Small c2 or c(2)i,t values can lift 
RGR trajectories resulting in larger RGR values whilst very large values 
of the same parameters hardly make any difference to the trajectory 
locations. The individual-tree parameter point clouds in plots 410107, 
410207 and 410311 were similar to those in the plots of trial 205 (except 
for that of 205107), only the range of c(2)i,t values was larger and some c(1)i,t 

values extended into the negative domain. With the notable exception of 
plot 410307, individual-tree parameters c(2)i,t never much extended 
beyond 0, i.e. population c2 was always substantially larger than any of 
the c(2)i,t . 

For nearly all 12 plots with the exception of plot 410111 and perhaps 
plot 410211, individual-tree parameter c(1)i,t was well spread across the 
horizontal parameter space with a clustering near 0, i.e. near the pop
ulation c1 value. Most c(1)i,t lie between 0 and 1, i.e. in the majority of 
cases individual-tree and population parameters were similar in 
magnitude. In plots 205107, 410107, 410207, 410211, 410307 and 

410311, i.e. in 6 out of 12 plots, negative standardised c(1)i,t values 
occurred. Such values implied that the non-standardised values were 
slightly smaller than the c1 population parameter. Small c1 or c(1)i,t values 

tend to push RGR trajectories upwards whilst large c1 or c(1)i,t values have 
the opposite effect. However, these effects are stronger than those 
caused by the c2 or c(2)i,t parameters, see Section 2.1. The extension of the 

c(1)i,t point cloud into negative space was very limited and did not go 
beyond − 0.1. 

The temporal development showed that in most cases both c(1)i,t and 

c(2)i,t parameters were initially quite limited in range but then took much 
larger values as the years progressed. This effect increased the ontoge
netic drift of RGR beyond the mean population trend which allowed the 
adaptation of the growth function in Eq. (2) to individual, observed RGR 
trajectories including temporary divergences. 

4. Discussion and conclusions 

The ontogenetic drift involved in RGR data and their dependence on 
size have triggered quite a few discussions in the past (Bragg, 2001; Rose 
et al., 2009; Rees et al., 2010). Arguments against RGR were partly 

Fig. 6. Observed slopes f1 of the relationship RGR = f0 +f1 × d/d̄ in the 12 P. radiata plots plotted over the growth dominance coefficient G (Binkley et al. 2006). G 
was calculated using individual-tree basal area g = π(d/2)2 and the corresponding individual-tree mean annual absolute growth rates. The red trend curves were 
modelled using the Hassell function f1 =

g0 × G
(g1+G)g2 (Bolker 2008), where g0, g1 and g2 are model parameters. (For interpretation of the references to colour in this figure, 

the reader is referred to the web version of this article.) 
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related to the fact that growth in the experiments concerned were mostly 
considered as a summary and measured by an aggregated variable at the 
end of the experiment, e.g. total plant weight or total biomass measured 
after harvesting all plants. As these measurements usually are destruc
tive, in most cases no time series with repeated measurements are 
available. Our research, however, has shown that the ontogenetic drift is 
one of many natural growth patterns of plants and according to our work 
the nature of its shape and course, i.e. velocity and steepness of curve, is 
related to environmental conditions and can be interpreted. Turnbull 
et al. (2008) more specifically argued that – because RGR typically de
creases with size – classical growth analysis using RGR cannot distin
guish between individuals that grow slowly because they are large and 
individuals that grow slowly because they are pursuing a slow growth 
strategy. They concluded that RGR alone therefore does not allow a fair 
comparison unless individuals are identically sized. However, our study 
revealed that by analysing repeated measurements, depicting RGR tra
jectories over size and reconstructing these trajectories through 
modelling it is indeed possible to distinguish these two situations. 

