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Abstract: Considering pure quantum states, entanglement concentration is the procedure where,
from N copies of a partially entangled state, a single state with higher entanglement can be obtained.
Obtaining a maximally entangled state is possible for N = 1. However, the associated success
probability can be extremely low when increasing the system’s dimensionality. In this work, we
study two methods to achieve a probabilistic entanglement concentration for bipartite quantum
systems with a large dimensionality for N = 1, regarding a reasonably good probability of success
at the expense of having a non-maximal entanglement. Firstly, we define an efficiency function Q
considering a tradeoff between the amount of entanglement (quantified by the I-Concurrence) of
the final state after the concentration procedure and its success probability, which leads to solving a
quadratic optimization problem. We found an analytical solution, ensuring that an optimal scheme
for entanglement concentration can always be found in terms of Q. Finally, a second method was
explored, which is based on fixing the success probability and searching for the maximum amount of
entanglement attainable. Both ways resemble the Procrustean method applied to a subset of the most
significant Schmidt coefficients but obtaining non-maximally entangled states.

Keywords: entanglement concentration; Schmidt number

1. Introduction

Quantum entanglement is the most known, remarkable, and useful quantum re-
source in the quantum information (QI) theory [1] as it underlies several QI protocols,
such as dense coding [2], entanglement swapping [3], quantum teleportation [4], and
quantum cryptography [5]. For instance, in the bipartite scenario, two users who want to
communicate—usually called Alice and Bob—can share an entangled state [6]. In this case,
the ability to transmit information encoded in the state shared by Alice and Bob depends on
the amount of entanglement [7,8]. Moreover, the most favorable case for faithful communi-
cation is when Alice and Bob share a maximally pure entangled state (MES) [9]. However,
even if it was the initial state, the quantum noisy channel used to send the information
will produce a loss of correlations in the MES [10]. Moreover, the quantum operations
needed to carry out a particular quantum application are performed imperfectly due to the
experimental errors, yielding to fidelities of less than one [11].

In such cases where they have access only to a partially entangled state ρ, it is desirable
to access a channel that allows a more faithful way to send quantum information. One
solution is to implement protocols to increase the amount of entanglement [12,13]. These
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protocols are known as entanglement purification or entanglement distillation [14–16] and
entanglement concentration [17]. These methods are based on the fact that local operations
and classical communication between Alice and Bob cannot increase, on average, the
amount of entanglement in the initially entangled pairs [18].

In the case of entanglement purification, the goal is to increase the purity and the
entanglement in the initial state ρ, but under the cost of reducing the number of initial copies
available. It can only be implemented successfully in a probabilistic way [14]. Moreover, an
experimental realization of entanglement purification was carried out for mixed states of
polarization-entangled photons using linear optics [19].

In the entanglement concentration, the process considers the cases where the initial
partially entangled state is pure [20,21]. Indeed, there are two ways to implement entangle-
ment concentration: the Procrustean method and the Schmidt projection method [17,20,21].
The Procrustean method is easier to implement than the Schmidt projection method because
the initial partially entangled state is known. The entanglement concentration procedure is
carried out by local filtering onto individual pairs of the initial state [17]. In the Schmidt
method, however, the process of entanglement concentration is implemented in at least
two unknown partially entangled states through collective simultaneous measurements
onto the particles [22]. Thus, schemes for carrying out the entanglement concentration have
been proposed for the Procrustean [23] and the Schmidt method [24,25]. Moreover, its
experimental implementation has been achieved in the case of the Procrustean method [26]
and for the Schmidt method [22] using partially polarization-entangled photons.

The entanglement concentration can also be classified as deterministic [12,27,28] as
well as probabilistic [11,13,20,29]. In the deterministic case, the process has a probabil-
ity equal to one to be successfully implemented in the regimes of few copies or in the
asymptotic limit of infinite copies [30]. In this scheme, the quantum circuits to carry out
deterministic entanglement concentration have been proposed [31] and recent experimen-
tal efforts demonstrate its feasibility [32–35]. In these experimental works, the copies are
replaced by additional degrees of freedom of the same pair of photons, which improves
the possibility of short-term implementations of entanglement distillation for technological
purposes. On the other hand, in the probabilistic entanglement concentration, the process is
achieved with a probability of less than one and has been experimentally implemented [36].
Moreover, the relation in the asymptotic limit between the entanglement concentration in
a deterministic and probabilistic way was studied [30]. They found that these methods
are equivalent considering many copies of the initial state: the error probability for the
probabilistic method goes to zero quickly with the number of copies. In addition, the entan-
glement concentration is generally studied considering two entangled quantum states, but
has also been studied for the case of tripartite correlated systems [37,38].