Our research has demonstrated that RGR dynamics can be well 
described using a modelling approach originally developed by Wenk and 
colleagues (Wenk, 1994; Murphy and Pommerening, 2010) and the 
method provided a flexible approach towards explaining the mecha
nisms of the ontogenetic drift in plant populations. The original growth 
function used an age dependent variant of the Gompertz function 
(Gompertz, 1825) which we modified to become a size dependency (Eq. 
(2)). In our model, growth parameter c1 has largely the same 

interpretation and a similar range of values as in the age-dependent 
model proposed by Wenk. We found that model parameter b1 (Eq. (6)) 
clearly depends on the ontogenetic drift of RGR and through this drift on 
environmental conditions. Depending on the nature of the ontogenetic 
drift, b1 can take positive or negative values. The evaluation charac
teristics highlighted that the model fit was better the stronger the 
ontogenetic drift. We could also show that trees with RGR trajectories 
located at or moving towards the bottom of the system of trajectories 
(Fig. 3) were likely to die and thus these results confirmed those of 
previous studies (Bigler and Bugmann, 2003; Gillner et al., 2013). 
Particularly the individual RGR trajectories of the mortality trees show 
that it is indeed possible to distinguish between different growth 
strategies. 

Comparing population and individual-tree parameters yielded 
interesting and interpretable results. In most cases the population pa
rameters were located outside the clouds of tree parameters which is 
related to the short-term adaptation behaviour of the growth function 
implemented in Eqs. (5) and (6). The aforementioned behaviour of 
parameter b1 also substantially affected the relationship between c2 and 
c(2)i,t . Negative b1 pushed the individual-tree c(2)i,t values towards the lower 
boundary of the parameter space and restricted them to a very narrow 
range. Parameter c(1)i,t appeared to be less influenced by the sub-models 
in Eqs. (5) and (6) and covered quite well the whole parameter space 
with some clustering towards population parameter c1. Only compara
tively few c(1)i,t values were smaller than c1. 

Fig. 7. Standardised individual-tree model parameters c(1)i,t and c(2)i,t in the context of population parameters c1 and c2 located at (0, 0).  
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The slope values of the relationship RGR-d/d̄ turned out to be a 
particularly useful characteristic for describing and explaining RGR 
dynamics including the ontogenetic drift. To date we have only seen it 
being used by Dyer (1997). The characteristic is directly related to the 
elliptic RGR-d data clouds and approximates the semi-major axes of the 
data ellipses through robust regression. The typical slope curve tends to 
start below 0 or near 0 and increases to reach a global maximum in the 
positive domain. Beyond that maximum, the slope curve gradually de
creases again. The point on the size axis at which the slope changes from 
negative to positive, as well as the mean population size at which the 
maximum occurs, depends on the ontogenetic drift and thus on envi
ronmental conditions. Populations benefitting from benign environ
mental conditions show large negative initial slope values, a steep 
increase of the slope curve, and a peak at a comparatively small mean 
population size followed by a rapid decrease of slope value (cf. Fig. 5). 
With less beneficial conditions the slope curve starts with less negative 
values or even around 0, has a gradual increase towards a maximum at 
relatively large mean population sizes followed by a gradual decrease of 
slope value. Benign environmental conditions accelerate the temporal 
growth trend both in terms of reaching the slope maximum and aban
doning it again in favour of smaller slope values. They also increase the 
ontogenetic drift and fertilisation would have a similar effect. Thinning 
interventions carried out as part of forest management in Pinus taeda L. 
plantations in Virginia (USA) have been shown to have the opposite 
effect, i.e. they reduced the magnitude of the slope (Dyer, 1997). The 
change from negative to positive slopes is clearly an important point in 
plant population development as Perry (1985), Larocque and Marshall 
(1993) and Dyer (1997) predicted. In Fig. 1, we can see that this change 
happens in plot 410211 sometime between 1994 and 1995, i.e. very 
early in stand development. Interestingly, the change from negative to 
positive slopes happens earlier on more productive sites than on less 
productive sites and at the point where growth dominance G = 0 
(Fig. 6). Here small trees cease to dominate plantation growth and large 
trees start to take over the domination of growth in the population. At 
this point, size hierarchies have been largely sorted out. 
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Wenk, G., Antanaitis, V., Šmelko, Š., 1990. Waldertragslehre. [Forest growth and yield 
science.] Deutscher Landwirtschaftsverlag. Berlin. 

West, P.W., 2014. Calculation of the growth dominance statistic for forest stands. For. 
Sci. 60, 1021–1023. 

West, P.W., 2020. Do increasing respiratory costs explain the decline with age of forest 
growth rate? J. For. Res. 31, 693–712. 