In this work, we studied the probabilistic entanglement concentration in the bipartite
scenario of a pure two-qudit (D-dimensional) state. Considering a large dimensionality
(D � 2), we study two methods to achieve entanglement concentration regarding a reason-
ably good probability of success at the expense of having a non-maximal entanglement. At
first glance, we consider a tradeoff between the amount of entanglement of the state after
the concentration procedure and its success probability, quantified by the payoff functionQ.
This figure of merit leads to analytically solving a quadratic optimization problem, ensuring
that an optimal scheme for entanglement concentration can always be found in terms of Q.
Then, a second method was studied, where we fixed the success probability and searched
for the maximum amount of entanglement attainable in this case. We found that both
ways resemble the Procrustean method applied to a subset of the most significant Schmidt
coefficients without the constraint of obtaining a MES. We envisage the usefulness of these
methods in entanglement-based quantum communication and also for device-independent
protocols where high-dimensional entangled states are required with a certain amount of
entanglement, such as randomness certification, expansion and self-testing [39–41].
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2. Revisiting Entanglement Concentration

Throughout this work, we will limit ourselves to the case of entanglement concentra-
tion from a single copy of a two-qudit non-maximally entangled pure state. This state will
be given by

|Φ〉12 =
D

∑
m=1

am|m〉1|m〉2, (1)

where am are positive coefficients such that ∑m a2
m = 1. The set of states {|m〉1|m〉2}D

m=1
can be regarded as the Schmidt basis for the entangled state |Φ〉12, and, therefore, am will
be the respective Schmidt coefficients. In order to quantify the entanglement conveyed
by |Φ〉12, the I-Concurrence [42] can be used, which is given by

C(|Φ〉12) =

√
D

D− 1
(
1− tr

(
ρ2

1
))

=

√√√√ D
D− 1

(
1−

D

∑
m=1

a4
m

)
, (2)

where ρ1 is the reduced density matrix of one of the qudits. This function fulfills the
necessary conditions an entanglement measure needs to satisfy [43]. Its minimum value
is zero, and its maximum is one, which arises when |Φ〉12 is a product state and a maxi-
mally entangled state, respectively. This document will refer to C simply as entanglement.
Another function widely used to assess entanglement is the Schmidt number [44–51],
defined as

K(|Φ〉12) =
1

tr
(
ρ2

1
) =

[
D

∑
m=1

a4
m

]−1

. (3)

It is straightforward to see that C(|Φ〉12) and K(|Φ〉12) are closely related, as both depend
on tr

(
ρ2

1
)
.

As we mentioned above, it is well known the correlated state given in Equation (1) can have
its entanglement increased through an entanglement concentration procedure [7,13,30,52,53].
This process is, in general, a probabilistic one [54]. We will follow the next approach to
show the concentration scheme. Assuming we have an ancillary qubit initially prepared in
state |0〉a, it can be used for concentration through a unitary bipartite operation Ua1 acting
over the ancilla and one of the qudits. Let

Ua1 ⊗ I2|0〉a|Φ〉12 = |0〉a AS|Φ〉12 + |1〉a AF|Φ〉12, (4)

where |µ〉a is the state of the ancilla which flags whether concentration was accomplished
(µ = 0) or not (µ = 1). AS and AF are Kraus operators acting on qudit 1, modifying the
entangled state in each case. A measurement on the ancilla announces if we succeeded.
Through this work, we will be only concerned with the successful cases, whose study can
be simplified considering AS|Φ〉12 only. Without loss of generality, we may write

AS|Φ〉12 =
√

pS|Ψ〉12, (5)

where pS is the probability of success for the concentration procedure, and |Ψ〉12 is the
resulting state; therefore, we obtain C(|Ψ〉12) > C(|Φ〉12). If the intention is to obtain a MES,
it is known that pS = Da2

min, where a2
min = min{|am|2} [7,53]. This probability, however,

may adopt very small values if the Schmidt coefficients exhibit large differences among
them, rendering the procedure inefficient.

Alternatively, one may increase the success probability at expense of having a partially
entangled state as result. In Ref. [20], Vidal studied the case of transforming Schmidt
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coefficients {am} onto a given set {bm} and showed the optimal probability of success
for such map. In this way, one may choose the bm coefficients in such a way that the
success probability is good enough at the same time the entanglement is increased. Another
possibility is to set the resulting state |Ψ〉12 as a maximally entangled one for a subspace
of dimension N 6 D, which is analogous to a Procrustean method (i.e., cutting off extra
probabilities from a given reference value [14]) applied only on a subset of the original
Schmidt coefficients [13]. Both approaches, however, force one to constrain the final state
to be a given one. Thus, the problem contains D arbitrary parameters bm, and one has to
search thoroughly for a convenient combination of the bm.

A possible way to decrease the number of free parameters is to use the Kraus opera-
tor AS(ξ) given in Ref. [55]. This approach allows to interpolate between the initial Schmidt
coefficients (am) and the ones from a maximally entangled state (1/

√
D) using a single

parameter ξ. Thus, we may transform am → bm(ξ), where 0 6 ξ 6 1, and

b2
m(ξ) = a2

m +

(
1
D
− a2

m

)
ξ. (6)

It can be seen that Equation (6) shows a transformation that preserves the norm of the
new state and represents a linear interpolation for the squares of the Schmidt coefficients.
Moreover, the success probability is p(ξ) =

[
1− ξ + ξ/(Da2

min)
]−1 [55]. This method,

although straightforward to understand, leads to little improvement in terms of success
probabilities. For instance, Figure 1 evidences that even a little improvement in any of the
functions used to assess entanglement is achieved at the expense of a substantial drop in
the success probability. This figure also evidences that the I-Concurrence, although simple
to work with because it is not a rational function, is not good for graphical assessment since
even initial I-Concurrence (see ξ = 0) exhibits values close to one. Instead, the Schmidt
number is not simple to work with due to its inverse dependence on tr

(
ρ2

1
)

but makes
graphical evaluation uncomplicated.
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Figure 1. Example of entanglement concentration for D = 32 by using linear interpolation for the
squares of the Schmidt coefficients.

These previous attempts lead us to question whether a method can obtain a reasonable
increment in entanglement with a non-negligible success probability without imposing
constraints on the final state beforehand. The next sections will address this question.

3. Towards Efficient Entanglement Concentration

Here, we shall propose and analyze a more efficient method for entanglement concen-
tration from a single copy of a partially entangled pure state. Let us define a parameterized
Kraus operator AS(~z) being applied on one of the qudits. This operator can be written as

AS(~z) =
D

∑
m=1

zm|m〉〈m|, (7)

so its action on the two-qudit system after successful concentration will be
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AS(~z)|Φ〉12 =
D

∑
m=1

zmam|m〉1|m〉2. (8)

Thus, keeping Equation (5) in mind, the post-concentration state and its probability of
success are

|Ψ(~z)〉12 =
1√

pS(~z)

D

∑
m=1

amzm|m〉1|m〉2, (9)

pS(~z) =
D

∑
m=1

a2
m|zm|2, (10)

respectively. Since pS(~z) must not exceed one, it is mandatory to impose |zm| 6 1. The
reduced density matrix for one of the subsystems shall be

ρ1(~z) =
1

pS(~z)

D

∑
m=1

a2
m|zm|2|m〉〈m|. (11)

I-Concurrence and Schmidt number, as function of~z, will be given by

C(~z) =

√√√√ D
D− 1

(
1−

D

∑
m=1

a4
m|zm|4
p2

S(~z)

)
, (12)

K(~z) =
p2

S(~z)
∑m a4

m|zm|4
. (13)

Let us now define a quantity Q(~z) aimed to assess the efficiency of the concentration
procedure considering a trade-off between the probability of success and the increment
in entanglement. A Kraus operator that maximizes this efficiency will be pursued. A
choice, although not unique at all, might be pS(~z)C(~z). Maximizing it will be equivalent
to maximizing its square, [pS(~z)C(~z)]2, which should be a simpler procedure since the
square root we can see in Equation (12) will not be present. However, [pS(~z)C(~z)]2 has its
maximum when zm = 1, ∀ m, which means state |Φ〉12 will be kept unaltered (This will
be proven in Appendix A). Instead, we may try with the difference between C2(~z) and
a constant reference level for the I-Concurrence (C2

REF). This reference level could be, for
instance, the initial value CINIT = C(|Φ〉12). Let us try by defining an efficiency function
such as

Q(~z) = p2
S(~z)

(
C2(~z)− C2

REF

)
. (14)

Equations (10) and (12) allow us to transform Equation (14) into

Q(~z) = D
D− 1

D

∑
m,n=1

|zm|2a2
m(PREF − δmn)a2

n|zn|2, (15)

PREF = 1− D−1
D C

2
REF, (16)

where PREF has been defined for mathematical convenience. It ranges from 1/D to 1, and
it can be interpreted as a reference value for the purity of a reduced density matrix, as it
can be seen from Equation (2). Another interpretation, as can be seen from Equation (3),
is PREF = 1/KREF, where KREF is a reference value for the Schmidt number. A careful
observation of Equation (15) leads us to infer that the problem of efficient entanglement
concentration, in the form it has been described in this document, can be rewritten as a
quadratic optimization problem given by



Micromachines 2023, 14, 1207 6 of 18

max
~y
Q(~y) = D

D− 1
~y ᵀH~y, (17a)

subject to 0 6 ym 6 1, (17b)

where

ym = |zm|2, (17c)

[H]m,n = (PREF − δmn)a2
ma2

n. (17d)

Therefore, the problem of efficient entanglement concentration for a single pair of
entangled qudits can be written as the quadratic optimization problem described in
Equations (17a)–(17d), with the optimization variables ym lying in a unit hypercube. Fi-
nally, without loss of generality, we may choose the positive root of zm =