Whitehead, F.H., Myerscough, P.J., 1962. Growth analysis of plants. The ratio of mean 
relative growth rate to mean relative rate of leaf area increase. New Phytol. 61, 
314–321. 

Yoda, K., Shinozaki, K., Ogawa, H., Hozumi, K., Kira, T., 1965. Estimation of the total 
amount of respiration in woody organs of trees and forest communities. Journal of 
Biology, Osaka City University 15, 15–26. 

A. Pommerening et al.                                                                                                                                                                                                                         

http://refhub.elsevier.com/S0378-1127(22)00646-6/h0170
http://refhub.elsevier.com/S0378-1127(22)00646-6/h0170
http://refhub.elsevier.com/S0378-1127(22)00646-6/h0170
http://refhub.elsevier.com/S0378-1127(22)00646-6/h0175
http://refhub.elsevier.com/S0378-1127(22)00646-6/h0175
http://refhub.elsevier.com/S0378-1127(22)00646-6/h0180
http://refhub.elsevier.com/S0378-1127(22)00646-6/h0180
http://refhub.elsevier.com/S0378-1127(22)00646-6/h0180
http://refhub.elsevier.com/S0378-1127(22)00646-6/h0185
http://refhub.elsevier.com/S0378-1127(22)00646-6/h0185
http://refhub.elsevier.com/S0378-1127(22)00646-6/h0190
http://refhub.elsevier.com/S0378-1127(22)00646-6/h0190
http://refhub.elsevier.com/S0378-1127(22)00646-6/h0195
http://refhub.elsevier.com/S0378-1127(22)00646-6/h0195
http://refhub.elsevier.com/S0378-1127(22)00646-6/h0200
http://refhub.elsevier.com/S0378-1127(22)00646-6/h0200
http://refhub.elsevier.com/S0378-1127(22)00646-6/h0205
http://refhub.elsevier.com/S0378-1127(22)00646-6/h0205
http://refhub.elsevier.com/S0378-1127(22)00646-6/h0210
http://refhub.elsevier.com/S0378-1127(22)00646-6/h0210
http://refhub.elsevier.com/S0378-1127(22)00646-6/h0210
http://refhub.elsevier.com/S0378-1127(22)00646-6/h0215
http://refhub.elsevier.com/S0378-1127(22)00646-6/h0215
http://refhub.elsevier.com/S0378-1127(22)00646-6/h0220
http://refhub.elsevier.com/S0378-1127(22)00646-6/h0220
http://refhub.elsevier.com/S0378-1127(22)00646-6/h0220
http://refhub.elsevier.com/S0378-1127(22)00646-6/h0225
http://refhub.elsevier.com/S0378-1127(22)00646-6/h0225
http://refhub.elsevier.com/S0378-1127(22)00646-6/h0235
http://refhub.elsevier.com/S0378-1127(22)00646-6/h0235
http://refhub.elsevier.com/S0378-1127(22)00646-6/h0240
http://refhub.elsevier.com/S0378-1127(22)00646-6/h0240
http://refhub.elsevier.com/S0378-1127(22)00646-6/h0245
http://refhub.elsevier.com/S0378-1127(22)00646-6/h0245
http://refhub.elsevier.com/S0378-1127(22)00646-6/h0245
http://refhub.elsevier.com/S0378-1127(22)00646-6/h0250
http://refhub.elsevier.com/S0378-1127(22)00646-6/h0250
http://refhub.elsevier.com/S0378-1127(22)00646-6/h0250

	Understanding and modelling the dynamics of data point clouds of relative growth rate and plant size
	1 Introduction
	2 Materials and methods
	2.1 Spatially explicit RGR modelling concept
	2.2 Parameter estimation
	2.3 Model scheduling
	2.4 Stochasticity
	2.5 Model initialisation and simulations
	2.6 Model evaluation
	2.7 Mapping the parameter space
	2.8 Study data

	3 Results
	3.1 RGR trajectories
	3.2 Model performance
	3.3 Model evaluation
	3.4 Parameter space

	4 Discussion and conclusions
	Author contributions
	Declaration of Competing Interest
	Acknowledgements
	Availability of data and material
	Funding
	References