√
ym. Note that the

presence of CREF forces the optimization to look for a solution~yOPT such that C(~yOPT) > CREF.
Otherwise, function Q(~yOPT) would adopt a negative value [see Equation (14)] and, there-
fore, it will not represent a maximum. For this reason, we can assure that CREF > CINIT forces
entanglement concentration. In an extreme case, CREF = 1 means that the reference level is
equal to the maximum possible value I-Concurrence can adopt. Therefore, Q(~y) will adopt
a negative value unless the final entanglement is also equal to one, for which Q = 0. This
is the standard entanglement concentration procedure. On the other hand, CREF could be
slightly smaller than CINIT and, still, entanglement concentration may occur, as it will be
shown in Section 4.1. For this problem, the square of the I-Concurrence has been used also
because both numerical and analytical solutions are accessible. For graphical purposes, as
it was already seen in Figure 1, the Schmidt number shall be used. Moreover, the Schmidt
number provides an estimation of the number of relevant Schmidt modes involved [45].

We must add that the Kraus operator defined in Equation (7) is diagonal in the Schmidt
basis. We may have started by a general Kraus operator, instead of a diagonal one. However,
Appendix B shows it suffices to look for diagonal operators.

4. Solving the Problem
4.1. Numerical Hints

Figure 2 shows the results of numerical resolution of the aforementioned optimization
problem for a given set of D = 16 Schmidt coefficients a2

m, randomly chosen, and sorted
decreasingly in order to ease observation. For this example, we tested four possible values
of C2

REF, given by (i) C2
INIT/2, much smaller than the initial entanglement; (ii) 0.98C2

INIT,
slightly smaller than the initial entanglement; (iii) average value between CINIT and 1, a
significant increase in entanglement; and (iv) C2

REF = 1, the maximum possible value for
C2

REF. The optimization was performed using the function QUADPROG of Matlab R2022b.
Since this is a non-convex problem with constant bounds only, the algorithm “trust-region-
reflective” was used since it was the best suited for our optimization problem [56].

The plots show the original Schmidt coefficients (cyan) and the non-normalized coeffi-
cients after concentration (dark red). A pattern is evident. For small values of C2

REF, keeping
the state as it is seems to be the best option in terms of efficiency. As C2

REF increases, the
solutions of the optimization problem suggest one to use a Procrustean method on the n
largest Schmidt coefficients, where n increases according C2

REF moves closer to one. This is
analogous to entanglement concentration on a subspace of the bipartite Hilbert space as
the one proposed in Ref. [13], although we have not required the final state to be fixed to a
given one. Finally, C2

REF = 1 represents the ideal entanglement concentration context, in
which the resulting state exhibits the maximal entanglement possible. The optimization
problem shows the correct result, which consists of uniforming all post-concentration
Schmidt coefficients.
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Figure 2. Numerical example of resolution of the quadratic optimization problem [Equation (17)]
for dimension D = 16, using 4 different values of C2

REF. Bars show the original Schmidt coefficients
(cyan) and the non-normalized coefficients after concentration (dark red). Their respective values
of PREF and probabilities of success pS are also shown.

Although Figure 2 shows a single set of initial Schmidt coefficients, the same pattern is
observed for other states in any dimension D > 2. In the following, we shall prove why the
Procrustean method on a subspace is the most efficient method, according to our figures
of merit.

4.2. Analytical Results

One of the goals of this work is to find the analytical solution of the optimization
problem of Equation (17). The details of the proof will be shown in the next subsections.
The procedure can be summarized as follows:

1. If PREF = 1/D (minimum attainable value, equivalent to CREF = 1), it means we are
pursuing a standard entanglement concentration using all Schmidt coefficients. Then,
perform concentration using zm = amin/am. Otherwise, follow Steps 2–8.

2. Sort the Schmidt coefficients in decreasing order. Let us label these sorted coefficients
as am.

3. Define a vector ~β such that βn = 1−∑n
m=1 a

2
m, for n = 1, . . . , D.

4. Define a vector ~α such that αn = PREFβn/(1− nPREF).
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5. Find the largest value of n that allow both αn 6 a2
n and n < 1/PREF to be simultane-

ously satisfied. Let us label this value as nOPT.
6. Define~x such that

xm =

{
αnOPT

, for m = 1, . . . , nOPT,
1 , for m = nOPT + 1, . . . , D.

7. Define ym = xm/a2
m. Afterwards, sort the ym using the inverse of the sorting operation

described in Step 1. These sorted values will be the ym that solve the optimization
problem of Equation (17).

8. Define zm =
√

ym. These values are the ones needed to construct the Kraus operator
of Equation (7).

Sections 4.2.1–4.2.7 hereunder shall detail the underlying reasoning for the algorithm
shown above.

4.2.1. Redefining the Optimization Problem

In order to prove the solution detailed above, we shall define xm = a2
mym = a2

m|zm|2.
This allows us to write the optimization problem [Equation (17)], up to a proportionality
constant, in a simpler way:

max
~x

Q(~x) = PREF

(
D

∑
m=1

xm

)2

−
D

∑
m=1

x2
m,

s. t. 0 6 xm 6 a2
m.

(18)

These new variables xm are the ones plotted in Figure 2 using dark red bars. Thus, the xm
will provide an idea about the post-concentration Schmidt coefficients.

The domain is no longer the unit hypercube, but an orthotope whose vertices have
coordinates components equal to zero and a2

m. Thus, every xm has three options: (i) having
a fixed value equal to zero, (ii) having a fixed value equal to a2

m, and (iii) having a variable
value between zero and a2

m. These options had to be taken into account in order to find all
critical points.

4.2.2. Finding Critical Points

For starters, we shall define set of indices according to the aforementioned options:

1. Z = {j : xj = 0};
2. O = {k : xk = a2

k};
3. I = {` : 0 < x` < a2

`}.
The symbols Z , O, and I stand for zero, outer, and inner, respectively. In this way, any

summation can be written as ∑m = ∑j∈Z +∑k∈O +∑`∈I . There exist 3D configurations
for (Z ,O, I). If we label each of those 3D combinations by using the index µ, then we can
define function Qµ(~x) as the function Q(~x) for the µth configuration. Explicitly,

Qµ(~x) = PREF

 ∑
k∈Oµ

a2
k + ∑

`∈Iµ

x`

2

− ∑
k∈Oµ

a4
k − ∑

`∈Iµ

x2
` . (19)

By imposing ∂xr Qµ(~x) = 0, we can find the critical points of Qµ(~x). Consequently,

xr = PREF

 ∑
k∈Oµ

a2
k + ∑

`∈Iµ

x`

, r ∈ Iµ. (20)
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This means that as long as xr is not fixed in either 0 or a2
r , the optimal solution is such that

those xr all adopt the same value. Let us define some additional ancillary parameters,

βµ = ∑
k∈Oµ

a2
k , γµ = ∑

k∈Oµ

a4
k , nµ = |Iµ|, (21)

nµ being the number of free parameters x`. With these definitions, we can now assert
that x` = αµ is the critical point for the µth configuration, where

x` = αµ =
PREF βµ

1−PREFnµ
, ∀ ` ∈ Iµ. (22)

Consequently, if Qµ is the value of Qµ(~x) evaluated at the µth critical point, then

Qµ = PREF(βµ + nµαµ)
2 − γµ − nµα2

µ

= αµβµ − γµ. (23)

The fact that x` = αµ means that, for every ` ∈ Iµ, coefficients a2
` will be transformed

into αµ as consequence of the concentration procedure. This is, precisely, the Procrustean
method applied on a nµ-dimensional subset of the coefficients {am}.

It is worth mentioning that Equation (22) contains the implicit assumption
PREF 6= 1/nµ, which raises questions regarding the case PREF = 1/nµ. If that were the case,
trying to solve Equation (20) leads us to conclude βµ = 0 and, equivalently, Oµ = ∅. In
turn, this implies Qµ(~x) = 0. Nevertheless, we may see from the original definition ofQ(~z)
[Equation (14)] that the only possible way in which Qµ(~x) = 0 represents a maximum
occurs when C2

REF = 1 and C2(~z) = 1 simultaneously, i.e., PREF = 1/D has been set and
the resulting state is a D-dimensional maximally entangled state.

4.2.3. Upper Bounds for nµ

The Hessian matrix has components given by

∂xs ∂xr Qµ(~x) = 2(PREF − δrs). (24)

It can be shown that Qµ will represent a local maximum for the µth configuration provided,
(1− nµPREF) > 0, since this condition ensures Hessian matrix to be negative-definite. In
other words,

nµ <
1

PREF
. (25)

Thus, some configurations (Zµ,Oµ, Iµ) can be immediately discarded if nµ exceeds this bound.

4.2.4. Eliminating Zeros

Let us start by analyzing the effect of zeros by comparing a given Qµ—for which
xr = 0—with the value of Qµ′(~x) when xr = δ ' 0. Using Equation (19), we have that

Qµ

∣∣∣
xr=0

= PREF(βµ + nµαµ)
2 − γµ − nµα2

µ, (26)

Qµ′

∣∣∣
xr→δ

= PREF(βµ + nµαµ + δ)2 − γµ − nµα2
µ − δ2, (27)

which, in turn, leads us to

Qµ′

∣∣∣
xr→δ

−Qµ

∣∣∣
xr=0

=2PREF(βµ + nµαµ)δ +O(δ2) > 0. (28)
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We can see that Qµ′ actually grows if xr moves away from zero within its neighborhood.
This means that every configuration containing a null value on any of its xm cannot represent
a maximum since all neighboring points have higher values for Q(~x). Therefore, the
solution we are looking for is such that Zµ = ∅. The number of remaining configurations
is now less than 2D.

4.2.5. Optimal n Will Be the Largest Possible

We are left with the options xm ∈ {αµ, a2
m}. We know that the µth critical point is such

that x` = αµ, ∀ ` ∈ Iµ. Since ~x still belongs to the orthotope, an additional condition
arises: αµ 6 a2

` , ∀ ` ∈ Iµ.
Let us now compare two solutions Qλ and Qν, whose critical points differ only in one

term xr, so r ∈ Oλ and r ∈ Iν. Thus, by using Equations (21)–(23), we have that

βν = βλ − a2
r , (29)

γν = γλ − a4
r , (30)

nν = nλ + 1, (31)

αν =
PREF(βλ − a2

r )

1− (nλ + 1)PREF
, (32)

Qλ = αλβλ − γλ, (33)

Qν = ανβν − γν. (34)

Consequently,

Qλ −Qν = −
(
PREF βλ − (1− nλPREF)a2

r
)2(

1− nλPREF

)(
1− (nλ + 1)PREF

) < 0. (35)

Therefore, a better solution is obtained when r belongs to Iν over Oλ, provided that the
constraints are fulfilled. In simpler words, the best of the {nµ} will be the largest possible
within the conditions nµ < 1/PREF and αµ 6 a2

` , ∀ ` ∈ Iµ.

4.2.6. Sorting Preference

For the following comparison, it will be helpful to define two sets O0 and I0. We will
center our attention on two values xr and xs. Now, let us compare two solutions Qρ and
Qσ that satisfy

nρ = nσ = n, (36)

Iρ = I0 ∪ {r}, Iσ = I0 ∪ {s}, (37)

Oρ = O0 ∪ {s}, Oσ = O0 ∪ {r}. (38)

Thus, Iρ and Iσ have n − 1 elements in common, whereas Oρ and Oσ have D − n − 1
elements in common. Consequently,

βρ = β0 + a2
s , γρ = γ0 + a4

s , (39)

βσ = β0 + a2
r , γσ = γ0 + a4

r , (40)

where β0 = ∑k∈O0
a2

k and γ0 = ∑k∈O0
a4

k . For the following, we shall assume ar > as. Now,
since both Qρ and Qσ are admissible solutions, it must happen that αρ 6 a2

r and ασ 6 a2
s as

consequence of Equations (18), (22), and (37). This means

t(β0 + a2
s ) 6 a2

r , and t(β0 + a2
r ) 6 a2

s , (41)

where t = PREF/(1− nPREF) is a positive parameter. If we add these two inequalities,
we obtain
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(a2
r + a2

s )(1− t)− 2tβ0 > 0. (42)

The difference between the solutions Qρ and Qσ is

∆Q = Qρ −Qσ

=
(

a2
r − a2

s

)(
(1− t)(a2

r + a2
s )− 2tβ0

)
. (43)

Since ar > as was assumed and the inequality of Equation (42) was obtained, it can be
assured that Qρ > Qσ. Now, let us remember that Qρ is the solution in which xr = αρ

and xs = a2
s . This means it is better to cut off coefficient ar (the larger one) over as.

Since we already know (see Section 4.2.5) that n must be the largest possible within the
constraints n < 1/PREF and αµ 6 a2

` , ∀ ` ∈ Iµ, we must compare now all the solutions Qµ

such that nµ is equal to that optimal value of n. According to the computations of this
section, the most efficient concentration scheme will consist in cutting off the n largest
Schmidt coefficients, which is in complete agreement with the results shown in Figure 2.

4.2.7. How to Construct the Optimal Concentration Scheme

In summary, we know now that if CREF = 1 (equivalently, PREF = 1/D), then
the optimal solution corresponds to a entanglement concentration procedure that yields
a D-dimensional maximally entangled state. On the other hand, if CREF < 1 (equiva-
lently, PREF > 1/D), we have shown that the optimal solution (i) does not contain zeros,
(ii) it has values either given by xm = a2

m (i.e., keep am as they are) or by xm = αµ (i.e., crop
coefficients am to a given value αµ), (iii) the n largest Schmidt coefficients are to be cropped,
and (iv) n must be as large as possible within constraints given by n < 1/PREF and αµ 6 a2

m.
Once the optimal xm are found, we may compute the corresponding ym and zm. These
rules gave rise to the algorithm described at the beginning of Section 4.2. Moreover, we
performed thousands of numerical simulations, ranging from D = 32 to D = 1024, that
confirmed such an algorithm actually provides the optimal solution. Figure 3 shows a
sample of those simulations for D = 1024, depicting relative differences between the
results from numerical optimization (~ynum and Q(~ynum)) and the ones from the algorithm
proposed in this section (~yalg and Q(~yalg)) for 100 values of PREF. These relative differences
are computed as

∆yrelative =
1
D

D

∑
m=1

∣∣∣∣∣∣
(~ynum)m −

(
~yalg

)
m

(~ynum)m

∣∣∣∣∣∣, (44)

∆Qrelative =

∣∣∣∣∣Q(~ynum)−Q(~yalg)

Q(~ynum)

∣∣∣∣∣. (45)

The initial Schmidt coefficients were computed from a randomly-generated D× D entan-
gled state. As the data of Figure 3 show, relative differences between the two solutions being
compared are negligible, thus demonstrating the adequateness of the proposed algorithm.
Discrepancies can be explained as a consequence of floating-point computation precision.
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Figure 3. Comparison between results obtained through numerical optimization (Q(~ynum)) and the
ones obtained by using the algorithm introduced at the beginning of Section 4.2 (Q(~yalg)). Relative
differences for are shown for 100 values of PREF . The vertical dotted line indicates the initial value of
the purity of the reduced density matrix, i.e., PREF = PINIT. See the main text for details about the
computation of these relative differences.

After efficiency optimization, one should evaluate whether practical advantages were
obtained from it. Figure 4 shows the probability of success and Schmidt number for
the same optimizations carried out for Figure 3. The initial state had a Schmidt num-
ber KINIT ≈ 512. Raising this number to its maximum (i.e., K = 1024) can be done with a
probability of success pS = Da2

min ∼ 10−7 (not shown in the graphs in order to ease obser-
vation). However, non-maximal Schmidt numbers can be obtained with much better prob-
abilities. For instance, PREF ≈ 1.15× 10−3 allows one to achieve a considerable Schmidt
number (K = 900) with a success probability pS = 11%. Although PREF ≈ 1.15× 10−3

seems to be a non-trivial number of uncertain origin, we may notice that 1/PREF ∼ 868.
Thus, an acceptable method to estimate the necessary value of PREF consists in setting
a minimum desirable Schmidt number KMIN, define a slightly smaller threshold num-
ber KTHR < KMIN, and computing PREF = 1/KTHR.

It is worth mentioning that the solution described in this section closely resembles the
entanglement concentration procedure described in Ref. [13], which was also graphically
explained in Ref. [30]. However, we did not set the final state to a fixed one in our
formulation. Instead, we defined a single figure of merit to be interpreted as efficiency, and
its optimization suggested performing entanglement concentration on the subspace of the
largest Schmidt coefficients.
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Figure 4. Success probability and Schmidt number for the same state and optimizations used in
Figure 3. The vertical dotted line indicates the initial value of the purity of the reduced density matrix,
i.e., PREF = PINIT and the horizontal dashed line shows the initial Schmidt number. Keep in mind
that larger values of PREF mean smaller values of CREF.

5. Entanglement Concentration with Fixed Probability of Success

An alternative way to solve the problem of efficient entanglement concentration is
by setting the success probability to a fixed value pFIX and inquiring about the largest
entanglement that can be extracted. As it can be seen from Equations (12) and (13), this
question reduces to minimization of the purity of the reduced density matrix, as

min
~y
P(~y) =

[
1

pS(~y)

D

∑
m=1

a4
my2

m

]
,

subject to 0 6 ym 6 1 and
D

∑
m=1

a2
mym = pFIX, (46)

where we have already used ym = |zm|2. As we have imposed pS(~y) = pFIX, the optimiza-
tion reduces to optimize ∑m a4

my2
m. As in the previous section, we shall resort to xm = y2

m
and the sets of indices Zµ, Oµ, and Iµ. Using the xm, we are left to optimize ∑m x2

m, and
the constraint of fixed probability can be rewritten as ∑m xm = pFIX, which also allows us
to write one of the variables in terms of the others. Let

xϑ = pFIX − ∑
m 6=ϑ

xm. (47)

Then, the minimization of the purity can be rewritten as
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minimize(pFIXP(~x)) = ∑
m 6=ϑ

x2
m +

(
pFIX − ∑

m 6=ϑ

xm

)2

= ∑
k∈Oµ

a4
k + ∑

`∈Iµ

` 6=ϑ

x2
` +

 ∑
k∈Oµ

a2
k + ∑

`∈Iµ

` 6=ϑ

x`


2

. (48)

Critical points are found by setting ∂(pFIXP(~x))/∂xr = 0, with r ∈ Iµ and r 6= ϑ. This
leads us to xr = κµ, where

κµ =
pFIX − βµ

nµ
. (49)

In turn, Equation (47) implies that xϑ = κµ as well. Thus, we obtained solutions given by
either xm = a2

m, xm = 0, or xm = κµ, which is the exact behavior exhibited by the xm from
Section 4 up to a change from αµ to κµ. The same analysis performed in Sections 4.2.4–4.2.7
can be applied here. The conclusions are very similar: (i) the optimal values of xm are
different from zero, (ii) if n is the number of variables xm being equal to κµ, then n must
be as large as possible within the constraint 0 6 κ 6 a2

` , and (iii) the n largest Schmidt
coefficients are cut off. Thus, an algorithm can be constructed as follows:

1. Sort the Schmidt coefficients in decreasing order. Let us label these sorted coefficients
as am.

2. Define a vector ~β such that βn = 1−∑n
m=1 a

2
m, for n = 1, . . . , D.

3. Define a vector~κ such that κn = (pFIX − βn)/n.
4. Find the largest value of n such that κn > 0 and κn < a2

n are simultaneously satisfied.
Let us label this value as nOPT.

5. Define~x such that

xm =

{
κnOPT

, for m = 1, . . . , nOPT,
1 , for m = nOPT + 1, . . . , D.

6. Define ym = xm/a2
m. Afterwards, sort the ym using the inverse of the sorting operation

described in Step 1. These sorted values will be the ym that solve the optimization
problem of Equation (17).

7. Define zm =
√

ym. These values are the ones needed to construct the Kraus operator
of Equation (7).

As it can be seen, the solutions obtained for this problem are completely analogous to
the ones of the previous section. The advantage of this approach lies in the fact that P(~x)
appears in both I-Concurrence and Schmidt number. Thus, it is a favorable way to increase
the Schmidt number without introducing nontrivial mathematical complications. Once
more, this result represents a Procrustean method applied on a subspace, although only
one parameter has been fixed (pFIX) instead of a whole state.

6. Conclusions

In summary, we have studied entanglement concentration from a single copy of a
two-qudit entangled state in terms of efficiency. As the ideal procedure—obtaining a
maximally entangled state—is extremely inefficient in terms of probability, we studied the
possibility of concentrating a fair enough amount of entanglement and, simultaneously,
increment the success probability. Two methods were analyzed. For the first one, a func-
tion Q(~y) was defined in order to quantify efficiency as the product of success probability
and entanglement increment. This function allows one to introduce a parameter PREF,
which is loosely related to a minimal entanglement amount intended to extract. The other
one consisted of fixing the success probability to a given value and finding the maximal
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entanglement it can be extracted under the constraint herein. We found that, for both cases,
the solution resembles a Procrustean method applied on a subset of the largest Schmidt
coefficients. Such application of the Procrustean method has been already studied in the
literature under the assumption that the final state must be a n-dimensional maximally
entangled state, with n < D. Therefore, n constraints are implicitly assumed. Instead, this
work does not impose constraints on the final state. In the first method, the Procrustean
method results as consequence of a quadratic optimization problem. In the second one, it
emerges after optimizing entanglement and using a single constraint.

We anticipate that this work may be useful for understanding how to concentrate en-
tanglement efficiently in very large dimensions. As entanglement is a resource underlying
many protocols in Quantum Information Science, we believe many people in the Quantum
Information community may benefit from these findings.
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Appendix A. Why Is It Necessary to Add a Difference?

In Section 3, we asserted that [p(~z)C(~z)]2 has its maximum when zm = 1, ∀ m. This
means to keep the original state unaltered, without making any attempt to concentrate
entanglement. In order to prove it, let us remember Equations (10) and (12). We may
observe that

δ = [pS(~z)C(~z)]2
∣∣∣
zm=1

− [pS(~z)C(~z)]2

=
D

D− 1

(
p2

S(~z)−
D

∑
m=1

a4
m|zm|4

)∣∣∣∣∣
zm=1

~z

=
D

D− 1

D

∑
m,n=1

(1− δmn)
(

1− |zm|2|zn|2
)

a2
ma2

n

> 0,

because |zm| 6 1. Thus, straight optimization of p2(~z)C2(~z) will suggest to do nothing and,
instead, keep entanglement as it is. For this reason, it is necessary to add a reference level
for entanglement. In other words, it is better to optimize p2(~z)

[
C2(~z)− C2

REF

]
rather than

maximizing solely p2(~z)C2(~z) in order to actually increment entanglement.

Appendix B. Why Does a Diagonal Kraus Operator Suffice?

In Equation (7), we assumed AS(~z) to be diagonal in the {|m〉} basis. This section will
show why nondiagonal terms do not increase efficiency. Let us redefine AS to be a general
operator with components ζmn. We will add an additional definition. Let Π(ζ) = A†

S AS be
a positive operator whose matrix components are πmn = ∑j ζ∗jmζ jn and satisfy π∗mn = πnm

and πjj > 0. If Π is known, then AS = U
√

Π, where U is an arbitrary unitary operator
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whose explicit form depends on experimental details about the physical implementation
of AS

Now, considering that AS = U
√

Π, Equations (9) and (10) become

|Ψ(ζ)〉12 = (U ⊗ I)
D

∑
m=1

am√
pS(ζ)

√
Π|m〉1|m〉2,

pS(ζ) =
D

∑
m=1

πmma2
m,

and the efficiency function is written as

Q(ζ) = D
D− 1

PREF

(
D

∑
m=1

a2
mπmm

)2

−
D

∑
m=1

a4
mπ2

mm −
D

∑
m 6=n

a2
ma2

n|πmn|2
]

(A1)

It can be seen that Q(ζ) does not depend on U. In addition, the only positive term on the
RHS of Equation (A1) depends on the diagonal components πmm, whereas nondiagonal
components only diminish the efficiency. Consequently, the optimal operator Π must be
diagonal. This last condition can be satisfied, although not uniquely, by imposing AS to be
diagonal, so Equation (7) suffices to find the adequate operation to optimize the functionQ.
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